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ABSTRACT
A Markov chain Monte Carlo method for estimating the relative effects of migration and isolation on

genetic diversity in a pair of populations from DNA sequence data is developed and tested using simulations.
The two populations are assumed to be descended from a panmictic ancestral population at some time
in the past and may (or may not) after that be connected by migration. The use of a Markov chain Monte
Carlo method allows the joint estimation of multiple demographic parameters in either a Bayesian or a
likelihood framework. The parameters estimated include the migration rate for each population, the time
since the two populations diverged from a common ancestral population, and the relative size of each of
the two current populations and of the common ancestral population. The results show that even a single
nonrecombining genetic locus can provide substantial power to test the hypothesis of no ongoing migration
and/or to test models of symmetric migration between the two populations. The use of the method is
illustrated in an application to mitochondrial DNA sequence data from a fish species: the threespine
stickleback (Gasterosteus aculeatus).

THE analysis of population subdivision has been a ble to transform an estimate of FST into an estimate of
divergence time. In addition, there are other methodsmajor focus in population genetics and molecular

ecology. However, most models of population subdivi- of estimating the divergence time between populations,
including both maximum likelihood (Nielsen 1998;sion make one of two rather extreme assumptions: ei-

ther (1) the populations have been exchanging mi- Nielsen et al. 1998) and moment-based approaches
(Wakeley and Hey 1997).grants at a constant rate for an infinitely long time or

(2) the populations are descended from a common However, there are very few methods that assist us
in choosing the appropriate model, e.g., to distinguishancestral population at some time in the past and have

since diverged without gene flow. The first of these is between isolation and migration as explanations for ob-
served patterns of genetic divergence. Exceptions aretypically referred to as equilibrium migration and the
the method of Wakeley (1996b), designed for nonre-second is often called isolation or historical association.
combining DNA sequence data, and the method ofHere we consider a more general model that includes
Nielsen and Slatkin (2000), applicable to unlinkedboth of these as special cases.
restriction fragment length polymorphism (RFLP) orThe objective of most biological studies that assume
single nucleotide polymorphism (SNP) data. Underequilibrium migration is to describe the pattern of mi-
somewhat restrictive assumptions about historical popu-gration among populations. Usually, some measure of
lation sizes and other aspects of demography, thesepopulation subdivision, such as FST, is calculated and
methods do allow some statistical testing of the demo-used to estimate migration rates. For example, under
graphic models, but with low power.the symmetric island model (Wright 1931), FST can

Despite the fundamental importance of assessing theeasily be transformed into an estimate of the migration
relative contributions of migration and isolation, thererate. Beerli and Felsenstein (1999) recently intro-
currently exists no framework for obtaining joint esti-duced a modified FST -based method for asymmetric
mates of divergence times and migration rates fromequilibrium migration. Other direct methods for esti-
DNA sequence data. A familiar example, in which themating migration also exist, notably the maximum-likeli-
lack of appropriate statistical methods has been felt, ishood methods developed by Nath and Griffiths
the out-of-Africa controversy in human genetics. Sum-(1996), Beerli and Felsenstein (1999), and Bahlo
maries of the data, such as FST, can be explained eitherand Griffiths (2000). When isolation without gene
by assuming short divergence times and little migrationflow is assumed, it is of interest to estimate the diver-
or long divergence times and strong migration. It isgence time between populations. In this case it is possi-
clear, though, that genetic data can contain substantial
information regarding the relative contributions of mi-
gration and historical association. For example, Wakeley
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under isolation, even when FST is the same in both mod-
els. However, the variance of pairwise differences is a
fairly drastic summary of the information in the data.
As a single statistic, like FST, it will not likely be useful in
distinguishing among more complicated demographic
histories.

The aim of this article is to develop a framework for
jointly estimating divergence times and migration rates
between two populations from DNA sequence data. We
consider a general model, described in the next section,
in which the migration rate for each population may
be different, and the ancestral population and the two
descendent populations may all be of different effective
sizes. We make use of both likelihood and Bayesian
approaches to ancestral inference. The likelihood func-
tion and the posterior distributions are calculated using
a Markov chain Monte Carlo (MCMC) method. Our
results show that it is possible to obtain reliable joint

Figure 1.—A graphical representation of the model consid-estimates of migration rates and divergence times from ered in this article.
single-locus DNA sequence data. In addition, it is possi-
ble to distinguish models of low gene flow and short
divergence times from models of high gene flow and Tavaré (1984) and Hudson (1991). Here, we scale all

parameters by N1 and consider the behavior of thelong divergence times and to assess asymmetries in the
rates of migration between the two populations. model as N1 → ∞ and 4N1m → u, N2/N1 → r, NA/N1 →

a, 2N1m1 → M1, and 2N2m2 → M2. A coalescence process
then arises from a large class of exchangeable popula-

MODEL
tion genetic models including Moran models and
Wright-Fisher models (Wilkinson-Herbots 1998). InThe demographic model we consider is a model of

divergence between two populations that arose from a this coalescence process, time is measured in units of
2N1 generations. Assume that at a given point in timesingle ancestral population at generation t in the past.

