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ABSTRACT
A methodology is introduced for numerical evaluation, with any given accuracy, of the cumulative

probabilities of the proportion of genome shared identical by descent (IBD) on chromosome segments
by two individuals in a grandparent-type relationship. Programs are provided in the popular software
package Maple for rapidly implementing such evaluations in the cases of grandchild-grandparent and
great-grandchild–great-grandparent relationships. Our results can be used to identify chromosomal seg-
ments that may contain disease genes. Also, exact P values in significance testing for resemblance of either
a grandparent with a grandchild or a great-grandparent with a great-grandchild can be calculated. The
genomic continuum model, with Haldane’s model for the crossover process, is assumed. This is the model
that has been used recently in the genetics literature devoted to IBD calculations. Our methodology is
based on viewing the model as a special exponential family and elaborating on recent research results
for such families.

THE genes at a given locus of two related individuals Note that the proportion of genome-shared IBD by
are said to be identical by descent (IBD) if one is related individuals is a random variable unless we con-

a physical copy of the other or both are physical copies sider some trivial cases, such as twins or a parent with
of the same gene in a common ancestor. Calculations a child. Donnelly (1983) calculates the probability that
associated with the concept of IBD at a single locus or this random variable is positive. Its distribution function
at a finite (small) number of (linked) loci have been is generally unknown. The first result, although not
published in the genetics literature since the early 1940s exact, concerning its distribution in the case of c half-
(cf. the references in Bickeboller and Thompson sibs, is due to Bickeboller and Thompson (1996a; cf.
1996a). Such calculations become difficult with the in- Bickeboller and Thompson 1996b). They find approx-
crease of the number of loci and/or relatives. Moreover, imations to it using the Poisson clumping heuristic. Note
considering a finite, however large, number of indepen- that no exact result for the distribution function of the
dent loci cannot account for the possibility of recombi- aforementioned random variable is available even in
nation. The latter problem can be overcome by consid- the simplest case of two closely related individuals, such
ering the chromosomes as a continuum and modeling as half-sibs or a grandparent and a grandchild. Earlier
the occurrence of crossovers by a point process (cf. results provide only the expected value and variance of
Lange 1997, Chap. 12). The latter is usually a Poisson this random variable and the conditional counterparts
process. It does not account for the possibility of inter- of these given information on flanking markers (see
ference but provides a good approximation to reality if Goldgar 1990; Hill 1993; Guo 1994a,b, 1995; Thomp-
long chromosomal regions are considered. This model son 1995).
dates back to Haldane (1919) and Fisher (1949). Throughout the article only autosomal chromosome
There has recently been increased interest in IBD calcu- segments are considered. Equal map lengths are as-
lations for the genomic continuum model. This is sumed for male and female (cf. Bickeboller and
mainly due to the availability of data on densely packed Thompson 1996a).
loci, which makes the concept of IBD sharing for chro- In this article we introduce a methodology for numeri-
mosomal regions or the whole genome of practical im- cal evaluation, with any given accuracy, of the cumula-
portance. The first result concerning IBD calculations, tive probabilities of the proportion of genome shared
in the framework of the continuum model, is due to IBD on chromosome segments by two individuals in
Donnelly (1983). He calculates the probability that a grandparent-type relationship. We provide Maple V
individuals in a given relationship share any part of the programs for implementing such evaluations in the
genome IBD. cases of grandchild-grandparent and great-grandchild–

great-grandparent relationships. Also, these evaluate
the cumulative probabilities given any information (e.g.,
such as inheritance) on one of the flanking markers.Author e-mail: stefanov@maths.uwa.edu.au
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These are the first exact distributional results concern- The initial probability vector is (1⁄4, 1⁄4, 1⁄4, 1⁄4) (the steady-
ing IBD calculations in the framework of the genomic state probabilities). The model for the second relation-
continuum model. Our methodology is applicable to ship (grandchild-grandparent) is a two-state continuous
higher-order grandparent-type relationships at the ex- time Markov chain whose states 1 and 0 we denote by 1
pense of heavier computational effort. It is also applica- and 2, respectively. The holding times are exponentially
ble to other relationships as long as the associated un- distributed with parameter 1 and the one-step transition
derlying mathematical models (continuous time Markov probability matrix of the embedded discrete time Mar-
chains) do not have too many states. Roughly speaking, kov chain is given by
the latter means that we consider a small number of
closely related individuals—for example, several half- 30 1

