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ABSTRACT
We consider some practical statistical issues in QTL analysis where several crosses originate in multiple

inbred parents. Our results show that ignoring background polygenic variation in different crosses may
lead to biased interval mapping estimates of QTL effects or loss of efficiency. Threshold and power
approximations are derived by extending earlier results based on the Ornstein-Uhlenbeck diffusion process.
The results are useful in the design and analysis of genome screen experiments. Several common designs
are evaluated in terms of their power to detect QTL.

QUANTITATIVE trait analysis has many applica- several crosses, since the correlations may not be the
tions in plant and animal breeding and in human same among all individuals. To avoid this difficulty, re-

genetics. Mapping quantitative trait loci (QTL) that in- searchers may analyze data for each cross separately and
fluence agriculturally important traits such as grain yield then compare and combine the results in some fashion.
in rice or milk production in cows can help scientists Hence, some power to detect the QTL may be lost and
produce specimens with more desirable qualities. Com- estimates of QTL effects may be less precise.
plex human diseases, like breast cancer and diabetes, Recently, methods were proposed to analyze all
are known to have genetic etiologies. Animal models crosses simultaneously. Bernardo (1994) used Wright’s
may be useful in studying their origins. relationship matrix A to accommodate differential cor-

Most existing statistical methods have been developed relations when analyzing diallel crosses. However, when
for experimental designs with a single cross from two closely related crosses are from a small number of in-
inbred parents (Lander and Botstein 1989; Haley bred lines, it is more reasonable to treat the polygenic
and Knott 1992; Zeng 1993, 1994; Jansen and Stam effect as fixed. Rebai et al. (1994a) extended the regres-
1994). Doerge et al. (1997) provided a comprehensive sion method of Haley and Knott (1992) to several F2’s
review of methodologies for detecting and locating from a diallel design of multiple inbred lines with all
genes affecting quantitative traits in experimental effects fixed. Elston (1990) proposed models for dis-
breeding populations. However, quantitative traits are criminating among modes of inheritance, including
often influenced by several genes with large effects (ma- one-locus, two-locus, polygenic, and mixed major locus/
jor QTL) and many genes with relatively small effects polygenic inheritance when considering the F1 and the
(polygenes). In animal science, where outbred parental reciprocal backcrosses derived from two inbred lines.
populations are available, the polygenic effect has been The polygenic effect is treated as fixed and different
taken into consideration (Fernando and Grossman phenotypic means and variances are used for different
1989). In horticulture, less attention has been paid to crosses. However, flanking marker information is not
genes with small effects, perhaps because researchers utilized and an estimate of the QTL position is not
are able to rely on simple crosses such as F2 or backcross provided.
(BC). In this article, we consider an arbitrary number of

The effects of polygenes on standard approaches to crosses from multiple inbred lines. While we were pre-
major QTL mapping are not well understood. With a paring this manuscript, Liu and Zeng (2000) proposed
single cross, the progeny have identical relationships a fixed-effect model to analyze combined crosses from
given the QTL genotypes, resulting in a compound sym- multiple inbred lines (with or without overlapping in-
metry structure (Yandell 1997, Ch. 25). Thus, unbiased bred lines). Our model includes both QTL and poly-
estimates of QTL effects are still obtained when the genic effects and is a special case of their heteroscedastic
polygenic effect is ignored, even though the power to model in the sense that the fixed effect and the variance
detect the QTL is influenced by the magnitude of the component identify the polygenic effect. For this rea-
polygenic effect. The situation is more complicated with son, we refer readers to Liu and Zeng (2000) for the

analysis of combined lines. Our focus is the practical
implications of the polygenic effects for QTL mapping,
specifically bias and efficiency. Furthermore, we calcu-Corresponding author: Fei Zou, Department of Statistics, 1210 W.