In the most general version of the model we allow all there are n1 ancestral gene copies in population 1 and
n2 ancestral gene copies in population 2. Looking backthree populations, the ancestor and both descendants,

to have different effective population sizes. The two in time, coalescence events occur in population 1 and
population 2 at rate n1(n1 2 1)/2 and n2(n2 2 1)/(2r),populations may exchange migrants, and we allow the

migration rate to differ between the two. A graphical respectively, up until the time of population divergence
T 5 t/2N1. At the same time migration events are oc-representation of this demographic model is depicted

in Figure 1. There are five parameters: t, N1, N2, NA, m1, curring at rate n1M1 and n2M2 and mutations arise inde-
pendently on each lineage according to a Poisson pro-and m2. N1 and N2 are the effective population sizes of

the first and the second sampled populations, respec- cess with rate u/2. At time T, the two populations merge
(looking backward in time) and a new ancestral sampletively. NA is the population size of the ancestral popula-

tion, m1 is the proportion of population 1 that is replaced is created by setting nA 5 n1 1 n2. Thereafter, coales-
cence events occur at rate nA(nA 2 1)/(2a) until onlyby migrants from population 2 in each generation, and

m2 is the proportion of population 2 that is replaced by one gene copy is left in the sample. This is the stochastic
process that we use to assign probabilities to differentmigrants from population 1 each generation. We also

consider a restricted three-parameter model in which genealogies.
N1 5 N2 5 NA, and m1 5 m2.

We assume selective neutrality and that there is no
STATISTICS

further population subdivision within each population.
Further, we assume that the population sizes, N1, N2, and We are interested in making inferences about the

parameters Q 5 {u, M1, M2, r, a, T } using the observedNA, do not change over time. To model the mutational
process we use an infinite sites model without recombi- sequence data X. The first approach we use is to calcu-

late (or approximate) the likelihood function for thenation (Watterson 1975). However, the method could
easily be extended to more general mutation models. parameters L(Q | X) ~ Pr(X | Q) to obtain point esti-

mates and confidence intervals for the parameters andWe let m be the rate of neutral infinite sites mutation
per sequence per generation. to perform statistical tests.

Bayesian inference: In addition to a likelihood frame-The coalescent process under this model follows from
the now-classical theory of Kingman (1982a,b); see also work, we also explore the utility of a Bayesian approach
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to estimating parameters and making probabilistic state- one parameter of interest, that this parameter is on the
boundary of the parameter space, and that no otherments regarding Q. In this, we assume the existence of

some prior distribution for Q, f(Q), and make infer- parameters are on the boundary, the log-likelihood-
ratio test statistic should instead be asymptotically dis-ences regarding Q on the basis of the posterior distribu-

tion f(Q | X). The posterior distribution is obtained tributed as a random variable that takes the value 0 with
probability 0.5 and takes on a value from a x2

1 distribu-from the prior distribution using
tion with probability 0.5 (Chernoff 1954).

f(Q | X) 5 Pr(X | Q)f(Q)/Pr(X). (1)
However, there is another important reason not to

use the large sample approximations in this case: theWe assume a uniform prior for M1, M2, T, and u and
assume that log(r) and log(a) are uniformly distributed data from individual nucleotide sites are all correlated

because of shared common ancestry. The likelihoodon an interval symmetric around 0. Assuming uniform
priors implies that we assign equal probability mass to function cannot be written as the product of the likeli-

hood in multiple independent data points. In this sense,all possible values of the parameter; i.e., we assume that
all possible values of the parameter are equally likely there is only one independent data point and it is not

appropriate to appeal to the standard asymptotic results.before observing the data. To ensure that the posterior
To perform valid likelihood-ratio tests we thereforedistributions are proper, i.e., that they are real probabil-

explore the use of parametric bootstrapping. Parametricity distributions, we must constrain the parameter space.
bootstrapping proceeds by approximating the null dis-Unless otherwise stated, the parameters were con-
tribution of the likelihood-ratio test statistic by the distri-strained as follows: Mi [ [0, 10], i 5 1, 2; T [ [0, 10];
bution of test statistics obtained from samples simulatedlog(r) [ [210, 10]; log(a) [ [210, 10]. These ranges
under the null hypothesis. The simulations are per-should encompass most biologically important values.
formed by assuming that the true value of the nuisanceIn no cases discussed in this article did the maximum-
parameters equals the value estimated under the nulllikelihood estimate of a parameter equal the upper
hypothesis. In the present case, such simulations canboundary of the assumed parameter range. However,
be performed using standard coalescence simulationif very large parameter estimates are found, the support
methods. Unfortunately, in many applications it may beof the priors can be expanded appropriately.
too time consuming to perform parametric bootstrap-Integrated likelihood: Note that when a uniform prior
ping. Therefore, we also explore another approach fordistribution is used, the likelihood function L(Q | X) is
model selection, which is based on the Akaike informa-given by the posterior distribution. In other cases, the
tion criterion (AIC; e.g., Akaike 1985). According tolikelihood function can be deduced by comparing the
the AIC, the best model is the model that minimizes 22 3posterior distribution with the prior distribution. In
[log(L) 2 di], where di is the number of parameters ofmost cases we concentrate on the interpretation of the
model i.posterior distribution in a likelihood framework. We

summarize the information for a single parameter in
terms of the integrated likelihood for the parameter. MARKOV CHAIN MONTE CARLO
The integrated likelihood function for a parameter is