1 04 .
sibs. Our results can be used in identifying chromosomal
segments that may contain disease genes. Also, exact P

The initial probability vector is (1⁄2, 1⁄2). Let d be thevalues can be derived in significance testing for resem-
length (in morgans) of the chromosome segment ofblance of a grandparent with a grandchild and of a
interest. The quantity of interest is the sojourn time ingreat-grandparent with a great-grandchild.
state 1 within time interval of length d. This quantity
divided by d is the proportion of the genome shared

THE UNDERLYING MATHEMATICAL MODEL IBD on that segment by the individuals in question.

Haldane (1919) and Fisher (1949) have suggested
that chromosomes be considered as a continuum and

METHODSthat the occurrence of crossovers along the chromo-
somes be modeled by a Poisson process. If the distances Our methodology is based on the following key
are measured in morgans, then the rate of the Poisson points. First, the underlying model can be viewed as
process is one. Donnelly (1983) elaborated on this a member from a special exponential family. Second,
model and showed that all crossover processes on a recent research results on such families (cf. Stefanov
pedigree can be viewed as a continuous time Markov 1991, 1995) are applicable to get explicit expressions for
chain, whose states are the vertices of a hypercube. Also, the characteristic functions of relevant stopping times.
the genome-shared IBD by a group of related individuals Third, these characteristic functions are numerically in-
equals the sojourn time at a set of vertices up to time d, vertable using the system Maple V (Monagan et al. 1997)
where d is the length (in morgans) of the chromosome and some numerical tools. Therefore, their distribution
segment of interest. For example, the amount of ge- functions are derivable. Fourth, the latter distribution
nome inherited by a great-grandchild from a great- functions yield the distribution function of a sojourn
grandparent equals the sojourn time at the vertex (1, time in a state within any fixed time interval. Subse-
1) in a continuous time Markov random walk on the quently the cumulative probabilities of relevant propor-
four vertices (1, 1), (1, 0), (0, 1), and (0, 0) of the two- tions of genome-shared IBD can be calculated. More
dimensional unit cube, where the holding times at all details follow.
vertices are exponentially distributed with parameter 2 Let {X(t)}t$0 be a continuous-time Markov chain with
(cf. Donnelly 1983; Guo 1995, p. 1473). Likewise, the four states whose parameters are described below. The
amount of genome inherited by a grandchild from a embedded discrete-time Markov chain has the one-step
grandparent equals the sojourn time at state 1 in a transition probability matrix
continuous time Markov random walk on the two verti-
ces 1 and 0 of the one-dimensional unit cube, where
the holding times are exponentially distributed with
parameter 1. More specifically, the model for the first 3

0 p1 q1 0

p2 0 0 q2

p3 0 0 q3

0 p4 q4 0
4 ,

relationship (great-grandchild–great-grandparent) is a
four-state continuous time Markov chain whose parame-
ters are described as follows. Denote the states (1, 1),

where 0 , pi, qi , 1, and pi 1 qi 5 1. Also l1 is the(1, 0), (0, 1), and (0, 0) by 1, 2, 3, and 4, respectively.
parameter of the exponentially distributed holding timeThe holding times are exponentially distributed with
in state 1 while l2 is the same for the remaining threeparameter 2 and the one-step transition probability ma-

trix of the embedded discrete time Markov chain is states. Note that, in particular, if pi 5 qi 5 0.5 and l1 5
given by l2 5 2 we get the underlying mathematical model for

the relationship great-grandchild–great-grandparent.
Let Nij(t) be the number of one-step transitions from
state i to state j up to time t. Also let Ti(t) be the sojourn3