Dayton St., Madison, WI 53706. E-mail: feizou@stat.wisc.edu late threshold values for controlling the genome-wise
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TABLE 1

Naive vs. polygenic model simulation

Theoretical Estimated

QTL Polygene Modela Location Additive Dominant Polygenic

0 5 N —b 1.79 (0.85) �0.99 (1.10) —c

P —b �0.036 (1.06) 0.088 (1.41) 4.29 (0.96)
0 10 N —b 3.75 (1.10) �1.70 (1.26) —c

P —b 0.23 (1.27) �0.03 (1.67) 8.59 (0.91)
5 0 N 29.02 (6.05) 5.03 (0.83) 0.12 (0.86) —c

P 29.84 (4.73) 5.02 (0.88) 0.14 (0.92) 0.07 (0.89)
5 5 N 29.93 (5.13) 6.6 (0.61) �0.75 (0.91) —c

P 29.42 (5.07) 4.97 (0.70) 0.03 (0.96) 4.45 (0.84)
5 10 N 29.76 (5.85) 8.16 (0.77) �1.41 (1.25) —c

P 29.60 (5.78) 4.94 (0.97) 0.04 (1.25) 8.82 (0.98)

The values in parentheses are the standard deviations from 100 simulations. The numbers in the first two
columns are the theoretical QTL and polygenic effects.

a N and P stand for the naive model and our polygenic model, respectively.
b The QTL position is not estimated since most of the maxd{2 LR(d)}’s are not significant among 100

simulations.
c The polygenic effect is nonestimable in the naive model.

type I error rate. Theoretical approximations were de- We observe that when there are no polygenes both
models consistently estimate the QTL effects. However,veloped to address threshold and power (Lander and

Botstein 1989; Dupuis and Siegmund 1999; Rebai et model P gives more accurate estimates than model N
when there are polygenic effects. The bias of model Nal. 1994b, 1995) in some standard designs. However,

these methods are either impractical or inappropriate increases as the expected polygenic differences between
BC1 and F2 increase. In summary, our simulations indi-with combined crosses. Our general formulas are widely

applicable and easy to implement. cate that when analyzing combined crosses, the poly-
genic model produces more precise and less biased esti-
mates than the traditional interval mapping method.

SIMULATION STUDY OF BIAS AND EFFICIENCY

If one combines different crosses simultaneously but
THRESHOLD AND POWER CALCULATIONS

ignores the different relationships among individuals,
substantial bias may result. In this section, we show the On the basis of the simulations in the above section,

fitting combined crosses (Liu and Zeng 2000) has manyeffect of polygenes on the QTL estimates. We examine
two crosses, BC1 and F2, from common inbred parents advantages. Calculating thresholds and power is an im-

portant practical issue in the design and analysis of suchP1 and P2. Although the design is simple, it illustrates
the key issues. The additive effect of a single major QTL studies. The usual pointwise significance level based on

the chi-square approximation is inadequate because theis set to 0 (i.e., no QTL) and 5, respectively, with no
dominance effect. Five markers are located at 0, 20, 40, entire genome is tested for the presence of a QTL.

Lander and Botstein (1989) showed that with an infi-60, and 80 cM. The major QTL is located at 30 cM. The
environmental errors are identically distributed for BC1 nitely dense map, the LOD score may be approximated

in large samples by an Ornstein-Uhlenbeck diffusionand F2 and are sampled from N(0, 25). One hundred
individuals from BC1 and F2 are simulated without back- process for BC. Dupuis and Siegmund (1999) derived

a similar result for F2. These approximations provideground polygenes or with 10 background polygenes.
The 10 background polygenes are in coupling phase formulas for the threshold and power.