The simulation method we use to approximate theobtained by integrating over the prior distribution of
likelihood function/posterior distribution of the pa-all other parameters. Although integrated likelihood is
rameters is similar to the methods applied by Wilsona basically Bayesian idea, most of the properties of a
and Balding (1998) and Nielsen (2000a), which areregular likelihood function also apply to the integrated
related to the methods by Kuhner et al. (1995) andlikelihood function. The review by Berger et al. (1999)
Beerli and Felsenstein (1999). These use the Metrop-provides a discussion of the merits and utility of inte-
olis-Hastings method (Metropolis et al. 1953; Has-grated likelihood.
tings 1970) to integrate over genealogies stochastically.Hypotheses testing: To perform hypothesis tests and
We wish to approximate the posterior distribution ofmodel selection we use log-likelihood-ratio tests. The
the parameters f(Q | X) 5 cf(X | Q)f(Q), where c isstandard theory stipulates that approximately minus two
a constant proportionality factor. It is not possible intimes the log-likelihood ratio of two nested models is
general to calculate f(X | Q), except by conditioning onasymptotically x2

j distributed, where j is the difference
the underlying gene genealogy, represented by G. Thein the number of parameters between the two models.
posterior distribution can then be written asHowever, this result is in general not applicable to the

current problems. The first reason for this is that the f(Q | X) 5 cf(Q)#
G[G

f(X | Q, G)f(G)dG, (2)
parameters of interest, in several cases, are at the bound-
ary of the parameter space, for instance, if we wish to and the problem of estimating the posterior distribu-
test the hypothesis M1 5 0. When the parameter is at tion/likelihood function is reduced to the problem of
the boundary of the parameter space, this violates the solving the integral in (2), where G refers to the set of
regularity conditions under which the x2 approximation all possible gene genealogies.

Under the infinite sites model f(X | Q, G) can easily behas been derived. Under the assumption that there is
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calculated by mapping mutations on the gene genealogy
(G). The number of mutations on an edge is Poisson
distributed with rate ut/2, where t is the length of the
edge. The total data likelihood conditional on the gene
genealogy can, therefore, be evaluated as the product
of multiple independent Poisson random variables.

Metropolis-Hastings MCMC: To evaluate the integral
in (2) it is necessary to use Monte Carlo methods. As
in Wilson and Balding (1998) and Nielsen (2000a),
it is possible to define a Markov chain with state space
given by G and with stationary distribution of genealo-
gies proportional to f(X | Q, G)f(G). By sampling from
this chain at stationarity it is possible to approximate
the posterior distribution of Q. To assure that the chain
has the desired stationary distribution, we use the Me- Figure 2.—Ten independent replicates of the likelihood
tropolis-Hastings method (Metropolis et al. 1953; Has- surfaces for M obtained for the data set from Orti et al. (1994)

containing 23 sequences and 35 segregating sites.tings 1970). At each step in the chain, updates from
the current state (Qi, Gi) to a new state (Q*, G*) are
proposed with probability q[(Qi, Gi) → (Q*, G*)]. With CONVERGENCE
probability

In Markov chain Monte Carlo methods it is typically
min 51,

f(X | Q*, G*)f(G*, Q*)q[(Q*, G*)→(Qi, Gi)]
f(X | Qi, Gi) f(Gi, Qi)q[Qi, Gi)→(Q*, G*)] 6 (3) easy to show that the Markov chain will converge and

