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ABSTRACT
Linkage disequilibrium is an important topic in evolutionary and population genetics. An issue yet to

be settled is the theory required to extend the linkage disequilibrium analysis to complex traits. In this
study, we present theoretical analysis and methods for detecting or estimating linkage disequilibrium (LD)
between a polymorphic marker locus and any one of the loci affecting a complex dichotomous trait on
the basis of samples randomly or selectively collected from natural populations. Statistical properties of
these methods were investigated and their powers were compared analytically or by use of Monte Carlo
simulations. The results show that the disequilibrium may be detected with a power of 80% by using
phenotypic records and marker genotype when both the trait and marker variants are common (30%)
and the LD is relatively high (40–100% of the theoretical maximum). The maximum-likelihood approach
provides accurate estimates of the model parameters as well as detection of linkage disequilibrium. The
likelihood method is preferred for its higher power and reliability in parameter estimation. The approaches
developed in this article are also compared to those for analyzing a continuously distributed quantitative
trait. It is shown that a larger sample size is required for the dichotomous trait model to obtain the same
level of power in detecting linkage disequilibrium as the continuous trait analysis. Potential use of these
estimates in mapping the trait locus is also discussed.

LINKAGE disequilibrium (LD) between genes at dif- tance are complex traits for which a one-to-one relation-
ship between genotype and phenotype does not existferent loci is a topic of historical importance in
(Darvasi 1998). In many instances, a complex pheno-evolutionary and population genetics theory. Analysis
type can be assessed continuously or discontinuously.of LD was shown to be a very powerful approach in
The key difficulty encountered in modeling linkage dis-distinguishing between alternative evolutionary models
equilibria involved with complex traits is mainly caused(Lewontin 1974). There was a recent resurgence in
by the incomplete information on the genotype of theseinterest in linkage-disequilibrium analysis because of
traits. A theoretical analysis was carried out in Luothe abundance of genetic polymorphisms at the DNA
(1998) to explore the statistical power for detectinglevel. These data made it possible to use the disequilib-
the disequilibrium between a polymorphic marker locusrium measure to map disease genes (Hastbacka et al.
and any one of the loci contributing to quantitative1992; Kruglyak 1999) or to optimize breeding schemes
genetic variation in natural populations. Applying thefor marker-assisted selection (Lande and Thompson
model to association studies between a marker and a1990; Luo et al. 1997). From the statistical point of view,
trait, Nielsen and Weir (1999) showed that there is ainferences about linkage disequilibrium involve two as-
simple relationship between the marker being exam-pects: detecting its presence and estimating its magni-
ined and the trait loci. More recently, Luo and Suhaitude once the disequilibrium has been confirmed (Weir
(1999) developed a likelihood approach to estimate the1979). Many studies focused on inferring linkage dis-
level of linkage disequilibrium between a polymorphicequilibrium between alleles at two or more loci under
marker locus and any one of the loci affecting a continu-the circumstance where gametic or genotypic data are
ous quantitative trait in natural populations. Theseavailable at the involved loci (Hill 1974, 1975; Brown
methods are appropriate for analyzing the marker geno-1975; Weir and Cockerham 1978; Spielman et al. 1993;
type and trait phenotype data that are directly observ-Kaplan et al. 1995).
able from experiments. Luo et al. (2000) discussed howMany characters of economic or evolutionary impor-
these analyses are relevant to mapping the major genetic
effect of continuous quantitative variation.

Most intensively studied characters in evolutionary
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tility (usually scored as fertile or sterile) in interspecific
hybrids (Wu and Palopoli 1994), pheromonal types
between different species of Drosophila (Coyne et al.
1994), and the presence or absence of wing spots in
butterflies (Brakefield 1996). To extend our previous
study to analyze complex traits of this sort, this article
develops the theory and method to detect and estimate
linkage disequilibrium between a polymorphic marker
locus and any one of the loci affecting a complex binary
trait in natural populations. Analyses with dichotomous
traits may be theoretically more challenging than with
continuous traits because the former requires modeling
the link between the observable phenotype and the
corresponding latent variable. We study various statisti-
cal properties of the theoretical model and compare it
with the analysis involved with continuous traits for their
statistical powers. We also discuss the implications of the
methods in locating genes underlying complex binary
traits by use of samples from natural populations.