For more general models (Liu and Zeng 2000), noand have common additive effects (i.e., allele substitu-
tion effect �k, k � 1, 2, . . . , 10) 1 or 2 (see Fernando such approximation is available. Churchill and

Doerge (1994) used a randomization idea to calculateet al. 1994). This leads to expected polygenic differences
between F2 and BC1 of 5 and 10, respectively. We fit the threshold. The approach is applicable for all de-

signs, with a dense or sparse map. However, the methodthe model using Liu and Zeng (2000), hereafter called
“model P.” In addition, we employed traditional interval is computationally intensive. In addition, since the

thresholds depend on the observed data, it is unclearmapping by ignoring the polygenic effects, hereafter
called “model N.” For each parameter combination, how to compare various designs. Rebai et al. (1994b,

1995) gave an upper bound for the threshold for BC100 simulated datasets were analyzed. The results are
presented in Table 1. and F2 based on Davies (1977, 1987). The calculation
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is formidable, even for an F2 population, and is not
H � �0 0 0 1 0

0 0 0 0 1�.exact. Piepho (2001) proposed an efficient numerical
method to compute the thresholds in Rebai et al.

From the normal regression theory, the likelihood ratio(1994b, 1995) for general designs.
statistic isOur approach extends the Ornstein-Uhlenbeck large

sample approximations. It is quite simple and practically
2 LR(d) � �n log�1 �

(Hb̂)� (H(X̃(d)� X̃(d))�1H �)�1(Hb̂)
||ỹ � X̃(d)b̂||2 � (Hb̂)� (H(X̃(d)� X̃(d))�1H �)�1(Hb̂)� ,useful. Calculating the threshold and power under dif-

ferent map distances can be accomplished with closed-
where ỹ � G�1/2y and X̃(d) � G�1/2X(d). Under H0,form expressions arising from the Ornstein-Uhlenbeck

setup. Simulations shown below indicate this works well 2 LR(d) ≈ n(�̂1 �̂2)(A22)�1(�̂1 �̂2)�,
with realistic sample sizes.

where (�̂1 �̂2)� is the maximum-likelihood estimate ofTwo inbred strains: In this section, we consider com-
b2 � (�1 �2)� and A22 is given in (A2) in the appendix.bined crosses from two inbred parents (P1 and P2),

The distribution of 2 LR(d) depends on �̂1 and �̂2,BC1, F2, and BC2. Our goal is to extend Dupuis and
which are correlated. Thus, we cannot directly applySiegmund (1999). Generalizing the results to other de-
Dupuis and Siegmund (1999) to derive the thresholdsigns (Liu and Zeng 2000) is straightforward. In the
and power. In the appendix, we propose an orthogonalsequel, we assume an equispaced marker map. Suppose
transformation such that 2 LR(d) is partitioned into the

Y � (y11, y12, . . . y1n1
; y21, y22, . . . , y2n2

; y31, y32, . . . , y3n3
)� sum of squares of two uncorrelated random variables

Z1 and Z2. This makes the asymptotic distribution trans-
� Xb � e � (X1 X2)�b1

b2
� � e, parent. Letting Ŵ1 � �1�̂1, Ŵ2 � �1�̂1 � �2�̂2 (see appen-

dix for �1 and �i), Zi � √nŴi, i � 1, 2. It is shown in
the appendix that Z1 and Z2 are asymptotically indepen-where X is the design matrix and e is the random error.
dent and distributed N (0, 1). Thus,n1, n2, n3 are the number of observations for BC1, F2,

and BC2, respectively, with n observations in total. The
submatrix X1 corresponds to the covariates identifying 2 LR(d) ≈ n(Ŵ1 Ŵ2) �Ŵ1

Ŵ2
� � n(Ŵ 2

1 � Ŵ 2
2) � Z 2

1 � Z 2
2,

crosses or other measurements that do not involve the
QTL effects and X2 corresponds to the QTL effects.

which depends on two uncorrelated normal variates andSuppose the allele from parent P1 is q and from P2 is
is asymptotically 	2

2. Note that �i, Ŵi, and Zi, i � 1, 2 allQ. The possible QTL genotypes are qq, Qq, and QQ.
depend on the locus d. In the sequel, when necessary,Ignoring other covariate effects, we let
we use �1(d), �2(d), Ŵi(d), and Zi(d), i � 1, 2 to emphasize
their dependence on d.