0 0.5 0.5 0

0.5 0 0 0.5

0.5 0 0 0.5

0 0.5 0.5 0
4 . time in state i up to time t. Denote

T(t) 5 T1(t) and S(t) 5 T2(t) 1 T3(t) 1 T4(t).
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Then, given the initial state is fixed, the likelihood func- duced in the preceding section. The relevant likelihood
function istion of the chain X, observed up to time t, is given by

exp{N12(t)ln l1 1 N21(t)ln l2 2 l1U1(t) 2 l2U2(t)},exp{N12(t)ln(p1l1) 1 N13(t)ln(q1l1) 1 N21(t)ln(p2l2)

where Nij(t) is the number of one-step transitions from1 N24(t)ln(q2l2) 1 N31(t)ln(p3l2) 1 N34(t)ln(q3l2)
state i to state j in the time interval [0, t], and Ui(t) is

1 N42(t)ln(p4l2) 1 N43(t)ln(q4l2) the sojourn time in state i in the same time interval.
Similarly to the preceding case, introduce the stopping2 l1T(t) 2 l2S(t)} (1)
time

(cf. Stefanov 1991). Introduce the following stopping
ns 5 inf{t : U1(t) $ s}, s . 0,time:

and note thatts 5 inf{t : T(t) $ s}, s . 0;

P(U1(t) $ s) 5 P(ns # t). (4)that is, ts is the waiting time till the sojourn in state 1
reaches the level s. Recall that if l1 5 l2 5 1 then U1(t) is the length of the

Recall that T(t) (the sojourn time in state 1 up to genome inherited by a grandchild from his grandparent
time t) identifies the length of the genome shared by on a chromosome segment of length t. Also
the two individuals on a chromosome segment of length
t. It is easy to see that the distribution functions of T(t) P(ns # t) 5 o

2

i51

P(ns # t|X(0) 5 i)P(X(0) 5 i)
and ts are related as

5 o
2

i51

P(U2(ns) # t 2 s|X(0) 5 i)P(X(0) 5 i)P(T(t) $ s) 5 P(ts # t). (2)

(5)Also

(we use the same notation, X, for the corresponding
P(ts # t) 5 o

4

i51

P(ts # t|X(0) 5 i)P(X(0) 5 i)
two-state Markov chain). Note that N12(ns) 5 N21(ns) if
X(0) 5 1 and N12(ns) 5 N21(ns) 2 1 if X(0) 5 2. The

5 o
4

i51

P(S(ts) # t 2 s|X(0) 5 i)P(X(0) 5 i), following hold.

(3) Proposition 4. Assume that l1 5 l2 5 1 and X(0) 5
1. Then the characteristic function of U2(ns) is given by

because ts 5 T(ts) 1 S(ts) 5 s 1 S(ts).
The following propositions provide explicit expres-

M(1)
U2(ns)(t) 5 exp1 Ist

1 2 It2.sions for the characteristic functions of S(ts) corre-
sponding to different initial states. Their proofs are

Proposition 5. Assume that l1 5 l2 5 1 and X(0) 5found in the appendix.
2. Then the characteristic function of U2(ns) is given by

Proposition 1. Assume that pi 5 qi 5 0.5 for each i,
l1 5 l2 5 2, and X(0) 5 1. Then the characteristic function M(2)

U2(ns)(t) 5
1

1 2 It
exp1 Ist

1 2 It2.of S(ts) is given by

The tools used for deriving the aforementioned prop-
M(1)

S(ts)(t) 5 exp122s 1
2s(1 2 It/2)

2(1 2 It/2)2 2 12, ositions are applicable to the sojourn time in any given
state from any given finite-state Markov chain (cf. the
appendix) and are therefore also applicable to higher-where I 5 √21.
order grandparent-type relationships.

Proposition 2. Assume that pi 5 qi 5 0.5 for each i, To compute the cumulative probabilities of the pro-
l1 5 l2 5 2, and either X(0) 5 2 or X(0) 5 3. Then the portion of shared genome we need the conditional cu-
characteristic function of S(ts) is given by mulative probabilities of S(ts) and U2(ns) given the initial

state [cf. the identities (2), (3), (4), and (5)]. The above
M(2)

S(ts)(t) 5
1 2 It/2

2(1 2 It/2)2 2 1
exp122s 1

2s(1 2 It/2)
2(1 2 It/2)2 2 12. propositions provide the characteristic functions of

these conditional distributions. We invert them, using
Proposition 3. Assume that pi 5 qi 5 0.5 for each i, l1 5 some numerical tools, and find the required cumulative

l2 5 2, and X(0) 5 4. Then the characteristic function of probabilities. The mathematical details of these are pro-
S(ts) is given by vided in the appendix.