that a consistent estimate of the likelihood function can
be obtained. However, it is usually much more difficultthe new proposed state is accepted; i.e., (Qi 1 1, Gi 1 1) 5
to show how many simulated steps of the chain are(Q*, G*), otherwise (Qi 1 1, Gi 1 1) 5 (Qi, Gi). If the chain
needed to ensure convergence of the ergodic averages.is constructed such that it is aperiodic and irreducible,
If too few steps are simulated, the estimate of the likeli-it will under quite general conditions have f(Q | X) as its
hood function will be biased and will depend on thestationary distribution (e.g., Ripley 1987). The Markov
initial values of the parameters. The first issue we ex-chain is constructed by suggesting updates to the gene
plore is, therefore, the degree to which assumption ofgenealogy and to the parameters one by one. The chain
stationarity and convergence to the ergodic averagestherefore consists of a mixture of the six type of updates
are satisfied in the present case for realistic simulationfor Q and updates of the genealogy, including the times
times. We consider a simple version of the model withof migration. The algorithmic details of these six update
3 parameters: u, M, and T; that is, with a 5 1, r 5 1,types are described in the appendix.
and M1 5 M2. To evaluate the method we use the dataSmoothing function: To obtain smooth likelihood
set previously published by Orti et al. (1994) containingsurfaces from a single run of the Markov chain, the
23 sequences and 35 segregating sites. The integratedmethod of Nielsen (2000b) was used. In brief, the likeli-
likelihood function of M obtained using 10 replicatehood function is estimated by simulating a Markov chain
runs of the Markov chain is plotted in Figure 2. Thewith stationary distribution of G and Q0 proportional to
surfaces were obtained using 1,000,000 steps in thePr(X | G)PQ0(G)P(Q0), and estimates of the likelihood
chain and a “burn-in” time of 100,000 steps. Only sam-function for a particular value of Q are then obtained
ples of the chain taken after the burn-in time are usedas
for estimating the posterior distribution/likelihood sur-
face. The starting values of the parameters and the gene-L(X | Q) ≈ c

Rn
i51ri(Q, Q

(i)
0 )wi(Q, Q

(i)
0 , Gi)

n#r(Q, Q0)dP(Q0)
, wi(Q, Q0, G)

alogy differed between runs. The high degree of similar-
ity of these distributions suggests that stationarity and
convergence to the ergodic averages has been achieved.5

P(Q)
P(Q0)

, (4)
Thus, 1,000,000 steps in the chain appear sufficient for
data sets of this size to provide reliable likelihood sur-where c is a constant of proportionality and r(Q, Q0) is
faces/posterior distributions.a weighting function. r(Q, Q0) is used to down-weight

values of w(Q, Q0, G) for which |Q 2 Q0| is large. The
weighting function r(Q, Q0) may take any functional

PROPERTIES OF THE ESTIMATORS
form and is here defined as r(Q, Q0) 5 e2(|Q02Q|)2/c, with

We also explored the statistical properties of the pointc 5 0.01. This function was chosen because it was found
estimators of M and T under the three-parameterin preliminary investigations to lead to fast convergence.
model. One hundred data sets were simulated underThis method can be thought of as a weighted impor-
this model for each of two parameter settings: (M 5 0,tance sampling scheme where the importance sampling

function is partially determined by the data. T 5 2, u 5 10) and (M 5 1, T 5 ∞, u 5 10). In
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these simulations it was assumed that 30 individuals
were sampled from each population. A burn-in time of
500,000 steps was chosen and the chains were run for
an additional 5,000,000 steps to evaluate the likelihood
surfaces/posterior distributions. Some sample posterior
distributions of T and M are shown in Figure 3. The
mode of the integrated likelihood function of each pa-
rameter is used as an estimator of the parameter. In the
100 simulations the mean estimate of M was 0.0055 for
the case (M 5 0, T 5 2, u 5 10) and 1.02 for the case
(M 5 1, T 5 ∞, u 5 10). The estimate of M will of
course always be slightly upwardly biased when the true
parameter is at the boundary of the parameter space
(M 5 0). The distribution of the estimates of M is shown
in Figure 4. Note that the variance of the estimates
obtained in the model (M 5 1, T 5 ∞, u 5 10) is quite
high. Nonetheless, it is encouraging that reasonable
estimates can be obtained in such cases by using only
a single locus without recombination, even when taking
the possibility of recent common ancestry of the popula-
tions into account.

The estimator of T does not appear to have similarly
desirable properties, at least not in the case of T 5 ∞.
There are two reasons for this. First, the Monte Carlo
variance for the parameter T seems to be quite large in
many cases (compare Figure 3c to Figure 3d). Since the
likelihood surface often is very flat for this parameter,
the estimates may not be reliable. The second reason is
that the integrated likelihood surface often has multiple
peaks, e.g., Figure 3c. This is in fact a real property of
the likelihood function, rather than an artifact of the
Monte Carlo variance. The multimodality can easily be
explained by considering the structure of the underly-
ing gene genealogies and is a consequence of having
only a limited number of migration events occurring in
the ancestry of the sample. Consider the hypothetical
case where the times of migration events in the geneal-
ogy are known and fixed. Assuming low migration, the
likelihood will then always be higher when T is slightly
smaller than the age of the migration event than if
T is slightly larger. The likelihood surface for T may
therefore increase as T approaches the time of a migra-
tion event and decrease at the time right after a migra-
tion event. Obviously, the times of migration events are
not known and fixed in real data, but may be quite
well determined if there are sufficient nucleotide data,
causing the integrated likelihood surface for T to have
multiple modes.

In contrast, for the case of (M 5 0, T 5 2, u 5
10), the estimator seems to perform quite well with an
average estimate of T̂ 5 2.16 and multimodal likelihood
surfaces appear to be rare.