To demonstrate the Ornstein-Uhlenbeck equiva-
lence, the covariances at different loci d1 and d2 are
proved to be

Cov(Z1(d1), Z1(d2)) � 1 � 
1r � O(r 2)X1 �













1 1 0

. . .

1 1 0

1 0 0

. . .

1 0 0

1 0 1

. . .

1 0 1













and X2 �













x111 x211

. . . . . .

x11n1
x21n1

x121 x221

. . . . . .

x12n2
x22n2

x131 x231

. . . . . .

x13n3
x23n3













,
and

Cov(Z2(d1), Z2(d2)) � 1 � 
2r � O(r 2).

This means that for large n, Z1(d) and Z2(d) are approxi-
mately independent Ornstein-Uhlenbeck processes
with mean zero and covariance 1 � 
1r � O(r 2) and

where x1ki � 1 (or 0) if individual i in cross k has genotype 1 � 
2r � O(r 2), respectively. Adapting the argument
Qq (or else), and x2ki � 1 (or 0) if individual i in cross in Dupuis and Siegmund (1999), the tail distribution
k has genotype QQ (or else). The random error e is of 2 LR under the null hypothesis satisfies
normally distributed with mean 0 and Var(eki) � �2

k, i �
1, 2, . . . , nk, k � 1, 2, 3. In general Var(e) � �2

3G with P(max
d

2 LR(d) � a2)
G�1 � diag(
1, . . . , 
1; 
2; . . . , 
2; 1, . . . , 1), where 
k �
�2

3/�2
k for k � 1, 2. In the following, we assume that 
k ≈ 1 � exp




��C � v(a(2
�)1/2)a2L �
1 � 
2

2 ��exp�� a2

2 �,is known. If 
k is unknown, then consistent maximum-
likelihood (ML) estimates may be substituted and the (1)
result still holds. Without loss of generality, assume that
�2

3 � 1. At locus d, the hypothesis of no QTL effect is where � � the distance between markers (in Morgans),
H0: b2 � 0 vs. H1: b2 � 0, or equivalently, H0: Hb � 0 vs. C � the number of chromosomes, and L � total length

of the genome (in Morgans). The definition of v(x) canH1: Hb � 0, where
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TABLE 2

95 and 99% critical LR threshold values

�a (cM) Modelb Empiricalc Sparse mapd Dense mape

10 a 10.83 (14.19)f 9.85 (13.31) 12.33 (16.11)
b 10.86 (14.32) 9.85 (13.31) 12.33 (16.11)
c 10.24 (13.51) 9.84 (13.31) 12.31 (16.09)
d 10.49 (14.25) 9.89 (13.34) 12.45 (16.22)

5 a 11.01 (14.50) 10.50 (14.05) 12.33 (16.11)
b 11.02 (14.51) 10.50 (14.05) 12.33 (16.11)
c 10.8 (14.50) 10.49 (14.04) 12.31 (16.09)
d 10.9 (14.20) 10.56 (14.10) 12.45 (16.22)

2 a 11.66 (15.50) 11.13 (14.76) 12.33 (16.11)
b 11.66 (15.51) 11.13 (14.76) 12.33 (16.11)
c 11.38 (15.3) 11.11 (14.75) 12.31 (16.09)
d 11.45 (15.3) 11.20 (14.83) 12.45 (16.22)

a �, the marker interval length. The length of chromosome is 100 cM.
b Sampled distributions of models a–d corresponding to BC1, F2, and BC2 populations, respectively, are a,

(N(1, 1), N(0, 1), N(�1, 1)); b, (N(0, 1), N(0, 1), N(0, 1)); c, (N(1, 1), N(0, 2), N(�1, 1)); d, (N(1, 2), N(0,
2), N(�1, 1)).

c The empirical thresholds are based on 5000 replications.
d Sparse map calculation of the theoretical threshold based on (1).
e Dense map calculation using (1) with v � 1 (i.e., � � 0).
f Thresholds at 95% (99%).

be found in Siegmund (1985). For dense maps, v � 1. 2, and models with covariates are also possible. Our
Similarly, the power is given by framework can be modified for a wide variety of designs.