M(4)
S(ts)(t) 5

1
2(1 2 It/2)2 2 1

exp122s 1
2s(1 2 It/2)

2(1 2 It/2)2 2 12. RESULTS

We provide two Maple V programs in the appendix.Consider now the underlying model for the relation-
ship grandchild-grandparent, which has been intro- These evaluate the cumulative probabilities of the ge-
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TABLE 2TABLE 1

Cumulative probabilities (Fd(x)) of the proportion (x) of Cumulative probabilities (Fd(x)) of the proportion (x) of
genome-shared IBD on a chromosome segment ofgenome-shared IBD on a chromosome segment of

length d morgans by two individuals in the length d morgans by two individuals in the
relationship great-grandchild–great-grandparentrelationship grandchild-grandparent

x F0.5(x) F1.75(x) F3(x) x F0.5(x) F1.75(x) F3(x)

0.00 0.547465 0.261424 0.1256760.00 0.303265 0.086887 0.024894
0.05 0.322323 0.117050 0.046587 0.05 0.571825 0.330677 0.210284

0.10 0.595543 0.398552 0.2996450.10 0.341573 0.150423 0.074591
0.12 0.349323 0.164630 0.087617 0.15 0.618608 0.464172 0.390096

0.20 0.641012 0.526809 0.4784490.14 0.357098 0.179306 0.101695
0.16 0.364899 0.194435 0.116821 0.25 0.662746 0.585888 0.562118

0.30 0.683805 0.640974 0.6391640.18 0.372723 0.210000 0.132985
0.20 0.380570 0.225982 0.150171 0.35 0.704185 0.691771 0.708297

0.40 0.723884 0.738107 0.7688240.22 0.388437 0.242362 0.168356
0.24 0.396324 0.259118 0.187509 0.45 0.742900 0.779921 0.820573

0.50 0.761233 0.817247 0.8637890.26 0.404229 0.276230 0.207594
0.28 0.412151 0.293673 0.228567 0.55 0.778887 0.850203 0.899039

0.60 0.795863 0.878975 0.9271060.30 0.420088 0.311423 0.250378
0.32 0.428040 0.329456 0.272973 0.65 0.812166 0.903801 0.948896

0.70 0.827802 0.924958 0.9653640.34 0.436003 0.347746 0.296289
0.36 0.443978 0.366266 0.320262 0.75 0.842777 0.942750 0.977451

0.80 0.857098 0.957497 0.9860320.38 0.451963 0.384990 0.344819
0.40 0.459956 0.403888 0.369886 0.85 0.870775 0.969524 0.991895

0.90 0.883815 0.979153 0.9957180.42 0.467957 0.422933 0.395384
0.44 0.475963 0.442096 0.421300 0.95 0.896230 0.986696 0.998062

0.99 0.905719 0.991429 0.9991810.46 0.483973 0.461348 0.447339
0.48 0.491986 0.480659 0.473625
0.50 0.500000 0.500000 0.500000

these programs). These are set up to be the steady-state
probabilities. If the user wishes to evaluate cumulative
probabilities given information on one of the flanking
markers, then he/she should set up the initial probabili-

nome-shared IBD on chromosome segments by two indi- ties accordingly.
viduals in either grandchild-grandparent or great-
grandchild–great-grandparent relationship. It takes a

DISCUSSIONfew minutes real time to execute the longer program
on either a PC or UNIX workstation. Tables 1 and 2 In this article we provide Maple V programs for nu-
provide excerpts of such cumulative probabilities for merical evaluation, with any given accuracy, of the cu-
chromosome segments of length 0.5, 1.75, and 3, respec- mulative probabilities of the proportion of genome-
tively. Table 1 does not contain quantiles larger than shared IBD on chromosome segments by two individuals
the median because the distribution function for the in either grandchild-grandparent or great-grandchild–
grandchild-grandparent relationship is symmetric. great-grandparent relationship. These are the first exact

