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ABSTRACT
An approach to increase the efficiency of mapping quantitative trait loci (QTL) was proposed earlier

by the authors on the basis of bivariate analysis of correlated traits. The power of QTL detection using
the log-likelihood ratio (LOD scores) grows proportionally to the broad sense heritability. We found that
this relationship holds also for correlated traits, so that an increased bivariate heritability implicates a
higher LOD score, higher detection power, and better mapping resolution. However, the increased number
of parameters to be estimated complicates the application of this approach when a large number of traits
are considered simultaneously. Here we present a multivariate generalization of our previous two-trait
QTL analysis. The proposed multivariate analogue of QTL contribution to the broad-sense heritability
based on interval-specific calculation of eigenvalues and eigenvectors of the residual covariance matrix
allows prediction of the expected QTL detection power and mapping resolution for any subset of the
initial multivariate trait complex. Permutation technique allows chromosome-wise testing of significance
for the whole trait complex and the significance of the contribution of individual traits owing to: (a) their
correlation with other traits, (b) dependence on the chromosome in question, and (c) both a and b. An
example of application of the proposed method on a real data set of 11 traits from an experiment
performed on an F2/F3 mapping population of tetraploid wheat (Triticum durum 3 T. dicoccoides) is
provided.

THE detection power and mapping resolution of Soller 1994), replicated progeny testing (Soller and
Beckmann 1990), and sequential experimentationmarker analysis of quantitative traits are the major

factors affecting practical applications of quantitative (Motro and Soller 1993). For example, in composite
mapping the increase in mapping resolution derivestrait loci (QTL) mapping. These characteristics strongly

depend on the effect of the QTL in question relative from a reduction of the residual variation by taking into
account the effects of cosegregating QTL.to the phenotypic variance of the trait in the mapping

population. The higher the discrepancy between QTL In QTL mapping, the experimental design usually
includes simultaneous measurements of many relatedgroups (or the contribution of the QTL to the trait

heritability H 2, the proportion of genetic variation s2
G and unrelated quantitative traits and subsequent treat-

ment of the individual traits. Recently, several groupsin total phenotypic variation s2
Ph of the trait) the better

the expected QTL detection power and mapping resolu- attempted to improve the efficiency of marker analysis
of QTL by taking into account possible effects of thetion. As shown by Lander and Botstein (1989), the

expected value of the log-likelihood test statistics in- putative QTL on several traits simultaneously (Korol
et al. 1987, 1995, 1998a; Amos et al. 1990; Schork et al.creases monotonically with H 2:
1994; Jiang and Zeng 1995; Ronin et al. 1995, 1998,

ELOD 5 21⁄2N log(1 2 H 2). (1)
1999; Weller et al. 1996; Almasy et al. 1997; Boomsma
and Dolan 1998; Mangin et al. 1998; Henshall andSeveral strategies have been proposed to improve the

precision of QTL mapping. These involve development Goddard 1999; Olson et al. 1999; Williams et al. 1999;
Zeng et al. 2000). In the simplest case of two noncorre-of (i) new experimental designs to suit specific mapping
lated traits, the advantage of joint analysis is in the in-goals and an organism’s breeding system, and (ii) new
crease of the multivariate effect according to d 2 5 (dx/QTL mapping models and algorithms to extract maxi-
sx)2 1 (dy/sy)2 (Figure 1a), where dx and dy are themum information about QTL locations and effects. One
substitution effects of the QTL for traits x and y, andof the improvements includes multilocus (composite)
sx and sy are the corresponding standard deviationsmapping analysis (Jansen and Stam 1994; Zeng 1994),
within the QTL groups (residual standard deviations).selective sampling (Lebowitz et al. 1987; Darvasi and
Consequently, for a population with 1:1 ratio of the
alternative QTL groups (like backcross, dihaploid, or
recombinant inbreds) the bivariate analogue of H 2
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Figure 1.—The main
sources for improvement of
QTL mapping efficiency in mul-
tiple-trait analysis: (a) due to
the pleiotropic effects; (b) due
to correlation between the
traits (within the QTL groups)
caused by nongenetic effects
and segregation of unlinked
QTL; or (c) due to combined ef-
fect of both foregoing factors.

notype into a one-dimensional phenotype. For the new
H 2

xy 5
1⁄4d 2

1 1 1⁄4d 2
. (2) phenotype, a higher ratio of the between-QTL group

difference to the residual variation can be achieved ow-
The situation becomes more complicated when corre- ing to the pleiotropic effect of the QTL on both traits,
lated traits are involved. It can be shown (Korol et al. and residual correlation between the traits caused by
1995) that Equation 1 remains valid in bivariate analysis nongenetic factors and segregation at other QTL. These
of correlated traits, expectations, illustrated geometrically in Figure 1, are

confirmed by both Monte Carlo simulations and analyti-ELOD(x, y) 5 21⁄2N log(1 2 H 2
xy) (19)

cal approximations, for marker and interval analysis
with (Korol et al. 1995, 1998a; Ronin et al. 1995, 1999).

Although the described approach resembles the princi-
H 2

xy 5 1 2
s2

xs
2
y (1 2 R 2

xy)
(s2

x 1 1⁄4d 2
x)(s2

y 1 1⁄4d 2
y) 2 s2

xs
2
y[Rxy 1 dxdy/(4sxsy)]2

.
pal component analysis (PCA), it differs from PCA sig-
nificantly. Besides technical differences, the main dis-

(3)
similarity is that our trait transformations are interval
dependent (Korol et al. 1995), whereas in PCA theIt was shown earlier that either ELOD(x, y) $ ELOD(x)
transformation is applied to the initial trait complexand ELOD(x, y) $ ELOD(y) follow from H 2

xy $ H 2
x and

(Weller et al. 1996). This difference may be importantH 2
xy $ H 2

y , respectively (Korol et al. 1995; Ronin et al.
if the mapping population segregates for more than1999). Given fixed dx/sx or H 2

x 5 1⁄4d 2
x/(1⁄4d 2

x 1 s2
x), how

one QTL (see below).will the resolution be affected by other traits being taken
Clearly, not only statistical reasons are of interestinto account? Several situations should be considered