MODEL AND THEORETICAL ANALYSES

Model and notations: We consider cosegregation of
genes at two autosomal loci: One affects a dichotomous
trait whereas the other is a codominant marker locus
that is devoid of effect on the trait. The two alleles are
denoted by M and m at the marker locus and by A and
a at the trait locus. The association between genes at
the two loci is quantified by D, the coefficient of the
disequilibrium defined as D � fMA � pq, where fMA is the
frequency of the MA haplotype and p and q denote
frequencies of alleles M and A accordingly. With the
assumption of random mating, the joint distribution of
genotypes at the marker locus and QTL can be ex-
pressed as a function D, p, and q and is summarized in
Table 1. It should be noted that the joint distribution
implies random mating of the population. The model
has been discussed elsewhere (Luo et al. 2000).

The phenotype of the trait is assumed to be distrib-
uted as a binary variable. If a random sample is collected
from the population as described above, individuals
sampled may be grouped according to their marker
genotypes. The phenotype of the j th individual within
the i th marker group is modeled by

yij �




1 if zij � �

0 if zij � �,

where � is the threshold for the underlying liability of
the trait zij, which is formulated as

zij � � � gij � εij, (1)

in which � is the overall population mean and gij is the
genotypic value of the individual at the trait locus. Three
genotypes at this locus, say AA, Aa, and aa, are assumed
to have genotypic values a � d/2, d/2, and �a � d/2,
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respectively, where a and d indicate additive and domi-
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TABLE 2 between the marker gene and the gene at the trait locus.
In fact, it is shown in appendix a that the noncentralityLayout and notation for sample marker genotype and disease
parameter of the test statistic is given byphenotype frequencies in a 2 � 3 table

	 � n�
2

i�1
�
3

j�1

[
ij � 
ij(M)]2


ij(M)Marker genotypes
Disease
phenotype MM Mm mm

�
nD2{(f1 � 2f2 � f3)2D2 � 2p(1 � p)[qf1 � (1 � 2q)f2 � (1 � q)f3]2}

p2(1 � p)2[1 � q2f1 � 2q(1 � q)f2 � (1 � q)2f3][q2f1 � 2q(1 � q)f2 � (1 � q)2f3]
Affected (yij � 1) n11 n12 n13 n1� (4)
Normal (yij � 0) n21 n22 n23 n2�

n�1 n�2 n�3 n when alleles at the marker and trait loci are in linkage
disequilibrium as described in Table 1, where 
ij(M)
are the corresponding cell probabilities under the
model given in Table 1, and fk, k � 1, 2, 3 are given by

nance effects. εij is a normally distributed residual vari- Equation 2. The expected value of the �2
d.f. given in

able with mean zero and standard deviation 1.0, which Equation 3 is 	 � d.f.
accounts for the variation of polygenes that are in link- Statistical power of the independence test can thus
age equilibrium with the marker alleles and for environ- be formulated as
mental variation. Thus, the genetic effects of the trait
locus are measured in units of the residual standard �� � Pr{�2

(2)(	) � �2
(2,
)}, (5)

deviation of the liability.
in which �2

(2) (	) stands for a noncentral chi-square vari-The conditional probability of yij � 1 given the individ-
ate with 2 d.f. and the noncentrality parameter 	 asual’s genotype at the trait locus, say Gij � k, is obtained
given by Equation 4, �2

(2,
), represents the up-
 percentileby
of a central chi-square distribution with the same de-

fk � Pr�yij � 1|Gij � k, �� � Pr�zij � �|Gij � k, �� grees of freedom. It should be noted that the indepen-
dent test suggested above is based on the marker geno-