The user of these programs should enter the lengths distributional results concerning IBD calculations in the
(in morgans) of the chromosome segment of interest framework of the genomic continuum model. The re-
(d) and the shared part of this (s) in the second and sults also yield exact evaluations of the cumulative prob-
third rows, respectively (note that s/d is the proportion abilities given information (e.g., such as inheritance) on
of shared genome). The programs contain hypothetical one of the flanking markers. We suggest a couple of
values for these and the last row in the output that applications below. These assume the availability of con-
appears on the screen after the program is executed. tinuous IBD data. Such data are not yet, but will be

made, available with the progress on the Genome Proj-Remark: Our programs evaluate the cumulative proba-
ect. In particular, a new technique called genomic mis-bilities for each s, such that 0 # s , d. Evaluations
match scanning (Nelson et al. 1993) is expected tofor the trivial case s 5 d are not needed because the
produce almost continuous IBD data (cf. Cheung andcorresponding cumulative probability is clearly equal to
Nelson 1996; McAllister et al. 1996).one.

Our results can be used in devising tests for identi-
The initial probability vectors are denoted by (c1, c2) fying chromosomal segments that may contain disease

genes. Such segments are expected to have unusuallyand (c1, c2, c3, c4), respectively (cf. the last procedure in
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large proportions of genome-shared IBD by the affected functions. For other relationships the quantity of inter-
est is the sojourn time in a set of states. This can berelated individuals. The cumulative distribution func-
identified as a sojourn time in a single state for a suitabletion is the relevant quantitative measure for such unusu-
Markov renewal process that is associated with the un-alness. For example, let a chromosomal segment be
derlying Markov chain. Tools for deriving explicit ex-suspected of carrying responsible genes for a particular
pressions of the relevant characteristic functions associ-disease. The hypothesis to be tested is “the segment
ated with such a sojourn time can be found in Stefanovdoes not carry such genes.” Our data consist of observa-
(1995). We are currently investigating other relation-tions over the corresponding proportions of genome-
ships, such as half-sibs.shared IBD on that segment for n independent pairs

of individuals, each in a grandchild-grandparent rela- The author is grateful to E. Thompson for helpful discussions on
the topic and to the referees and the associate editor for their detailedtionship, and all affected by the disease. Then a relevant
and constructive comments.test statistic is the minimum of these proportions. Its

cumulative probabilities, and subsequently relevant P
values, can be evaluated using the enclosed program for
grandchild-grandparent relationship. More specifically, LITERATURE CITED
let x be the observed value of this statistic. Then the
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u2 5 ln1q1(1 2 q2)q3l1l2

q2
2,Thompson, E. A., 1995 Genetic importance and genomic descent,

pp. 112–123 in Population Management for Survival and Recovery,
edited by J. D. Ballou, M. Gilpin and T. Foose. Columbia u3 5 ln(q1(1 2 q3)l1l2),University Press, New York.

Widder, D. V., 1971 An Introduction to Transform Theory. Academic
u4 5 ln(q2(1 2 q4)l2

2),Press, New York.

u5 5 ln(q3q4l
2
2),Communicating editor: S. Tavaré

u6 5 2l2,

and φ(u) 5 2l1s, whose expression in terms of the ui’s
APPENDIX is found below.

In view of Stefanov’s (1991) results the family givenProofs of the propositions: The fundamental identity
by (A1) is a noncurved exponential family of orderin sequential analysis states that for a finite stopping
six—that is, there is no linear constraint on the Yi’s andtime the sequential likelihood function is derived from
the dimension of the parameter u is six. For formalthe nonsequential one by substituting the stopping time
definitions and basic analytical properties of exponen-for the time parameter. Thus, in view of (1), the sequen-
tial families one may refer to Barndorff-Nielsential likelihood function of the chain X, observed up to
(1978) or Brown (1986). The characteristic functiontime ts, is given by
of the canonical statistic (Y1, Y2, . . . , Y6) has an explicit

exp{N12(ts)ln(p1l1) 1 N13(ts)ln(q1l1) 1 N21(ts)ln(p2l2) representation in terms of φ(u) (cf. Barndorff-Nielsen
1978, p. 114). In particular, for the characteristic func-1 N24(ts)ln(q2l2) 1 N31(ts)ln(p3l2)
tion of S(ts) we get

1 N34(ts)ln(q3l2) 1 N42(ts)ln(p4l2) 1 N43(ts)ln(q4l2)
MS(ts)(t) 5 exp(φ(u1, u2, . . . , u6) 2 φ(u1, u2, . . . , u5, u6 1 It)),

2 l1T(ts) 2 l2S(ts)}.
(A2)

Proof of Proposition 1: Recall that the initial state is 1,
where I 5 √21.that is X(0) 5 1. Note that the following linear relation-

Note thatships hold:

N12(ts) 1 N13(ts) 5 N21(ts) 1 N31(ts) u2

u3

5 ln1(1 2 q2)q3

q2(1 2 q3)
2.