A traditional Bayesian estimator based on the poste-
rior expectation of the parameter was not used because
it in many cases was very sensitive to the choice of upper
bound for the parameter. This was expected for T, since Figure 3.—Sample posterior distributions of M and T esti-
the integrated likelihood function in some cases was an mated from data simulated assuming M 5 0, T 5 2, and u 5

10 (a and b) and M 5 1, T 5 ∞, and u 5 10 (c and d).increasing function of T. However, even for many of the
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Figure 4.—The distribution of esti-
mates of M assuming M 5 0, T 5 2, and
u 5 10 (open bar) and M 5 1, T 5 ∞,
and u 5 10 (solid bars) in 100 replicate
simulations.

other parameters, the posterior expectation was quite parameter is on the boundary of the parameter space
(Chernoff 1954), emphasizing that the usual asymptot-sensitive to the choice of prior. Considering data from

multiple loci could reduce this problem. ics should not be applied for a population sample of a
single locus. In the present case, as was also found in
Nielsen and Palsboll (1999), application of the stan-

DETECTING MIGRATION
dard x2 approximation results in a conservative test.

However, note the difference in the distribution ofThe next issue we focus on is the possibility of de-
tecting migration when it occurs. Can we reject a model the likelihood ratio in the case of (M 5 0, T 5 2, u 5

10) and (M 5 1, T 5 ∞, u 5 10). This suggests that theof isolation without gene flow in favor of a model that
includes migration? To address this issue we examine method indeed has a lot of power to distinguish between

the two models. In fact, using parametric bootstrapping,the log-likelihood ratio log[max{L(M 5 0 | X)}/max
{L(M | X)}]. A plot of the likelihood ratio in the 100 the hypothesis of M 5 0 would be rejected in 100 of

100 cases when M 5 1, T 5 ∞, and u 5 10. Using thesimulations for (M 5 0, T 5 2, u 5 10) (open bars)
and (M 5 1, T 5 ∞, u 5 10) (solid bars) is shown in AIC, a model with migration would be accepted in 98

out of 100 cases when M 5 1 and in 0 of 100 cases whenFigure 5. Note first that, as expected, minus two times
the log-likelihood ratio is far from being x2

1 distributed M 5 0. In this case, the AIC provides a very powerful
method of distinguishing between models with and with-when the null hypothesis is true (open bars). The devia-

tion is larger than expected for a test in which the out migration.

Figure 5.—The distribution of the
log-likelihood ratio of the hypothesis
M 5 0 vs. M $ 0.0. One hundred repli-
cate simulations were performed for
each of the parameters settings M 5 0
and T 5 2 (open bars), M 5 1 and T 5
∞ (solid bars), and M 5 0.25 and T 5
1 (hatched bars). In all cases u 5 10.
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Figure 6.—The distribution of estimates of M1 (open bars)
and M2 (solid bar) in 100 data sets simulated assuming u 5
10.0, M1 5 1.0, M2 5 0.0, r 5 1.0, a 5 1.0, and T 5 ∞.

Figure 7.—The joint integrated likelihood surface for T
and M estimated from the data by Orti et al. (1994). DarkerTo investigate the power to distinguish models when
values indicate higher likelihood.there is just a small amount of migration, simulations

were performed assuming M 5 0.25, T 5 1, and u 5
10. Note (Figure 5, hatched bars) that the likelihood

any case, it is obvious from these simulations that it isratios are somewhat intermediate in this case. Using the
in fact possible to detect unequal migration and that aAIC, the model without migration would be rejected in
single nonrecombining locus might be sufficient in most39 out of 100 cases and accepted in 61 of 100 cases. Using
cases for this purpose as long as u is sufficiently large.parametric bootstrapping the model of no migration
If necessary, multiple independent loci could be usedwould have been rejected in 65 out of 100 cases. This
to further increase the power.suggests that likelihood-ratio tests with reasonable

power can in fact be established. When computationally
possible, it is recommended to obtain critical values for

APPLICATIONS TO THE DATA BY Orti et al. (1994)
hypothesis testing using the parametric bootstrap. For
the present parameter settings, 100 simulations for a A previous method for distinguishing migration from
single data set of this size would take z1 week on a isolation on the basis of variance of pairwise differences
medium fast workstation. was established by Wakeley (1996b). That method was

applied to a data set by Orti et al. (1994) of mtDNA
sequences from the western and eastern Pacific stickle-