when discussing the advantages of the joint analysis ofto explain the expected gain of joint analysis of multiple
correlated trait complexes. The multitrait approachtraits compared to single-trait analysis. For the sake of
allows for an integral evaluation of the effects of geno-simplicity, let us consider two traits. As mentioned
mic segments on a defined group of traits. Because ofabove, if Rxy 5 0, the effect of an additional trait is simply
the internal balance of the organism’s systems (Schmal-due to the increased Euclidean distance between the
hausen 1942), such an approach for QTL mapping(two-dimensional) centers of the QTL groups (see Fig-
seems to be much more justified biologically than theure 1a). Consider now the situation when the traits are
usual “trait-by-trait” analysis. It may assist in testing nu-correlated within each of the QTL groups with residual
merous biologically important hypotheses concerningcorrelation Rxy ? 0. It is easy to see from Equation 3
manifold effects of genomic segments on quantitativethat if dy ? 0 and Rxy ? 0 and sign(Rxydxdy) , 0, then
variation, to distinguish between linkage and pleiotropyH 2

xy $ H 2
x and one could expect a respective increase in

as mechanisms of genetic correlation, to address theELOD. Moreover, the inequality H 2
xy . H 2

x holds even
problem of QTL-by-environment interaction, etc. (Korolif dy 5 0 but Rxy ? 0, independent of the sign of correla-
et al. 1994, 1998b; Jiang and Zeng 1995; Lebreton ettion (Figure 1b). Therefore, we can further assume that
al. 1998; Ronin et al. 1999). Such analysis may be ofthe increment in H 2

xy, compared with H 2
x, will result in

major importance in formulating marker-assisted breed-an increased resolution of the mapping analysis (in spite
ing strategies, dissecting heterosis as a multilocusof complications due to certain statistical nonequiva-
multitrait phenomenon, developing optimized pro-lence), no matter how this increment in H 2

xy was pro-
grams for evaluation and bioconservation of geneticduced, due to (i) the pleiotropic effect of the QTL on
resources, and revealing the genetic architecture of fit-x and y, (ii) residual correlation between x and y (within
ness systems in natural populations and of multifactorialthe QTL groups) caused by nongenetic effects or segre-
diseases in humans.gation of unlinked QTL, or (iii) the combined effect of

The increased number of parameters to be estimatedboth factors (i) and (ii) (Figure 1c). In other words,
complicates the application of this approach when ainstead of separate analyses of traits x and y, one can
large number of traits are considered. With n traits toconduct joint analysis of these traits that is formally

equivalent to transformation of a two-dimensional phe- be analyzed simultaneously in the simplest case of a
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backcross (as well as a dihaploid or recombinant inbred Ronin et al. 1995, 1998, 1999; see also Jiang and Zeng
1995) and the foregoing PCA-based models lies in thelines) mapping population using single-interval map-

ping, the model should include (n2 1 5n 1 2)/2 param- fact that the residual variance-covariance matrix was
considered interval dependent, in the following sense.eters [QTL position, n mean values, n effects, n residual

variances, and n(n 2 1)/2 covariances]. At n 5 10, this Its elements are a subset of the vector of unknown pa-
rameters to be estimated by the employed procedureamounts to 76 parameters.

One possible ad hoc simplification of the estimation for each interval, so that for QTL residing in different
genomic segments the resulting (transformed) traitsaspects is based on a reduction to two-trait analysis

(Korol et al. 1995, 1998a; Ronin et al. 1995, 1999; Jiang could be very different. This interval dependence re-
mains a notable characteristic of our new multivariateand Zeng 1995) that appeared to be very efficient in

allowing for an increase in QTL detection power and algorithm.
mapping resolution. In specific situations, such a reduc-
tion to a two-trait analysis may also be justified by the

THE PROPOSED METHODbiological nature of the involved traits. However, in real
multitrait situations this approach may result in statisti- The model: Assume first that only one QTL segregates
cal difficulties caused by the large number of trait pairs. in the mapping population. Consider the genomic seg-
Corresponding multiple tests may be interdependent, ment carrying this QTL (with alleles Q and q) flanked
causing a further complication in defining the critical by markers M1/m1 and M2/m2, with recombination rates
values of the test statistics. Another possibility is related r1 and r2 in intervals M1/m1–Q/q and Q/q–M2/m2. On
to the attempt at space transformation, e.g., using the the basis of the marker scores and the measurements
PCA (Weller et al. 1996; Mangin et al. 1998) applied of the trait complex x 5 (x1, x2, . . . , xn), we should test
to the multivariate trait distribution across the entire whether or not variation of any trait of x indeed depends
data set. Although this approach seems to be very attrac- on the interval M1/m1–M2/m2 and identify the corre-
tive, it cannot directly solve the problem when the map- sponding locus Q/q. The expected joint distributions
ping population segregates for more than one QTL, of the traits x in each of the marker groups, Um1m2 5
especially if some of the effects are relatively strong. U1(x), UM1m2(x) 5 U2(x), Um1M2(x) 5 U3(x), and
Indeed, assume that in such a case the PCA transforma- UM1M2(x) 5 U4(x), can be written as
tion was applied to the initial trait complex (without

Ui(x) 5 pi fqq(x) 1 (1 2 pi)fQq(x), i 5 1, . . . , 4,taking out the effects of the target QTL), i.e., for all
individuals independent of their genotypes. Then, the

where the proportions pi 5 pi(r1, r2) depend on un-independence of the resulting derivative traits over the
known recombination rates r1 and r2 and mode of inter-entire mapping population cannot guarantee their in-
ference. The specification of the n-dimensional densi-dependence within the alternative QTL groups. More-
ties fqq(x) and fQq(x) depends on the assumptions madeover, this problem may exist even in the case of one
about the genetic control of the traits. The simplest caseQTL segregating in the mapping population, because
of additive control can be represented by the modelthe total (across all individuals) variance-covariance ma-

trix of the initial trait complex may differ from the re- x 5 m 1 0.5dgq 1 e,
sidual one (i.e., for the matrix characterizing the within-

where x 5 (x1, . . . , xn) is the vector of phenotype scoresQTL group variation). It is noteworthy that the largest
for an arbitrary individual, e 5 (e2, . . . , en) is a vectorprincipal components may be irrelevant in such an anal-
of random variables that obey multivariate normal distri-ysis, as can be seen from Figure 1c (see also Olson et
bution with zero expectations for all coordinates andal. 1999). Nevertheless, in some cases this approach may
(residual) variance-covariance matrix RR 5 {sij}, m is thework (in situations represented by Figure 1a).
vector of trait means, d is the vector of the effects ofHere we present a generalization of our previous two-
substitution at the Q/q locus with respect to mean valuesand three-trait QTL mapping algorithm (Korol et al.
of x, i.e., dxi 5 mxi(Qq) 2 mxi(qq), and gq denotes the1995; Ronin et al. 1995), which is free of the mentioned
genotype at locus Q/q(gq 5 21 for qq and 1 for Qq).difficulties, to multivariate trait complexes that allow