N21(ts) 1 N24(ts) 5 N12(ts) 1 N42(ts)
The latter, together with the identities for u4 and u5N31(ts) 1 N34(ts) 5 N13(ts) 1 N43(ts) given above, leads to the following expressions for q2,

T(ts) 5 s. q3, and q4 in terms of the ui’s:

The first three identities compare the number of entries
q2 5

eu22u312u4 1 eu41u5

u2
6eu22u31u4 2 eu22u31u41u5 1 eu41u5

,to, with the number of exits from, a state. Note that
these numbers are equal if the initial state is 1 (cf. Ste-
fanov 1991). For the sake of brevity denote Nij(ts) by

q3 5
eu22u31u4 1 eu5

eu22u31u4 1 u2
6 2 eu4

,Nij. From these identities we can express N13, N24, and
N34 in terms of the remaining Nij’s, that is,

q4 5
eu22u31u41u5 1 u2

6eu5 2 eu41u5

u2
6(eu22u31u4 1 eu5)

.N13(ts) 5 2N12(ts) 1 N21(ts) 1 N31(ts)

N24(ts) 5 N12(ts) 2 N21(ts) 1 N42(ts) From the identity for u1 we find that q1 5 q2/(q2 1
N34(ts) 5 2N12(ts) 1 N21(ts) 1 N43(ts). q3eu1); that is,

Replacing N13, N24, and N34 by these we get the following
q1 5

(eu22u31u4 1 u2
6 2 eu4)(eu22u312u4 1 eu41u5)

W1 1 W2

,representation of the sequential likelihood function,

whereexp


o

6

i51

uiYi 1 φ(u)



, (A1)

W1 5 (eu22u31u4 1 u2
6 2 eu4)(eu22u312u4 1 eu41u5),

where Y1 5 N12, Y2 5 N21, Y3 5 N31, Y4 5 N42, Y5 5 N43,
Y6 5 S(ts), u 5 (u1, u2, . . . , u6), W2 5 eu1(eu22u31u4 1 eu5)(u2

6 eu22u31u4 2 eu22u31u41u5 1 eu41u5).

We denote by qi(u) the expression for qi in terms of theu1 5 ln1(1 2 q1)q2

q1q3
2, ui’s. From the identity for u3 we get that



1409Distribution of Genome Shared Identical by Descent

The same canonical representation as (A1), with a dif-
l1 5

eu3

2u6q1(u)(1 2 q3(u))
, ferent φ(u), is derived. The new φ(u) 5 2l1s 2

ln(q1q3l1l2). Note that if pi 5 qi 5 0.5 for each i, then
and subsequently we derive the following explicit ex-

q1q3l2

q1(u1, . . . , u5, u6 1 It)q3(u1, . . . , u5, u6 1 It)l2(u1, . . . , u5, u6 1 It)
pression for φ(u) (5 2l1s):

5 1 2
It
2

.seu3

u6
1e

u22u31u4 1 u2
6 2 eu4

u2
6 2 eu4 2 eu5

The proof is completed similarly to the above cases.
1

eu1(eu22u31u4 1 eu5)(u2
6 eu22u31u4 2 eu22u31u41u5 1 eu41u5)

(u2
6 2 eu4 2 eu5)(eu22u312u4 1 eu41u5) 2. The proofs of Propositions 4 and 5 follow similar

arguments and are therefore omitted. Note also that
This leads to an explicit closed-form expression for any our methods are based on general results (cf. Stefanov
particular case. Recall that the case of interest is when 1991) that are valid for any given finite-state Markov
pi 5 qi 5 0.5 for each i and l1 5 l2 5 2. After some chain. Thus, they can also be applied to higher-order
easy algebra one gets the following expression for φ(u1, grandparent-type relationships.
u2, . . . , u5, u6 1 It): Details about the inversion of the relevant characteris-

tic functions: First recall the inversion formula
2

2s(1 2 It/2)
2(1 2 It/2)2 2 1

.