DETECTING UNEQUAL MIGRATION
back populations, and the hypothesis of pure isolation
(M 5 0) was rejected with a P value of 0.013. To com-Another possible application of the method is to de-

tect unequal, or asymmetric, migration, i.e., a higher pare the methods and to provide an illustration of the
new method on the basis of real data, we reanalyzedrate of migration from one population to the other than

in the opposite direction. To investigate the properties the data set by Orti et al. (1994) using our new method.
The integrated likelihood function for T and M is shownof the method in this regard, an equilibrium migration

model with parameters u 5 10.0, M1 5 1.0, M2 5 in Figure 7. Thus, our analysis agrees well with that of
Wakeley (1996b). The data seem to be most compatible0.0, r 5 1.0, a 5 1.0, and T 5 ∞ was simulated. One

hundred simulations were performed, each using with a model of large divergence times with rates of
migration of zM 5 0.3. A model of moderate migration10,000,000 steps in the Markov chain to estimate the

posterior distribution/likelihood surface. Estimates of and very long divergence times is more compatible with
the data than a model of short divergence times andM1 and M2 were obtained using the mode of the poste-

rior distribution of these parameters and are shown in low migration rates.
Further, using our method we can also extract infor-Figure 6. Estimates of M2 were all in the range 0.0–0.2

but only five estimates of M1 fell in this range. mation regarding the direction of gene flow between
the populations. The integrated likelihood surfaces forUsing the AIC, a model with M1 5 0 would be rejected

in 67 of 100 cases and M2 5 0 would be rejected in 0 M1 and M2 are shown in Figure 8. The data appear to
be compatible with a model of unequal gene flow be-out of 100 cases. Parametric bootstrapping to test mod-

els was not performed in this case. Performing such a test tween the populations. A strictly decreasing likelihood
surface for M2 indicates low levels of gene flow fromwould take a few weeks on a medium fast workstation. In
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Figure 10.—The integrated likelihood surface for a esti-
mated from the data by Orti et al. (1994).Figure 8.—The integrated likelihood surfaces for M1 (dots)

and M2 (solid lines) estimated from the data by Orti et al.
1994.

the eastern Pacific population is 3.0 times larger than
the size of the western Pacific population (Figure 9).

We can also consider another parameter of interest:the eastern Pacific to the western Pacific populations.
the size of the ancestral population relative to the cur-In contrast, the estimate of M1 based on the integrated
rent size of one of the populations. The integrated likeli-likelihood function is z0.5 and the likelihood ratio of
hood for this parameter (a) is shown in Figure 10. Notethe hypothesis M1 5 0 is .2.0. There seems to be ongo-
that the likelihood surface is very flat. The reason is thating gene flow from the western to the eastern Pacific
the data are compatible with a model of long divergencepopulations but little gene flow in the opposite direc-
times, in which case there is only little information re-tion.
garding a preserved. The MLE of a is z1.7.Another question we are able to address is the differ-

ence in effective population size between the two popu-
lations. If a model without gene flow were applied to DISCUSSION
these stickleback populations, the migration from west-

We demonstrated that estimates of the parameters u,ern to eastern Pacific could inflate the estimates of effec-
M1, M2, r, a, and T can be obtained within either ative population size of the recipient population. For
Bayesian or likelihood framework using an MCMCexample, based on the average number of pairwise dif-
method. In most cases, reliable parameter estimates canferences within populations, the estimate of the effective
be obtained in a few hours on a desktop computer. Wepopulation size of the eastern Pacific population is 4.3
also found substantial power to test competing demo-times the size of the western Pacific population. When
graphic hypotheses using a likelihood-ratio test. For ex-migration is taken into account, the estimate based on
ample, using parametric bootstrapping, a model of nothe mode of the integrated likelihood function is that
migration is rejected at the 5% level in 100/100 cases
when the true model is equilibrium migration with M 5
1.0 and u 5 10.0. This is a dramatic improvement over
the methods of Wakeley (1996b) and Nielsen and
Slatkin (2000). For example, Wakeley’s (1996b)
method would have z30% power under similar circum-
stances.

The simulations presented here support the use of
the AIC (e.g., Akaike 1985) as a means of identifying
plausible demographic models in ecological genetic
studies. It is possible to address the classic problem of
distinguishing between short divergence times with low
gene flow and long divergence times with moderate
gene flow as explanations of population divergence. In
addition, this method can be used to assess the impor-
tance of asymmetries in migration rates between popula-
tions. A well-known case where these tools could be of
use is in studies of the emergence of modern humans.Figure 9.—The integrated likelihood surface for r esti-
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APPENDIX types of update under the infinite sites model, this type
of update was chosen because it can also be appliedIn the following we describe the details of the different
when the mutational model is more complex.types of updates of the Markov chain. In this description,

Updates of M: M1 and M2 are defined either on thewe consider the times of migration as a part of the
interval [0, ∞) or on the interval [0, Mmax]. The followingdescription of a genealogy (G). G therefore consists of
description assumes that Mi [ [0, Mmax]. The updatea topology, a vector of coalescence times, and a vector
algorithm for the case of Mi [ [0, ∞) follows easily fromof migration times for each edge in G. The algorithm
this description. Let the current value of Mj be Mji; ais similar to the proposal algorithm from Beerli and
proposal value of Mj (M*j ) is then drawn uniformly fromFelsenstein (1999).
the interval [Mji 2 DM, Mji 1 DM], where DM is chosenUpdates of G: Updates of the gene genealogy are
such that DM # Mmax. If M*j , 0, set M*j 5 2M*j , and ifperformed by simulating the ancestry of a lineage from
M*j . Mmax, set M*j 5 2Mji 2 M*j . Using this reflectionthe coalescence prior conditional on the remaining part
of M*j around 0 and Mmax it is guaranteed that q[(Q*,of the genealogy. The simulations can be described by
Gi) → (Qi, Gi)] 5 q[(Qi, Gi) → (Q*, Gi)], where Q* 5the following algorithm:
{M*j } < Qi\{Mji}. Also, since the structure of the genealogy
does not change, the acceptance probability does not1. Choose a random edge in the tree uniformly among
depend on the data and is just given by min{1, f(Gi |all edges.
Q*)/f(Gi | Qi)}, which can be calculated quite fast. Let2. Detach the edge from the tree at the point in which
tk be the time between the k 2 1th and the kth coales-the edge coalesces with some other “sister-edge” in
cence or migration event and define ck 5 Rk