Expected improvement owing to multiple-trait analy-analysis of a large number of traits. It is based on trans-
sis: As in the bivariate case, the QTL detection powerformation of the initial trait space into a space of a lower
should depend on the total contribution of the QTL todimension. In the simplest case of a single-QTL analysis
multivariate phenotypic variation (VPh) of the correlatedof a backcross (dihaploid) mapping population, the
trait complex. If VR is the multivariate residual variationresulting space is one-dimensional independent of the
(within the QTL groups) and VG is the combined be-number of traits, whereas two-QTL analysis for such a
tween-QTL-group discrepancy, thenpopulation will employ a two-dimensional model (for

F2 these will be three- and eight-dimensional models, H 2
T 5 VG/VPh 5 VG/(VG 1 VR). (4)

correspondingly). The main difference between our
previous two-trait models (Korol et al. 1995, 1998a; In the case of noncorrelated traits, the improvement is
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due to the “Euclidean effect,” which grows with the These are (a) to consider the general variance-covari-
ance matrix of the traits, which differs from RR due tonumber of traits:
the contribution of both QTL (the higher the individual
effects of Q1/q1 and Q2/q2, the higher the difference);H 2

Eu 5
1⁄4o(di/si)2

1 1 1⁄4o(di/si)2
. (5)

and (b) to consider the residual variation for each QTL
as a combined result of nongenetic variation and the

Clearly, in the general case of correlated traits, the pure contribution of all other QTL excluding the one under
Euclidean contribution is only a part of the total effect, consideration. The second possibility provides a rele-
so that H 2

Eu , H 2
T. Note that an analogue of Equation vant description of the residual variation for each QTL.

5 can be obtained by canonical transformation of the Two different approximated procedures, giving very
initial trait space (with the within-group covariance ma- similar results, were employed to implement this ap-
trix associated with the QTL under consideration), proach. In both, the LOD score serves as the major
allowing the evaluation of the total effect as defined by criterion in interval mapping; the steps of evaluating
Equation 4. Then, the multivariate effect of the QTL the QTL effects and QTL position are separated. Both
will be manifested as in Equation 5, but with relative are based on our earlier maximum-likelihood approach
effects (di/si) in the new coordinate system. Moreover, (Korol et al. 1995). Although the proposed procedures
using scale transformations x9i 5 xi/si and correspond- are only approximations of the full procedure, their
ing angular transformations, one can map the multivari- major advantage is that they allow treatment of a large
ate space into another multivariate space where the number of traits simultaneously.
QTL affects only one trait, with H 2

D 5 1⁄4D2/(1 1 1⁄4D2) Procedure 1: For each interval, a five-step procedure is
being equal to the total contribution of the QTL, as in conducted.
Equation 4 (where D is the total multivariate effect of

1. The vector of mean trait values in alternative QTLthe QTL).
groups defined by flanking markers M1M2 and m1m2The short review in the Introduction indicates that
is evaluated.correlation between traits may be no less (if not more)

2. The same groups are used to define the elements ofan important factor affecting the detection power of
the residual (for the current ith interval) covariancemultitrait QTL analysis. Therefore, it is of great interest
matrix, RRi. Throughout this article, we assume noto evaluate the contribution of correlations between the
variance-covariance effect (but see Korol et al. 1995,traits to H 2

T in Equation 4. Consequently, in the follow-
1996a), so that RR(QQ) 5 RR(qq) and RRi(QQ) 5ing illustrations, we present the expected improvement
RRi(qq).due to the Euclidean effect and the additional contribu-

3. Transformation of the trait space, as described ear-tion due to correlations. Moreover, although no effect
lier, reduces the problem to a single-trait analysis.is expected from correlations if all effects di are 0, situa-
This step includes solving the problem of eigenvaluestions are possible where for only a small subset of traits
and eigenvectors of matrix RR followed by scale anddi ? 0, the remaining traits are still very informative
angular transformations, resulting in a new spacebecause of their correlations to the foregoing traits (the
with all effects being absorbed by only one variablesimplest such example is provided in Figure 1b).
(“integral” trait; see also Allison et al. 1998).The numerical procedures of interval analysis: The

4. For the resulting variable, a single-trait analysis isdistinctive feature of our analysis is that all the multivari-
conducted, with the likelihood function being de-ate transformations are interval-specific (as can be seen
pendent on four parameters, u 5 (m, D, s, r), wherefrom procedures 1 and 2 described below; see also
m, D, s, and r stand for the mean value of the newKorol et al. 1987, 1995, 1998a; Jiang and Zeng 1995;
trait, total substitution effect, residual standard varia-Ronin et al. 1998), in contrast to the aforementioned
tion, and recombination rate from the left marker,attempts based on canonical transformation applied to
respectively.the entire mixed distribution (Weller et al. 1996; Man-

5. After getting the estimates, back transformations cangin et al. 1998). To explain why this is important, let us
be conducted, making it possible to get more preciseconsider the simplest situation with a mapping popula-
estimates of mean values of the QTL groups. Conse-tion polymorphic for two unlinked QTL, say Q1/q1 and
quently, the analysis could be repeated from step (2)Q2/q2. A double haploid (or recombinant inbred, back-
until a convergent result is obtained.cross, etc.) population will consist of four groups, such

as Q1Q1Q2Q2, Q1Q1q2q2, q1q1Q2Q2, and q1q1q2q2. Assume Procedure 2: This is a simplified version of procedure
that the residual (nongenetic) multitrait variation is the one. It includes three steps and gives approximated
same in all four groups and can be described by a vari- results compared with those of procedure 1. However,
ance-covariance matrix RR. the differences appear to be very small. For each inter-

Two possibilities for incorporating the joint variation val, the three-step analysis is conducted.
of the traits exist when single-QTL mapping analysis is
conducted on the basis of markers of one chromosome. 1. The vector of mean trait values in alternative QTL
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groups defined by flanking markers M1M2 and m1m2 the contribution of different factors to the detection
power and mapping resolution of multivariate QTLis evaluated.