As before, let the model be
P(max

d
2 LR � a2) ≈ 1 � �(a � �*) � φ(a � �*)

Y � Xb � e � (X1 X2)�b1
b2
� � e,

� � 1
2�*

�
2√av(a{2�
}1/2)

�*3/2
�

√av(a{2�
}1/2)2

�*1/2(a � �*) �
where X1 is an n � p submatrix not involving the QTL

when a QTL is located at a marker locus. Here effects, X2 is an n � m matrix corresponding to the m
QTL effects, and e is the random error. Following thev � v(a{2�
}1/2),
procedure in the appendix, we first compute A22 using
(A2) and then derive the orthogonal transformation�* � �n log�1 �

�2
1�

2
1 � (�1�1 � �2�2)2

�2
BC

� ,
matrix P from (A3). Note that both A22 and P involve
only the design matrix X and not 
 or the correlation
parameters. Next, 2 LR(d) can be partitioned into the�*1 � �*

�1�1

√�2
1�

2
1 � (�1�1 � �2�2)2

,
sum of squares of m asymptotically independent N(0,
1) random variables Z1, . . . , Zm, where Z � (Z1, . . . ,

�*2 � �*
�1�1 � �2�2

√�2
1�

2
1 � (�1�1 � �2�2)2

, Zm)� � Pb̂2. To calculate Cov(Zj(d1), Zj(d2)), j � 1, 2, . . . ,
m, we find D in (A4) on the basis of the specific designs.
It is straightforward to establish


 �

1�*2

1 � 
2�*2
2

�*2
.

Cov(Zj(d1), Zj(d2)) � 1 � 
jr � O(r2), j � 1, 2, . . . , m,
For a QTL between markers, the noncentrality param-

where 
j is the jth diagonal element of �PA22DA�22P �.eters �*1 and �*2 are �*1 exp(�
1�1) and �*2 exp(�
2�1),
Now, the tail distribution of 2 LR under the null hypoth-respectively, where the distance between the QTL and
esis is approximatelythe marker is �1. In the case of an F2 population, the

formulas above reduce to those in Dupuis and Sieg-
P(max

d
2 LR(d) � �2) ≈ 1 � exp{�C[1 � 	2

m(�2)]mund (1999).
General Results: The derivations above can be gener-

� v(a{2
�}1/2)
L2(2�m)/2

alized to more complicated models, including those in
Liu and Zeng (2000). Advanced crosses, such as Fx, x � � [�(m/2)]�1amexp(�a2/2)},
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TABLE 3

Simulation of chromosome-wise type I error

� (cM) Model � � 0.05 � � 0.01

10 a 0.078 0.016
b 0.077 0.018
c 0.060 0.012
d 0.064 0.015

5 a 0.065 0.013
b 0.063 0.012
c 0.056 0.012
d 0.057 0.011

2 a 0.062 0.014
b 0.062 0.014
c 0.056 0.013
d 0.056 0.012

Models a–d are the same as in Table 2. The type I errors
are calculated on the sparse map thresholds of the fourth
column of Table 2.

where 	2
m is a 	2 random variable with m degrees of

freedom and 
 � (
1 � 
2 � . . . � 
m)/m.
The formula for power may also be obtained. How-

ever, it is quite complicated and is omitted here.