i51 tk. If ck .the genealogy.
T and ck 2 1 , T, define tk 5 T 2 ck 2 1. Also denote the3. Start simulations of the new path of the edge at the
number of active ancestral lineages in population j intime of the origin of the edge, i.e., at the time where
the time interval between the k 2 1th and the kth coales-two sister-edges coalesced into the focal edge or at
cence or migration event by njk. Then the ratio f(Gi |time 0 if the edge existed at this point in time.
Q*)/f(Gi | Qi) is given by4. Stop the simulations when the edge coalesces with

a new sister-edge. p
k :Ck21 , T

hM(tk, n1k, n1k),

The simulations of the path of the edge are per-
formed relatively easily using the usual coalescence sim-
ulation methods. For example, if the edge at a given
time exists in population 1 and there are n1 ancestral

hM(tk, n1k, n1k) 5








M*j
Mij

etj(Mij2M *
j )njk

if interval k ends in a migration event
from population j to the other population

etj(Mij2M *
j )njk

else.

gene copies existing in population 1, the edge migrates
into population 2 at rate M1 and coalesces with each
lineage in population 1 at rate 1, when time is measured

(A1)in units of 2N1. It is therefore possible to simulate the
ancestry of the lineage conditional on the remaining Updates of r : Updates of r are chosen similarly to
gene genealogy simply by simulating a series of expo- updates of Mj. It is assumed that log(r) is distributed
nential random variables. However, such simulations uniformly on the interval [log(1/rmax), log(rmax)]. A new
are somewhat more complicated than usual coalescence value of r (r*) is proposed by choosing log(r*) uniformly
simulations because at each step it is necessary to keep in the interval [ri 2 Dr , ri 1 Dr], where Dr is chosen such
track of the identity of all edges existing in the popula- that Dr # rmax. If r* , 1/rmax, set log(r*) 5 2 log(1/rmax) 2
tion at a particular time. This means that the gene gene- log(r*) and if r* , rmax, set log(r*) 5 2 log(rmax) 2 log(r*).
alogy is not only represented in terms of the genealogi- The acceptance ratio of this type of update is again just
cal structure itself but also in terms of the times of given by the Metropolis factor
migrations of edges between the populations. Also,
some minor technical difficulties must be overcome f(Gi | Q*)

f(Gi | Qi)
5 p

k :Ck21 , T

hr(tk, n2k),
when the new history of the edge changes the time of
the root (the time to the most recent common ancestor
of the sample).

Since the path of the gene genealogy is simulated
according to the prior distribution, the acceptance hr(tk, n2k) 5








ri

r*
etk(M2n2k1(

n2k

2 ))(r 21
i 2r*21)

if interval k ends with a migration event
from or coalescent event in population 2

etk(M2n2k1(
n2k

2
))(r 21

i 2r*21)

else,

probability for this type of update is simply min{1,
f(X | Qi, G*)/f(X | Qi, Gi)}. The conditional likelihood
f(X | Q, G) can be calculated for any Q and G under

(A2)the infinite sites model by mapping mutations on the
genealogy (there is only one unique way of doing this where now Q* 5 {r*} < Qi\{ri}.
under the infinite sites model). Updates of a: Updates of a are generated in a manner

identical to the method used for generating updates toAlthough it may be possible to establish more efficient
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r ; i.e., a new value of a (a*) is chosen in an interval of cording to the prior distribution, but does simulate
size 2Da around the current value of a (ai). The accep- them according to an approximation of this distribu-
tance ratio is again just given by the Metropolis factor, tion. A Hastings term ensures that the Markov chain

has the desired stationary distribution. Also, note that
this algorithm will be very slow when M1 and/or M2 andf(Gi | Q*)

f(Gi | Qi)
5 p

k :Ck . T

ai

a*
exp1tk1nk

2 2(a21
i 2 a*21)2, (A3)