2. The same groups are used to define the elements of mapping, a series of variants were simulated that differ
with respect to the number of traits (from 1 to 10), thethe residual (for the current ith interval) covariance

matrix, RRi. type of the covariance matrix, the number of QTL, the
effects of the target QTL(s) on the traits, etc. These3. The entire sample is used to calculate the conditional

maximum-likelihood estimate of the QTL position were based on four 10 3 10 covariance matrices RR

(Table 1), with a common vector of alternating effectswithin the interval with all other parameters being
fixed at the estimates obtained at steps (1) and (2). d 5 (0.25, 20.25, 0.25, 20.25, . . . )and the same residual

standard variation si 5 1.0 for all traits. Table 2 repre-
Clearly, two factors influence the results obtained by sents a diversity of examples with a single QTL: covari-
this procedure. First, the estimates of the QTL effects ance matrices of the majority of variants were derived
will be biased downward owing to undetectable double as major minors of corresponding dimension of the
recombinants among the parental (for the flanking matrix for the 10-trait problem.
markers) haplotypes. With interval size of z10–15 cM As expected, the increase in H 2

T (see Equation 4)
this danger is negligible unless high negative interfer- owing to higher information content of multivariate
ence is characteristic of multiple exchanges in the con- complexes of greater dimension than those of lower
sidered region of the genome. The second factor results dimension brought about an appreciable improvement
in a slight reduction of the sample size: when the QTL in the quality of the QTL mapping analysis. This is
effects and the residual covariance matrix are deter- manifested in higher LOD values and, correspondingly,
mined according to the foregoing steps (1) and (2), a better detection power and higher precision of QTL
the recombinants for the flanking markers are ignored. mapping (Table 2). As expected, the improvement
Consequently, the sampling error of the estimates is strongly depends on correspondence between the QTL
increased by a factor 1/√(1 2 r), where r is the rate of effects and the signs of correlation coefficients (e.g.,
recombination between the flanking markers; for an compare cases 2 and 6). The same mechanism appeared
interval of 10–15 cM the loss of precision is z5.4–8.5%. to work already in the two-trait analysis, as manifested

Monte Carlo simulations: For mapping a population by the inequality dxdyRxy , 0 being the necessary condi-
of the dihaploid (or recombinant inbred, backcross, tion for ELOD(x, y) . ELOD(x) and/or ELOD(x, y) .
etc.) type, 200 individuals were simulated with one, two, ELOD(y) to hold (Korol et al. 1995). The remarkable
and three unlinked QTL and a trait complex including fact is that it makes no difference whether the increase
up to 10 traits. For each chromosome six equidistant in H 2

T is caused by correlation between the traits or by
markers were simulated, with recombination rate r 5 the Euclidean contribution H 2

Eu (Figure 2). Indeed, the
0.1 between the neighbors and no interference and variants represented in Figure 2 differ qualitatively.
QTL residing in the middle of the third interval. To These include the number of traits taken from the entire
get the critical level of the test statistics two approaches 10-dimensional complex, the values and signs of the
were employed: Monte Carlo simulations with parame- effects of the QTL on the selected traits, the values of
ters corresponding to H0 (no QTL in the simulated correlations, and even the covariance matrices in gen-
chromosome) and permutation of the data set corre- eral (e.g., numbers 3, 4, 6, 10, 11, 13–15, 17, and 18).
sponding to H1. In both cases, 5000 runs were assayed In spite of this diversity, the detection power (P) and
for each situation. To evaluate the detection power and mapping precision (sL) display a unified pattern across
the precision of the estimated QTL effects and chromo- variants reflected in the curves P(H 2) and sL(H 2) in
somal position, 500 runs were assayed for each situation. Figure 2.
In some isolated examples the numbers of permutation The results presented in Table 2 and Figure 2 indicate
and bootstrap runs were increased to 10,000 and 1000, the high potential for improving the QTL detection
respectively. The majority of calculations were con- power and mapping resolution by employing the infor-
ducted using the multiple-trait algorithms implemented mation contained in the multivariate trait complex with-
in the MultiQTL package (http://www.MultiQTL.com). out increasing the sample size. Thus, for the same data
With this program, 1000 permutation runs or 1000 boot- set corresponding to the first matrix (case 10) with no
strap runs using a single-QTL model to analyze a 10- di/si exceeding 0.25, the detection power grows from
variate trait complex for a chromosome with 20 markers 13 to 100% (at significance level 0.01) for single- and
and population size 150 genotypes takes a Pentium III 10-trait analyses, respectively. Especially pronounced is
600 MHz z3.5 min or 2 min, respectively. the improvement of mapping precision: standard devia-

tion of the estimated QTL position, sL, decreases from
14.8 cM in single-trait, to 9.3 cM in 2-trait, to 4.0 cM

RESULTS
for the matrix A defined in Table 1 (compare cases 1,
2, and 10), or correspondingly, 14.8, 9.4, and 1.4 cMQTL detection power and mapping resolution: Exam-

ple 1: Improved quality of QTL analysis: To demonstrate for the matrix C (compare cases 1, 16, and 18). Clearly,
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TABLE 1

Residual covariance matrices and QTL effects used in the simulations

1 2 3 4 5 6 7 8 9 10 Effect

A
1 1.00 0.60 0.50 0.40 0.30 0.20 0.10 0.25
2 0.60 1.00 0.60 0.50 0.40 0.30 0.20 0.10 0.00

20.25
3 0.50 0.60 1.00 0.60 0.50 0.40 0.30 0.20 0.10 0.25
4 0.40 0.50 0.60 1.00 0.60 0.50 0.40 0.30 0.20 0.10 20.25
5 0.30 0.40 0.50 0.60 1.00 0.60 0.50 0.40 0.30 0.20 0.25
6 0.20 0.30 0.40 0.50 0.60 1.00 0.60 0.50 0.40 0.30 20.25
7 0.10 0.20 0.30 0.40 0.50 0.60 1.00 0.60 0.50 0.40 0.25
8 0.10 0.20 0.30 0.40 0.50 0.60 1.00 0.60 0.50 20.25
9 0.10 0.20 0.30 0.40 0.50 0.60 1.00 0.60 0.25

10 0.00
0.10 0.20 0.30 0.40 0.50 0.60 1.00 20.25

B1 (blocks 232)
1 1.00 0.70 0.25
2 0.70 1.00 20.25
3 1.00 0.70 0.00 0.25
4 0.70 1.00 20.25
5 1.00 0.70 0.25
6 0.70 1.00 20.25

0.00
7 1.00 0.70 0.25
8 0.70 1.00 20.25
9 1.00 0.70 0.25

10 0.70 1.00 20.25

B2 (blocks 535)
1 1.00 0.60 0.50 0.40 0.30 0.25
2 0.60 1.00 0.60 0.50 0.40 20.25
3 0.50 0.60 1.00 0.60 0.50 0.00 0.25
4 0.40 0.50 0.60 1.00 0.60 20.25
5 0.30 0.40 0.50 0.60 1.00 0.25
6 1.00 0.60 0.50 0.40 0.30 20.25
7