� 1 � Pr�zij � �|Gij � k, �� type. The test may be also on the marker allele. However,
it was pointed out in Nielson and Weir (1999) that

� 1 �
1

√2

�

�

�∞
exp��(z � � � (2 � k)a � (�1)kd/2)2

2 �dz, the genotype test tests for both additive and dominance
effects, whereas the allele test only tests for additive(2)
effect.

where i � 1, 2, 3 referring, correspondingly, to the Regression analysis: If the trait phenotype and the
marker genotypes MM, Mm, and mm; and k � 1, 2, 3, marker genotype data are used to fit a simple regression
referring to the genotypes AA, Aa, and aa at the trait model,
locus. fk is also referred to as the penetrance of the kth

yij � 
 � �Tij � �, (6)trait genotype.
Statistical analyses: In this section, three approaches where Tij refers to the number of marker alleles, for

are presented for testing the presence of linkage dis- example, M, carried by the individual ij, and � is the
equilibrium using the random sample described above. normally distributed residual variable. appendix b

Independence test: The data can be sorted into a 2 � 3 shows that expectation of the regression parameters is
contingency table as illustrated in Table 2. In Table 2, obtained by

ij (or nij) is the frequency (or number of counts) of


 � q2f1 � 2q(1 � q)f2 � (1 � q)2f3 � 2�p (7)the individuals with the ith phenotype and jth marker
genotype. The marginal frequencies are denoted by and

i� � Rj
ij and 
�j � Ri
ij. A statistical test for the null
hypothesis H0, 
ij � 
i�
�j with i � 1, 2 and j � 1, � �

D[qf1 � (1 � 2q)f2 � (1 � q)f3]
p(1 � p)

. (8)
2, 3, is performed by using Pearson’s chi-square test
statistic

It can be seen from the above equation that significance
of the regression coefficient can be used to infer the

�2
d.f. � �

2

i�1
�
3

j�1

n
(
ij � 
i�
�j)2


i�
�j

� �
2

i�1
�
3

j�1

(nij � mij)2

mij

, (3)
presence of linkage disequilibrium. A statistical test for
significance of the regression coefficient requires its

where mij represents the expected value of nij and can be variance. When the two variables (i.e., Y and T in the
replaced by their sampling estimates m̂ij � n
ij without present context) in the regression analysis are normally
affecting the distribution of �2 (Agresti 1990). For a distributed, the variance of the regression coefficient is
large sample size and under H0, �2 has a central chi- simply calculated as
square distribution with d.f. � (2 � 1) � (3 � 1). Thus,
the above test statistic provides a simple significance �2

� �
(1 � r2)�2

Y

n�2
T

, (9)
statistical test for the presence of linkage disequilibrium
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where r is the correlation coefficient between Y and T, The mixing proportion hik is the probability of an indi-
vidual having the kth trait genotype and the ith markerand �2

Y and �2
T are variances of Y and T, respectively.

They are given in appendix b. However, the two regres- genotype and is a function of the parameters p, q, and
D (Table 1). Searching the observed likelihood functionsion variables are in fact not normally distributed be-

cause their median and arithmetic mean may not be for the maximum-likelihood estimates of the unknown
parameters is difficult because the observed data areconsistent. A general formula for the sampling variance

of the regression coefficient without the normality as- incomplete with information about the genotype at the
trait locus being missed. The maximum-likelihood esti-sumption has a form given in Kendall et al. (1983, p.