kj 5 t end
j 2 min{Ti, t start

j } is small and an odd number of
migration events must occur on a right edge for it towhere nk is the number of edges in the genealogy in
end (coalesce) in the same population as its sister edge.the kth interval, Q* 5 {a*} < Qi\{ai}, and tk now is defined
The algorithm can be speeded up in such cases by lettingso that tk 5 ck 2 T if ck . T and ck 2 1 , T.
the first migration event be simulated conditional onUpdates of u: This type of update is similar to the
at least one migration event occurring. For example, ifupdates previously described. A new value of u (u*) is
edge j exists in population 1 at time min{Ti, t start

j } butdrawn from the interval [uı 2 Du, Ti 1 Du], where Du is
must be in population 2 at time t end

j , then the probabilitychosen such that Du # umax. The acceptance probability
density of the time to the first migration event (tM),is
conditional on at least one migration event occurring,
is given byf(Gi | Q*)

f(Gi | Qi)
5 1u*

ui
2
S

ebi(ui2u*), (A4)

f(tM | at least one migration event) 5
M1e2M1(tM2min{Ti, t start

j })

1 2 e2M1Kj
,where Q* 5 {u*} < Qi\{ui}, S is the total number of

mutations in the tree, and bi is the total tree length of
t end

j . tM $ min{Ti, t start
j }. (A5)genealogy Gi.

Updates of T: In the following discussion, time is
Using the inverse transformation method, the time toincreasing backward in time and the time of sampling
the first migration event can be simulated by choosingis t 5 0. Updates to T are chosen using the method

described for the other parameters, i.e., uniformly in t9M 5 min{Ti, t start
j } 2 (log(1.0 2 U(1.0 2 exp[2M1kj])))/M1,an interval [Tı 2 DT, Ti 1 DT]. However, some care must (A6)

be taken to preserve the reversibility conditions of the
chain. If we denote the time at which edge j arises by where U is a uniform [0, 1] random number. It is
a coalescence event by t start

j and the time it ends in a thereby possible to simulate migration paths relatively
coalescence event with another edge by t end

j , then it will fast even when M1 and k are small and an odd number
occur for some j that t start

j , T* and t end
j , Ti if T* . Ti of migration events must occur on a right edge for it

and Ti is larger than the time to the most recent common to end (coalesce) in the same population as its sister
ancestor (TMRCA); i.e., edge j exists in the time interval edge.
[Ti, T*]. If T* , Ti the migration events occurring in the

A solution to this problem is simply to simulate the interval [T*, Ti] are simply erased. The acceptance ratio
path of migrations of the edges in the time interval [Ti, for this type of update is
T*]. An update to T is always a joint update of T and
G. A method for performing such simulations is given f(G* | Q*)q[(Q*, G*)→(Qi, Gi)]

f(Gi | Qi)q[(Qi, Gi)→(Q*, G*)]
5 g1(Q*, G*, Qi, Gi)

by the following algorithm:
3 oo

j[B
o

k :T*,tjk#Ti

g2(M1, M2i, tjk, tj(k21))g3(M1, M2, kj),
1. Set j 5 1.
2. If edge j exists in time interval [Ti, T*], simulate (A7)

migrations on the edge according to a two-state con-
wheretinuous time Markov chain with infinitesimal gener-

ator
g1(Q*, G*, Qi, Gi) 5 o

k:T*,ck#Ti

exp3tk11nli 1 n2i

2 2a21
i 2 n1M1 2 n2M2

q 5 32M1

M2

M1

2M2
4

2 1n1i

2 2 2 1n2i

2 2r21
i 24

starting at the current state of the edge at time
min{Ti, t start

j } and stopping at time max{T*, t end
j }.

3. If edge j exists in time interval [Ti, T*], t end
j , T*, j 3






ai if interval k ends in a coalescence
event in population 1

ai/ri if interval k ends in a coalescence
event in population 2,

1 else
has an index larger than its sister edge (edge j is a
right sister edge) and edge j does not end up in the
same population as its sister edge: Repeat (2).

4. If j is less than the total number of edges in the
genealogy, set j 5 j 1 1 and repeat. g2(M1, M2i, tjk, tj(k21) 5






e2M1(tjk2tj(k21))

if migration is from population 1 to population 2
e2M2(tjk2tj(k21))

if migration is from population 2 to population 1This algorithm does not simulate migration paths ac-
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and ck is defined as in the case of updates of M1 and
M2, B is the set of all edges existing in the interval [T*,
Ti], and tjk is the time of the kth migration on the jth
edge, tj0 5. min{Ti, t start

j }. If T* . Ti, the acceptance ratio
can be calculated similarly as the inverse term. This
completes the description of the MCMC algorithm.

g3(M1, M2, kj) 5













(M2 1 M1e2(M21M1)kj)/(M1 1 M2)

if odd number of migrations and
first migration is from population 1

(M1 1 M2e2(M21M1)kj)/(M1 1 M2)

if odd number of migrations and
first migration is from population 2

1 2 (M1 1 M2e2(M21M1)kj)/(M1 1 M2)

if even number of migrations and
first migration is from population 1

1 2 (M2 1 M1e2(M21M1)kj)/(M1 1 M2)

if even number of migrations and
first migration is from population 2