0.00
0.60 1.00 0.60 0.50 0.40 0.25

8 0.50 0.60 1.00 0.60 0.50 20.25
9 0.40 0.50 0.60 1.00 0.60 0.25

10 0.30 0.40 0.50 0.60 1.00 20.25

C
1 1.00 0.70 0.50 0.32 0.25
2 0.70 1.00 0.70 0.50 0.32 0.00 20.25
3 0.50 0.70 1.00 0.70 0.50 0.32 0.25
4 0.32 0.50 0.70 1.00 0.70 0.50 0.32 20.25
5 0.32 0.50 0.70 1.00 0.70 0.50 0.32 0.25
6 0.32 0.50 0.70 1.00 0.70 0.50 0.32 20.25
7 0.32 0.50 0.70 1.00 0.70 0.50 0.32 0.25
8 0.00 0.32 0.50 0.70 1.00 0.70 0.50 20.25
9 0.32 0.50 0.70 1.00 0.70 0.25

10 0.32 0.50 0.70 1.00 20.25

The four multitrait sets (A, B1, B2, and C) were used in Monte Carlo experiments presented in Table 2 and
Figures 2 and 3. The trait complex B1 includes five pairs of traits with nonzero correlation (0.7) only within
pairs; likewise, trait complex B2 includes two five-trait blocks with nonzero correlations only within the blocks.
Empty cells in the covariance matrices correspond to zero correlation coefficients.

this trend reflects the fact that the increasing H 2 caused the LOD as a function of chromosomal position (l): at
high H 2 values the function LOD(l) is more steep thanby joint multiple-trait analysis results not only in higher

LOD values and detection power, but also in increased at small H 2 (Figure 3). Clearly, increased precision of
the estimated QTL position should also allow a moreprobability to find the QTL in the true interval (interval

3; see footnote a in the right column of Table 2). At accurate estimation of the QTL effect. This is indeed
the case, as illustrated by Figure 4. The increase in H 2the level of an individual experiment, the increased

resolution derives from the effect of H 2 on the form of accompanied by a more strict slope of the LOD function
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tion 1 obtained by Lander and Botstein (1989) for a
single trait, and generalized by Korol et al. (1995) for
two-trait analysis, also holds in a general multivariate
case. The last statement follows from the fact that herita-
bility of a complex of noncorrelated traits with a single
QTL affecting only one trait can be represented as
H 2

D 5 1⁄4D2/(1 1 1⁄4D2), where D is the multivariate effect
and s2 the residual variance for the “integral” trait de-
scribed in The numerical procedures of interval analysis.

Example 2: Interval-specific estimation of the covariance
matrix: Another comment concerns the interval speci-
ficity that is a characteristic of our approach to defining
the elements of the residual covariance matrix, RR. If,
instead of that, one uses the total (interval-indepen-
dent) covariance matrix defined on the entire sample,
the efficiency of mapping may be lowered. The numeri-

Figure 2.—Multivariate heritability as a predictor of the cal example with a three-trait complex shown in Table
LOD value (affecting QTL detection power) and mapping

3 illustrates the difference between the two approaches.resolution. Right-hand scale, ELOD (s), left-hand scale, SL
One can easily see that if the approach based on total(standard deviation of the estimated QTL position; d). The
covariance matrix is employed, instead of our interval-graphs are based on Monte Carlo simulations described in

Table 1 and partially represented in Table 2. specific procedure, a reduction in the LOD value
(hence lower detection power) and increase in the bias
(d) and standard variation (s) of the estimated QTL

may justify a saturation of the chromosomal region in effects (di) and, especially, chromosomal position (L),
the detected QTL by additional markers. This may allow may be obtained. Note that in the foregoing example
a reduction of the chances of incorrect QTL location only a single QTL was simulated in the mapping popula-
and finer QTL mapping, as well as an attempt at resolv- tion. The difference between the methods derives from
ing the pleiotropy-linkage alternative (Jiang and Zeng the noncorrespondence between the residual correla-
1995; Almasy et al. 1997; Lebreton et al. 1998; Korol tion matrix and the directions of the pleitropic effects.
et al. 1998a; Ronin et al. 1999). Nevertheless, in some cases, where the total covariance

It is noteworthy that ELOD calculated on the basis matrix does not differ strongly from RR, the loss will be
of H 2

T appeared to be a very good predictor of the aver- less pronounced (see Mangin et al. 1998).
aged LOD obtained from Monte Carlo simulations (see Example 3: Multiple QTL: We now illustrate the effi-
the column LODm in Table 2). This indicates that Equa- ciency of the proposed algorithm in situations with more

than one QTL segregating in the mapping population.
We simulated two and three identical unlinked QTL
with the residual 10 3 10 covariance matrix equal to
that of example 10 and the same pleiotropic effects (see
Tables 1 and 2). As before, 500 Monte Carlo runs were
made. The results (Table 4) confirm the previous con-
clusion: a dramatic improvement can be achieved by
use of joint analysis of the correlated traits. Note that
segregation for one or two additional QTL resulted in
an increase in the residual variances (as compared with
Example 1). Consequently, we obtained a slightly lower
detection power and a lower mapping precision. For the
10-trait analysis, the standard deviation of the estimated
QTL position (SL) increased from 4.0 to 5.0–5.6 cM in
case of two QTL and to 5.8–6.7 cM in the case of three
QTL. Clearly, this reduction in mapping precision can
be recovered by a composite interval mapping approach
(Zeng 1994; Jansen and Stam 1994) but within the
framework of multiple-trait analysis.

Significance of the detected effects: Testing for sig-
Figure 3.—The dependence of the LOD function on the

nificance is a difficult problem in QTL mapping analysis,number of traits. The numbers in the solid circles indicate the
especially when multiple intervals and/or multiple traitsnumber of traits; the simulated position of the QTL is marked

by an arrowhead (based on the last example of Table 1). are involved (Lander and Botstein 1989; Lander and
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Figure 4.—Improved correspondence be-
tween the simulated and estimated QTL effects
in multiple-trait analysis as compared to single-
trait analysis. (a) Single-trait analysis; (b) 10-trait
analysis (based on the first example of Table 1).