SIMULATION STUDY OF THRESHOLDS AND POWER

We investigated the performance of (1) with different
marker distances and different polygenic backgrounds.
Thresholds for the log-likelihood were based on interval
mapping with combined BC1, F2, and BC2 crosses. n1 � Figure 1.—(a) Additive QTL model. (b) Dominant QTL
n2 � n3 � 100, giving 300 observations in total and model. Power curves for equal BC1 and BC2 ratios under

dense maps. The horizontal line is the power calculated fromchromosome length � 100 cM. The marker interval
Dupuis and Siegmund’s (1999) formula (i.e., the proportionlengths are set at 10, 5, and 2 cM, respectively. Different
of F2 is 1). The lowest curve in a is the power when onlypolygenic effects are sampled, as reflected by models
available F2’s are used by discarding BCs. Thus power is re-

a–d (see legend of Table 2 for details; Table 3). The duced because there are fewer individuals.
approximations from (1) with v(a{2
�}1/2) are always
smaller than the empirical thresholds derived in the
simulations. However, as the interval length decreases, tion should agree with Dupuis and Siegmund (1999).

Other noncentrality parameters in Dupuis and Sieg-our approximations are more similar to the empirical
thresholds. In general, the dense map assumption (v � mund (1999) show the same pattern and are omitted.

For the additive model, the comparisons are qualita-1) produces conservative thresholds. Since more mark-
ers are likely to be typed around promising loci (Lander tively similar.

Figures 1 and 2 exhibit the power curves. When theand Kruglyak 1995), the stringent thresholds based
on a dense map should be used even with a sparse map. polygenes are in linkage equilibrium and have only addi-

tive effects, the phenotypic variation due to polygenesAlso, the approximations provide conservative control
of the genome-wise type I error rate. Note that (1) gives and environment satisfies �2

BC1 � �2
BC2 � �2

P � �2
e and

�F2 � 2�2
P � �2

e, respectively, where �2
P is the total poly-upper and lower bounds for the threshold with v � 1

(assuming a dense map) and with v(a{2
�}1/2) (using genic variation in the BC population and �2
P is the envi-

ronmental variation. For this reason, we take 
1 � 1the true map distances), respectively.
Next, we evaluate the power with different propor- and choose 
�1

2 � 1, 0.75, 0.67, 0.57, 0.5, which corre-
spond to �2

P � 0, �2
e/2, �2

e, 3�2
e, or �2

P � �2
e, respectively.tions of BC1, F2, and BC2. The power is calculated for

dominant (�1 � �2) and additive (�2 � 2�1) models. We We also evaluate the power by using F2’s only, which
quantifies the loss in power when discarding data fromcompare our results with those of Dupuis and Sieg-

mund (1999) for the dominant model. We use the same the BCs (see Figure 1a).
In Figure 1, the proportions of BC1 and BC2 arevalues of the noncentrality parameter. In theory, as the

proportion of F2 approaches 1, our power approxima- assumed equal. When the QTL is dominant, power is
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Figure 2.—Power curves for
different ratios of BC1, BC2, and
F2 with dominant QTL under
dense maps. Dominant model
with (a) 
2 � 1, (b) 
2 � 0.75, (c)

2 � 0.67, (d) 
2 � 0.5. a–d use
the same graphical symbols. k1 is
the sample proportion of BC1 and

2 � �2

BC2/�2
F2.

gained by using BC populations unless there is no poly- QTL is additive, both BC1 and BC2 individuals have
identical contributions in detecting the QTL, so onlygenic effect (i.e., 
2 is close to 1). The larger the poly-

genic effects, the greater is the gain with BCs. However, the total proportion of BC1 and BC2 influences the
power, as shown in Figure 1a.when the QTL is additive, F2’s tend to have more infor-

mation for detecting a QTL than do BCs, unless �P �
�e (i.e., the polygenic effects are very large). Note that

CONCLUSION
when the proportion of F2 approaches 1, our results
again match those of Dupuis and Siegmund. In this article, we addressed some important practical

issues in the analysis of closely related crosses derivedIn Figure 2, we allow the proportions of BC1 and BC2
to be unequal with a dominant QTL. In this case, BC1 from multiple inbred lines when both QTL and poly-

genes influence a trait. We showed that biased and inef-is more powerful than F2, which is expected. When the
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APPENDIXWe thank anonymous reviewers for their critical reading of this
manuscript. This research was supported in part by the U.S. Depart-