F(t2) 2 F(t1) 5 lim
r →1∞

1
2p#

r

2r

e2Ist1 2 e2Ist2

Is
c(s)ds,

In view of (A2) this yields Proposition 1.

where c(·) is the characteristic function of the distribu-Proof of Proposition 2: Note that interchanging states
tion function F(·) and t1, t2 are points of continuity of F.two and three do not result in a new transition probabil-
Note that the aforementioned conditional distributionsity matrix. Therefore, the distribution of S(ts) is the
are all supported by the nonnegative part of the real linesame for both cases X(0) 5 2 and X(0) 5 3. Assume
[0, 1∞). Moreover, the distributions with characteristicthe initial state is 2. Similarly to the preceding case we
functions given in Propositions 2, 3, and 5 are continu-have the linear relationships
ous and those with characteristic functions given in

N12(ts) 1 N13(ts) 5 N21(ts) 1 N31(ts) 2 1 Propositions 1 and 4 are mixtures of a continuous part
on the interval (0, 1∞) and an atom at zero. Therefore,N21(ts) 1 N24(ts) 5 N12(ts) 1 N42(ts) 1 1
the relevant inversion formula, for all cases, is

N31(ts) 1 N34(ts) 5 N13(ts) 1 N43(ts)

F(t) 2
p0

2
5 lim

r →1∞

1
2p#

r

2r

1 2 e2Ist

Is
c(s)dsT(ts) 5 s.

Following similar arguments to those used in the proof (cf. Theorem 7.1 on p. 106 of Widder 1971), where
of Proposition 1, we derive the same canonical exponen- p0 5 F(0) 2 F(02). It is easy to see that
tial representation as (A1) with a different φ(u). Actually

p0 5 P(S(ts) 5 0|X(0) 5 1) 5 exp(22s)the new φ(u) 5 2l1s 2 ln(q1q3l1/q2). Note that if pi 5
qi 5 0.5 for each i, then for the conditional distribution of S(ts) given X(0) 5 1

andq1q3

q2

5
q1(u1, . . . , u5, u6 1 It)q3(u1, . . . , u5, u6 1 It)

q2(u1, . . . , u5, u6 1 It)
.

p0 5 P(U2(ns) 5 0|X(0) 5 1) 5 exp(2s)

Therefore, if pi 5 qi 5 0.5 for each i, then the new for the conditional distribution of U2(ns) given X(0) 5
φ(u) 5 2l1s 2 ln l1. Also, the expression for l1 in terms 1. Therefore, we need to evaluate the integral
of the ui’s has been found above. Therefore, the proof
of proposition 2 is completed similarly to the preceding #

∞

2∞

e2Ist1 2 e2Ist2

Is
c(s)ds

case.

for all characteristic functions given in the aforemen-Proof of Proposition 3: Recall that the initial state is 4,
tioned propositions. Some of these can be evaluatedthat is X(0) 5 4. Similarly to the above cases the follow-
directly using the system Maple V as follows. Extracting identities hold:
first the real component of the integrand (what one

N12(ts) 1 N13(ts) 5 N21(ts) 1 N31(ts) 2 1 needs to integrate only) and then apply the standard
Maple V command for integral evaluation. This is appli-N21(ts) 1 N24(ts) 5 N12(ts) 1 N42(ts)
cable to the characteristic functions M(4)

S(ts), M(1)
U2(ns), and

N31(ts) 1 N34(ts) 5 N13(ts) 1 N43(ts) M(2)
U2(ns). The integrals associated with M(1)

S(ts) and M(2)
S(ts) have

highly oscillating integrands and cannot be evaluatedT(ts) 5 s.
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directly. However, numerical tools, such as those sug- of the cumulative distribution function of the propor-
tion of genome-shared IBD on chromosome segmentsgested by Rice (1975), turned out to be amenable to
by two individuals in either a grandchild-grandparentthese cases. These are based on reducing the oscillation
or a great-grandchild–great-grandparent relationship.by subtracting from the integrand a suitable integrable