Kruglyak 1995; Weller et al. 1998). To get the critical going aspects are illustrated in a simulated example with
level of the test statistics in the foregoing analysis we seven quantitative traits and a chromosome with five
employed Monte Carlo simulations with parameters cor- intervals (10 cM each) with a QTL residing in the middle
responding to H0 (no QTL in the chromosome, with of the third interval. The pleiotropic effects of the simu-
5000 runs per each variant). Clearly, this technique can lated QTL, the residual correlation matrix, and residual
also be used for real data analysis, but it would be much variances were as shown in Table 5. The results can be
more preferable to take into account the distribution outlined as follows:
properties of the real data set. The best way to do this

i. To evaluate the significance of the QTL detectedin testing significance is the permutation test (Doerge
by using seven-dimensional mapping analysis, theand Churchill 1996). A few different, although re-
entire vector of trait values was reshuffled relativelated, questions about the significance of the results can
to the marker scores (while retaining the structurebe recognized in the multiple-trait procedure: (i) What
within the trait complex). For each such permutatedis the significance level of the detected QTL?, (ii) which
data set, the mapping procedure was applied, re-traits significantly contributed to the criterion (multivar-
sulting in a corresponding value of the test statisticsiate LOD score)?, and (iii) which traits depend signifi-
LOD score. This process was repeated many timescantly on the detected QTL? The difference between
(10,000 in our experiment). The significance of thethe second question and the third is caused by the fact
H0 hypothesis (no effect of the considered chromo-that the information value of a trait may derive from its
some on the multivariate trait complex) is calculatedcorrelation to other traits of the complex, from the
as the proportion of permutation runs that resultedpleiotropic effect of the QTL on this trait, or from both
in LOD values equal to or exceeding LOD* obtainedthese factors (see Figure 1).

Example 4: Selecting significant traits and effects: The fore- on the nonpermutated data.

TABLE 3

Comparison of the QTL mapping results obtained by the proposed method (based on interval-specific
determination of the residual covariance matrix RR) and by using the total covariance matrix (Rtotal)

Effect

Matrix LOD Parameter L (cM) d1 d2 d3

RR 48.10 d 0.02 0.010 20.003 0.007
s 1.44 0.048 0.050 0.050

Rtotal 27.58 d 0.04 0.027 20.023 0.018
s 3.60 0.069 0.068 0.064

Trait 1 2 3 Effect

1 1.00 0.01 0.70 10.75
2 0.01 1.00 0.70 20.75
3 0.70 0.70 1.00 10.50

Three-trait complex was analyzed, with QTL effects and the residual covariance matrix as presented above.
The parameters d and s denote the bias and standard deviation of the estimated QTL position (L) and QTL
effects (d1, d2, and d3).
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TABLE 4

The effect of the number of traits on efficiency of QTL mapping analysis with
multiple QTL segregating in the mapping population

Precision of Interval distribution of the
estimation Test statistics detected QTL (%)

Power
No. dL sL LOD0.01 LODm 1 2 3a 4 5 (%)

Two QTL
QTL1 19 1 3 1 1.14 12.72 9.19 12.45 9 29 31 18 13 14

20 2 3 2 20.02 9.58 11.74 19.21 5 21 50 20 4 61
22 10 3 10 20.01 5.63 28.04 57.16 2 9 79 9 1 100

QTL2 23 1 3 1 20.82 11.82 9.19 12.46 9 30 34 19 8 13
24 2 3 2 0.12 9.03 11.74 19.66 3 24 50 18 5 68
30 10 3 10 0.28 4.98 28.04 56.51 1 6 82 10 1 99

Three QTL
QTL1 31 1 3 1 1.09 12.56 9.29 13.51 6 31 35 16 12 13

32 2 3 2 20.77 10.09 11.66 19.22 7 19 49 20 5 57
34 10 3 10 0.09 6.67 27.05 46.52 1 13 71 13 2 97

QTL2 31 1 3 1 1.12 14.09 9.29 12.55 10 18 39 15 18 12
32 2 3 2 0.15 10.24 11.66 18.44 7 20 50 18 5 60
34 10 3 10 0.31 5.83 27.04 47.60 1 11 71 16 1 97

QTL3 31 1 3 1 22.92 12.72 9.29 12.15 16 21 39 19 5 12
32 2 3 2 0.03 9.94 11.66 18.49 5 19 52 18 6 62
34 10 3 10 0.29 6.38 27.04 47.67 1 11 72 14 2 95

The parameters dL and sL denote the bias and standard deviation of the estimated QTL position; LOD0.01

is the threshold value of the test statistics (obtained by 5000 simulations under the assumption H0 that the
analyzed chromosome does not affect the trait complex); LODm is the mean value of the test statistics averaged
over the runs with LOD . LOD0.01.

a The simulated position of each of the two or three QTL on the corresponding chromosomes was the
middle of the third interval.

ii. The second test aimed to evaluate the significance traits. Namely, we calculate the proportion of per-
of contributions of each of the traits for the QTL mutated cases where the estimated QTL effect for
detection power. This test is conducted separately the considered trait xi fits the condition abs(di) $
for each trait. For this, the individual values of the abs(d*i ), where d*i is the estimated effect on trait xi

trait under consideration are reshuffled relative to obtained on initial (not reshuffled) data.
the remaining data (the other trait values and

In the example of Table 5, trait 7 displayed the lowestmarker scores). The resulting data set is treated as
contribution and hence was removed after the first step.before and the proportion of runs with LOD $
Reevaluation of the remaining complex revealed theLOD* is used as the measure of significance of the
next candidate to remove, trait 3, and then, similarly,trait contribution. The permutations are always per-
trait 4. All the remaining traits (1, 2, 5, and 6) showedformed regarding all the traits included in the
significant contribution. This trait complex providesmodel independently of the contribution value of
also the narrowest confidence interval for the estimatedthe remaining traits. Clearly, some traits may prove
QTL position (sL), as shown by the results of bootstrapto be insignificant because they contribute the same
analysis. The last result means that maintenance of ex-information as one (or a few) of the remaining traits.
cessive (noninformative) traits is not neutral, a reducedThus, one can exclude insignificant traits from con-
precision of the estimated QTL position being the pen-sideration by creating a new trait set that does not
alty. Filtering out of the nonsignificant traits shouldinclude the insignificant traits(s). This procedure
affect the QTL detection power, but further reductionshould be applied by simple steps, excluding only
of the trait complex by removing the significant traitsone trait per step and repeating the permutation
may result in a reduced power and lowered mappingtest for the remainder. The last warning is important
precision (see the characteristics obtained for the lastbecause after excluding one of the traits at some
two trait combinations, 1, 2, 5, and, especially, 2, 5, 6).step, the significance of contributions of the re-