325) as mates (MLEs) can be appropriately formulated follow-
ing the principles of missing data analysis (Little and
Rubin 1987). In the present context, the expectation�2

� � b2




Var(�2
YT)

E 2(�2
TY)

�
Var(�2

T)
E 2(�2

T)
�

2 Cov(�2
TY, �2

T)
�2

TY �2
T

�, (10)
of the complete data log-likelihood function has a form
aswhere b is the estimate of the regression coefficient,

�2
T and �2

YT are the sample variance of T and the sample
Lc(Y, �) � �

3

i�1
�
ni

j�1
�

3

k�1

{wijklog(hik) � wijkyijlog( fk) � wijk(1� yij)log(1 � fk)}
covariance between T and Y, respectively, and Var(X)
and Cov(X, Y) represent operators of sample variance

� �
3

i�1
�

3

k�1

w̃iklog(hik)and covariance. Expectations of the variance and covari-
ance are also given in appendix b. Appropriate use
of Equation 10 requires that the sample variance and � �

3

i�1
�
ni

j�1
�

3

k�1

wijk[yijlog( fk) � (1 � yij)log(1 � fk)], (14)
covariance are of order n�1. This, together with the

where wijk is the posterior probability of an individualdifference between the sample variance of the regres-
having the kth genotype at the trait locus given hission coefficient predicted by Equation 9 and calculated
phenotype yij and the marker genotype i. w̃ik � �ni

j�1 wijkby the Equation 10, is discussed in the following numeri-
and ni is the number of individuals within the ith markercal analysis.
genotype group.The test statistic, i.e., t � |�|/��, is expected to follow

The MLEs of the unknown parameters in Equationa central t-distribution under the null hypothesis D �
12 can be calculated by use of the expectation-maximiza-0. Power of the test at a significant level of 
 can thus
tion (EM) algorithm (Dempster et al. 1977). Implemen-be calculated as the probability
tation of the EM algorithm in the present context in-

�t � Pr{t�(�t) � t
/2;�}, (11) volves iteration of the following two steps.
where t
/2;� is the upper 
/2 point of a central t variable E-step: Calculate the posterior probability wijk using the
with � � n � 2 d.f. and t�(�t) represents a noncentral parameter estimates �(t) at the tth iteration for both
Student’s t variable with the same degrees of freedom the penetrance and liability models:
and the noncentral parameter is given by

wijk �
hikPr{yij � 1|Gij � k, �}yijPr{yij � 0|Gij � k, �}(1�yij)

�3
l�1hilPr{yij � 1|Gij � l, �}yijPr{yij � 0|Gij � l, �}(1�yij)

.
�t �

�[�/2]b

√�/2�[(� � 1)/2]�b

(12)
(15)

(Johnson and Kotz 1970, p. 201), where �() is a M-step: Substitute wijk and �(t) into the complete data
gamma function. log-likelihood function (Equation 14) and search new

Maximum-likelihood analysis: The log-likelihood of the estimates of the parameters that increase the likeli-
observed phenotype of the trait and the marker geno- hood. The marker allele frequency contains no miss-
type data given the model parameters can be written as ing information, and the MLE for this parameter is

calculated directly from p � (2n1 � n2)/2n. The up-
L(Y, �) � �

3

i�1
�
ni

j�1

log��
3

k�1

hikPr�yij � 1|Gij � k, ��yij Pr�yij � 0|Gij � k, ��(1�yij)� dated estimates, D(t�1) and q(t�1), can be obtained from
numerically solving

� �
3

i�1
�
ni

j�1

log��
3

k�1

hik f yijk (1 � fk)(1�yij)�. (13)
�
3

i�1
�
ni

j�1
�
3

k�1

wijk
�

�D
[log hik] � �

3

i�1
�
3

k�1

w̃ik
�

�D
[log hik]

The likelihood may be analyzed under two models: (i)
�

2w̃11

D � pq
�

[2D � p(1 � 2q)]w̃12

(D � pq)[D � p(1 � q)]the penetrance model, which involves unknown param-
eters � � (p, q, D, f1, f2, f3), where fi (i � 1, 2, 3) refer
to the penetrance of the three genotypes AA, Aa, and �

2w̃13

D � p(1 � q)
�

[2D � (1 � 2p)q]w̃21

(D � pq)[D � (1 � p)q]aa at the trait locus; or (ii) the liability model in which
the unknown parameters � � (p, q, D, �, �, a, d).