Recall that we assumed s . 0 (cf. methods). Continu-function, whose integral is analytically known. The re-
ity arguments imply that our formulas also produce thesulting integrands can be evaluated using Maple V. For
cumulative probability for s 5 0. An alternative way tothe evaluation of the integrals associated with M(1)

S(ts) and
show this is by letting t0 be the waiting time till the firstM(2)

S(ts) we used sin(dx)/x and cos(dx)/(1 1 x 2), respec-
entry in state 1 and noting that this leads to the sametively, where d is the length of the genome of interest.
formulas.The latter are integrable functions whose integrals are

Most of the algebra associated with deriving closed-well known:
form explicit expressions for the aforementioned char-
acteristic functions could also be done on Maple. This#

∞

2∞

sin(dx)
x

dx 5 p, #
∞

2∞

cos(dx)
1 1 x 2

dx 5 p exp(2d) might be necessary in cases of higher-order grandpar-
ent-type relationships (Table A1).

(cf. Rice 1975). Therefore, we can compute the values

TABLE A1

Maple V programs

Grandchild-grandparent relationship
. assume (x, real, y, real, c1, real, c2, real);
. d :5 3 :
. s :5 0.9 :
. expres1 :5 (1 2 exp(2(d 2 y)*I*x))/I/x*exp(y*I*x/(1 2 I*x)) :
. expres1 :5 simplify(Re(evalc(expres1))) :
. f1 :5 unapply(expres1, x, y) :
. expres2 :5 (1 2 exp(2(d 2 y)*I*x))/I/x*exp(y*I*x/(1 2 I*x))/(1 2 I*x) :
. expres2 :5 simplify(Re(evalc(expres2))) :
. f2 :5 unapply(expres2, x, y) :
. for j from 1 to 2 do t · j :5 evalf(Int(f · j (x, s), x 5 2infinity . . infinity)) od :
. cumulativeprob :5 evalf(subs(c1 5 1/2, c2 5 1/2, 1 2 ((c1*t1 1 c2*t2)/(2*Pi) 1 c1*exp(2s)/2)));

cumulativeprob :5 .2503779941

Great-grandchild–great-grandparent relationship
. assume (x, real, y, real, c1, real, c2, real, c3, real, c4, real);
. d :5 3 :
. s :5 2.85 :
. expr1 :5 (1 2 exp(2(d 2 y)*I*x))/I/x *exp(2*y*(1 2 I*x/2)/(2*(1 2 I*x/2)* *2 2 1) 2 2*y) :
. expr1 :5 simplify(Re(evalc(expr1))) :
. f1 :5 unapply(expr1, x, y) :
. g1 :5 (x, y) 2 . f1(x, y) 2 sin((d 2 y)*x)/x :
. expr2 :5 (1 2 exp(2(d 2 y)*I*x))/I/x *exp(2*y*(1 2 I*x/2)/(2*(1 2 I*x/2)* *2 2 1) 2 2*y)/(2*(1 2 I*x/2)* *2 2 1)*

(1 2 I*x/2) :
. expr2 :5 simplify(Re(evalc(expr2))) :
. f2 :5 unapply(expr2, x, y) :
. g2 :5 (x, y) 2 . f2(x, y) 2 cos((d 2 y)*x)/(1 1 x* *2) :
. expr3 :5 (1 2 exp(2(d 2 y)*I*x))/I/x*exp(2*y*(1 2 I*x/2)/(2*(1 2 I*x/2)* *2 2 1) 2 2*y)/(2*(1 2 I*x/2)**

2 2 1) :
. expr3 :5 simplify(Re(evalc(expr3))) :
. g3 :5 unapply(expr3, x, y) :
. for j from 1 to 3 do t · j :5 evalf(Int(g · j (x, s), x 5 2infinity . . infinity)) od :
. cumulativeprob :5 evalf(subs(c1 5 1/4, c2 5 1/4, c3 5 1/4, c4 5 1/4, 1 2 ((c1*t1 1 (c2 1 c3)*t2 1 c4*t3)/(2*Pi) 1

(c1 1 c1*exp(22*s) 1 (c2 1 c3)* exp(2d 1 s))/2))); cumulativeprob :5 .9980620983