An example of application to real data: We illustratemaining traits may change.
the efficiency of the proposed approach using real dataiii. The same procedure as in (ii) can be used to test

the significance of the QTL effect for each of the on a wheat mapping population characterized for 11
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TABLE 5

Permutation test of significance for the contribution of the traits: the multitrait LOD and the pleiotropic effects of the QTL

1–7 1–6 1, 2, 4–6 1, 2, 5, 6 1, 2, 5 2, 5, 6

Traits Trait Effect Trait Effect Trait Effect Trait Effect Trait Effect Trait Effect

Significance (%) based on 10,000 permutations for each tested trait combination
1 0.00 0.07 0.00 0.07 0.00 0.08 0.00 0.07 0.00 0.08 — —
2 0.03 84.16 0.02 84.23 0.02 83.87 0.02 83.01 1.18 85.10 71.99 83.14
3 21.76 5.10 21.85 5.08 — — — — — — — —
4 18.46 1.56 19.28 1.56 11.94 1.59 — — — — — —
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00
6 0.20 63.17 0.19 63.15 0.16 62.56 0.15 61.52 — — 73.06 62.62
7 58.40 41.10 — — — — — — — — — —

Estimates resulting from bootstrap analysis (1000 runs)
LODm 12.72 12.43 11.90 11.16 8.83 4.88
sLODm 2.86 2.87 2.71 2.71 2.48 1.86
Power (%) 99.5 99.6 99.7 99.7 95.9 47.4
H 2 0.346 0.324 0.304 0.290 0.204 0.172
sH2 0.086 0.079 0.078 0.070 0.062 0.083
L (cM) 24.12 24.17 24.53 23.81 23.58 21.03
sL 5.26 5.09 5.00 3.88 5.22 7.04

Traits 1 2 3 4 5 6 7 Effect s

Occurred correlation matrix, QTL effects, and residual standard deviations
1 1.0 0.618 0.062 0.165 0.054 0.155 0.156 0.504 0.955
2 1.0 0.126 0.020 0.112 0.723 0.156 0.037 1.013
3 1.0 0.236 0.072 0.092 0.007 0.281 1.002
4 1.0 20.069 20.112 0.032 0.283 1.088
5 1.0 0.034 20.050 0.674 0.982
6 1.0 0.105 0.044 0.968
7 1.0 20.149 0.960

The simulated effects, residual correlation matrix, and standard deviations are as shown in the bottom; note that one out of
seven traits, no. 7, was simulated as “noise”, trait 2 was independent on the QTL but correlated with traits 1 and 6.

On the basis of the permutation test, the significance of contribution to the LOD score as well as the QTL effect was evaluated
for each trait. After the first step, trait 7 that appeared to have the lowest contribution was removed. Reevaluation of the remainder
complex revealed the next candidate to remove, trait 3, and then, similarily, trait 4. All the remainder traits, 1, 2, 5, and 6, show
significant contribution. This complex (italic) also provides the narrowest confidence interval for the estimated QTL position
(sL), as shown by the results of bootstrap analysis. This filtering out of the nonsignificant traits did not affect the QTL detection
power, whereas further reduction of the trait complex by removing the significant traits may result in a reduced power and
lowered mapping precision (see the characteristics obtained for the last two trait combinations).

morphological quantitative traits. The experiment was field trials conducted in Neve Yaar Agricultural Experi-
mental Station, Israel, during the 1997–1998 croppingperformed on an F2/F3 mapping population derived

from a cross between a highly stripe-rust-resistant wild season. Eleven quantitative traits were scored on F3 prog-
eny (for z10 individual plants from each family): plantemmer wheat Triticum dicoccoides (accession no. H52,

from Mt. Hermon, Israel) and a T. durum cultivar, Lang- height (HT), plant heading date—the days from sowing
to heading (HD); spike number/plant (SNP); spikedon, released in North Dakota. The tetraploid wild em-

mer, T. dicoccoides, is the progenitor of cultivated wheat; weight/plant (SWP) including the grains, hulls, and
rachis; single spike weight (SSW); kernel number/planthence, the genetic dissection of quantitative trait differ-

ences between the wild species and the cultivated crop (KNP); kernel number/spike (KNS); kernel number/
spikelet (KNL); 100-grain weight (GWH); grain yield/is of great interest from the viewpoint of domestication

evolution. It is also important for the ever-increasing plant (YLD); and spikelet number/spike (SLS).
A detailed QTL description of the obtained QTL map-utilization of T. dicoccoides as a rich genetic resource for

wheat improvement. The molecular markers [microsa- ping results on these traits will be presented elsewhere
(J. H. Peng, A. B. Korol, T. Fahima, Y. I. Ronin andtellites and amplified fragment length polymorphisms

(AFLP)] were scored on 150 F2 individuals resulting in E. Nevo, unpublished results). Here we employ the
obtained data only to illustrate the efficiency of thea rather dense genetic map (Peng et al. 2000). The

quantitative traits were scored on the selfed progeny in multitrait analysis, using as an example markers of chro-
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TABLE 6

Interval analysis of a multitrait complex that includes 11 morphological traits scored in F2/F3 mapping population
of wheat Triticum durum 3 T. dicoccoides (Peng et al. 2000)

QTL detection power (%) at
three significance levels

No. of LODf Significance, by
traits sLODf

LsL (cM) a 5 0.05 a 5 0.01 a 5 0.001 permutation test

1 4.38 271 91 71 42 0.011
1.63 74

11 19.71 265 100 100 100 ,0.0001
3.43 36

5 13.82 262 100 100 99 ,0.0001
2.91 30

The example is based on markers of chromosome 7A.
The results of single-trait interval analysis (for trait GWH) are compared with those of the entire 11-trait

complex and the “filtered” five-trait complex obtained by excluding nonsignificant traits (as in the example
shown in Table 5). The traits remaining in the five-trait complex are: GWH, YLD, HD, HT, and SWP. The
significance level for each trait and trait complex was calculated using a permutation test (10,000 runs). In
addition to the analysis of the initial data set, 1000 bootstrap runs were conducted, enabling us to evaluate
the QTL detection power and precision of the parameter estimates. LODf and sLODf are the mean value and
standard deviation of the test statistics estimated on the basis of 1000 bootstrap runs; correspondingly, L and
sL are the QTL map position and its standard deviation.