In this section, for combined crosses from two inbredment of Agriculture Hatch project through the University of Wiscon-
parents, we prove that the likelihood ratio 2 LR(d) cansin, College of Agricultural and Life Sciences.

be partitioned into the sum of the squares of two asymp-
totically independent Ornstein-Uhlenbeck processes

LITERATURE CITED through an orthogonal transformation. Define
Bernardo, R., 1994 Prediction of maize single-cross performance

using RFLPs and information from related hybrids. Crop Sci. 34: B � lim
n→∞

X̃(d)�X̃(d)
n

� �B11 B12

B21 B22
� � �X̃1X̃1 X̃1X̃2

X̃2X̃1 X̃2X̃2
�. (A1)20–25.

Churchill, G. A., and R. W. Doerge, 1994 Empirical threshold
values for quantitative trait mapping. Genetics 138: 963–971. Note that B does not depend on locus d. Let

Davies, R. B., 1977 Hypothesis testing when a nuisance parameter
is present only under the alternative. Biometrika 64: 247–254.

Davies, R. B., 1987 Hypothesis testing when a nuisance parameter A � B� � �A11 A12

A21 A22
� with A22 � �a1 a3

a3 a2
�is present only under the alternative. Biometrika 74: 33–43.

Doerge, R. W., Z-B. Zeng and B. S. Weir, 1997 Statistical issues in
the search for genes affecting quantitative traits in experimental
populations. Stat. Sci. 12: 195–219. C � A�1

22 � �c1 c3

c3 c2
�. (A2)

Dupuis, J., and D. Siegmund, 1999 Statistical methods for mapping
quantitative trait loci from a dense set of markers. Genetics 151:
373–386. Define

Elston, R. C., 1990 Models for discrimination between statistical
alternative modes of inheritance, pp. 41–55 in Advances in Statisti-
cal Methods for Genetic Improvement for Livestock, edited by D. Gia- P � ��1 0

�1 �2
�; then PA22P � � �1 0

0 1�, (A3)
nola and K. Hammond. Springer-Verlag, New York.

Fernando, R. L., and M. Grossman, 1989 Marker-assisted selection
using best linear unbiased prediction. Genet. Sel. Evol. 21: 467– where �1 � √c1 � c 2

3/c2, and �1 � c3/√c2, �2 � √c2.
477. Making the orthogonal transformationFernando, R. L., C. Stricker and R. C. Elston, 1994 The finite
polygenic mixed-model: an alternative formulation for the mixed-
model of inheritance. Theor. Appl. Genet. 88: 573–580. �Z1

Z2
� � P ��̂1

�̂2
�Haley, C. S., and S. A. Knott, 1992 A simple regression method for

mapping quantitative trait in line crosses using flanking markers.
Heredity 69: 315–324. gives

Jansen, R. C., and P. Stam, 1994 High resolution of quantitative
traits into multiple quantitative trait in line crosses using flanking
markers. Heredity 69: 315–324. lim

n→∞
Var(Z1) � lim

n→∞
n Cov




(�1, 0)��̂1

�̂2
�, (�1, 0)��̂1

�̂2
�Lander, E. S., and D. Botstein, 1989 Mapping Mendelian factors

underlying quantitative traits using RFLP linkage maps. Genetics
121: 185–199.

Lander, E. S., and L. Kruglyak, 1995 Genetic dissection of complex � lim
n→∞

n(�1, 0)Var


�

�̂1

�̂2
��

�̂1

0 �traits: guidelines for interpreting and reporting linkage results.
Nat. Genet. 11: 241–247.

Liu, Y., and Z-B. Zeng, 2000 A general mixture model approach
for mapping quantitative trait loci from diverse cross designs � (�1, 0)(HAH �)��̂1

0 � � 1.
involving multiple inbred lines. Genet. Res. 75: 345–355.



1346 F. Zou, B. S. Yandell and J. P. Fine

For the same reason,
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2
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dent N(0, 1). Furthermore,
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Therefore,
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