mosome 7A. With single-trait analysis applied separately
to each of the traits, only one significant QTL was found
on 7A, for trait GWH, with significance level z0.01
(Table 6). This level should be corrected for multiple
comparisons, taking into account the fact that the ana-
lyzed traits are correlated (e.g., by using the method
based on factor analysis, as suggested by Spelman et al.
1996). Therefore, the corrected significance will be even
worse. The mapping precision evaluated by bootstrap
analysis is not high (sL 5 74 cM), as one would expect
for the modest population size employed (n 5 150).
Therefore, it makes sense to attempt improvement of
the mapping by utilizing the information contained in
the entire trait complex, owing to possible pleiotropic
effects of the putative QTL and/or correlations between
GWH and the remaining traits. This was done exactly
in the same way as described in the foregoing simulated
example presented in Table 5. First, the entire complex
of 11 traits was analyzed and then the traits that did
not contribute significantly to the test statistics were
removed. The results presented in Table 6 and Figure
5 show a more than twofold increase in the mapping
precision (sL decreased from 74 to 30 cM) and an in-
crease in detection power that is especially clear at
higher significance level (98.9% vs. 42.9%). Figure 5.—Joint analysis of 11 traits scored in F2/F3 map-

ping population of wheat Triticum durum 3 T. dicoccoides using
markers of chromosome 7A. The results of removing nonsig-

DISCUSSION nificant traits are presented. (a) LOD score distribution along
chromosome 7A for the 5-trait complex (GWH, YLD, HD,A multivariate generalization of our previous two-trait
HT, and SWP). (b) Interval distribution of the maximum LOD

QTL mapping analysis (Korol et al. 1987, 1995, 1998a; values along chromosome 7A based on 1000 bootstrap runs.
Ronin et al. 1995, 1999; see also Jiang and Zeng 1995) Both graphs are outputs of the MultiQTL package (http://

www.MultiQTL.com).is proposed here. It is not difficult to extend this method
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to other situations (e.g., analyzing F3 populations), to into account all available information concerning the
deal with linked QTL (similar to the analysis of Korol et patient. However, this does not mean that increasing
al. 1998a; Ronin et al. 1999), to combine it with selective the number of traits to be analyzed simultaneously will
genotyping design (Ronin et al. 1998; Henshall and necessarily improve the quality of the QTL mapping
Goddard 1999), or to adopt composite interval map- results. A technical obstacle with high dimensionality is
ping (Jansen and Stam 1994; Zeng 1994). Especially an increasing probability that many loci may affect the
promising may be its application to fine mapping (Y. I. analysis along the chromosome, whereas a small-to-mod-
Ronin, E. Britvin, E. Nevo and A. B. Korol, unpub- erate population size could hardly justify fitting more
lished results). Indeed, the dramatic increase in map- than two or three linked QTL simultaneously. Another
ping resolution derived from using the entire multivari- problem is the interpretation of the results. Therefore,
ate complex, as compared with univariate or even in choosing the initial set of traits for joint QTL analysis,
bivariate analysis, effectively increases the score D2

n that one may find it reasonable to restrict such sets by function-
was found to affect the mapping resolution (Darvasi ally related traits. The examples presented in this article,
and Soller 1997). Consequently, it becomes reasonable on both simulated and real data, show that maintenance
to saturate the revealed intervals by additional markers of excessive traits in the model may be penalized. These
even at modest population sizes like 200–500 individu- concerns indicate that in spite of high potential and bio-
als; usually this is pointless because with small effects logical “compatibility” of the multiple-trait analysis to the
no increase in precision is expected by addition of new main targets of QTL analysis, a lot of work remains to be
markers to the map (Darvasi et al. 1993). Therefore, done to fully extract the mapping information hidden in
the transition from a single- or even two-trait analysis the collected data.
to treatment of genuine multiple-trait complexes sig- An additional complication that is worth mentioning
nificantly improves all aspects of utilizing the mapping is the possible effect of the model assumption on the
information contained in the data. obtained results. It was shown earlier that for testing

However, the application of multivariate complexes for linkage, erroneous models may lead to valid tests
not only increases the QTL detection power, mapping for linkage (Wright and Kong 1997). For example,
resolution, and estimation accuracy but it may also in- QTL mapping analysis may be quite robust to violations
crease the power of discriminating various important of the assumption of normality in single-trait situations
hypotheses that concern the genetic architecture of (Korol et al. 1996b) and more sensitive in multivariate
complex traits, such as linkage vs. pleiotropy (Schork ones. Likewise, the assumption of homoscedastic distri-
et al. 1994; Jiang and Zeng 1995; Almasy et al. 1997; butions (i.e., equal residual variances in QTL groups)
Lebreton et al. 1998; Ronin et al. 1999), genetic interac- that is usually applied automatically may be wrong, lead-
tion within and across QTL (additive vs. dominant or ing to reduced QTL detection power and biased esti-
overdominant effects, and additive vs. epistatic effects mates of parameters. On the contrary, if a correct model
or canalization; Ronin et al. 1999; Shook and Johnson is fitted, this may increase the detection power and
1999), and QTL-environment interaction (Fry et al. mapping accuracy compared to situations when no such
1998; Korol et al. 1998b). Multivariate QTL analysis disturbances exist. We demonstrated these effects ear-
may be helpful in genetic dissection of such types of lier for single- and two-trait analysis (Korol et al. 1995,
complex traits as multifactorial diseases (Mansfield et 1996a). Especially important is the assumption of a sin-
al. 1997), development (Wu et al. 1999), longevity and gle QTL per chromosome, which being violated may
aging (Nuzhdin et al. 1997), behavior (Plomin and lead to the LOD score peaking in the wrong place (see
Craig 1997; Wehner et al. 1997), fitness-related trait Knott and Haley 1992; Wright and Kong 1997). For
complexes and species differentiation (Zeng et al.

the two-trait case we found that joint analysis of corre-
2000), heterosis (Xiao et al. 1995), marker-assisted

lated traits increases the power of the test aimed tobreeding (Lande and Thompson 1990; Visscher et al.
discriminate between the single QTL and two-linked1996), characterizing the regulatory networks of struc-
QTL situations (Ronin et al. 1999). All these aspectstural genes (Damerval et al. 1994), bridging between
should be taken into account in multivariate QTL anal-gene-structure-and-function studies (e.g., when looking
ysis.for functions of massively expressed sequence tags; Lah-

The described approach is implemented in thebib-Mansais et al. 1999), analyzing the genetic transmis-
MultiQTL package (http://www.MultiQTL.com) forsion system (breeding system, recombination, and muta-
both single- and two-linked QTL models.tion control; Korol et al. 1994; Bernacchi and
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