�
[4D � (1 � 2p)(1 � 2q)]w̃22

2D2 � (1 � 2p)(1 � 2q)D � 2pq(1 � p)(1 � q)Note that hik is the joint frequency of the ith marker
genotype and the kth genotype at the trait locus, and

�
[2D � (1 � 2p)(1 � 2q)]w̃23

[D � (1 � p)(1 � q)][D � p(1 � q)]hi � R3
k�1hik is the frequency of the ith marker genotype.
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�
2w̃31

D � (1 � p)q
�

[2D � (1 � p)(1 � 2q)]w̃32

[D � (1 � p)(1 � q)][D � (1 � p)q]
�

�a
Lc(Y, �) � �

3

i�1
�
ni

j�1
�

3

k�1

wijk(yij � fk)(2 � k)

√2
fk(1 � fk)

�
2w̃33

D � (1 � p)(1 � q)
� 0 (16)

� exp�� (� � � � (2 � k)a � (� 1)kd/2)2

2 � (21)

for D with the constraint max{�pq, � (1 � p)(1 � �

�d
Lc(Y, �) � �

3

i�1
�
ni

j�1
�

3

k�1

wijk(yij � fk)(� 1)k

2√2
fk(1 � fk)q)} � D � min{p(1 � q), (1 � p)q} (Weir 1990) and
solving the equation

� exp�� (� � � � (2 � k)a � (� 1)kd/2)2

2 �
�

3

i�1
�
ni

j�1
�

3

k�1

wijk
�

�q
[log hik] � �

3

i�1
�

3

k�1

w̃ik
�

�q
[log hik]

� 0. (22)
�

2pw̃11

D � pq
�

p[2D � p(1 � 2q)]w̃12

(D � pq)[D � p(1 � q)] Details for derivation of these equations and implemen-
tation of the numerical algorithm for solving the equa-

�
2pw̃13

D � p(1 � q)
�

[(1 � 2p)D � 2p(1 � p)q]w̃21

(D � pq)[D � (1 � p)q] tions are given in appendix d.
The algorithm is iterated until the sequence of the

estimate of � converges, and the converged values are�
2[(1 � 2p)D � p(1 � p)(1 � 2q)]w̃22

2D2 � (1 � 2p)(1 � 2q)D � 2pq(1 � p)(1 � q)
the maximum-likelihood estimates of the parameters.
Use of the MLEs allows calculation of the likelihood

�
[(1 � 2p)D � 2p(1 � p)(1 � q)]w̃23

[D � (1 � p)(1 � q)][D � p(1 � q)]
�

2(1 � p)w̃31

D � (1 � p)q L(Y, �̂) under the full model and the likelihood L(Y,
�̂)|D�0. The likelihood ratio

�
(1 � p)[2D � (1 � p)(1 � 2q)]w̃32

[D � (1 � p)(1 � q)][D � (1 � p)q]
LR � 2[L(Y, �̂) � L(Y, �̂)|D�0], (23)

�
2(1 � p)w̃33

D � (1 � p)(1 � q)
� 0 (17) which, in general, follows asymptotically a chi-square

distribution with 1 d.f. under the null hypothesis H0:
for q with the constraint 0 � q � 1. D � 0, where L(Y, �̂) and L(Y, �̂)|D�0 represent values

of the log-likelihood function of (13) evaluated at theThe other parameters are calculated in different ways
MLEs of the parameters and at the MLEs but with D �depending on which model is considered: For the pene-
0, respectively.trance model, the updated estimates of the three pene-

trance parameters can be directly obtained as

SIMULATION STUDY AND NUMERICAL ANALYSES
fk �

R3
i�1 Rnij�1 wijkyij

R3
i�1 Rnij�1 wijk

. (18)
Simulation model: The strategy is described elsewhere

(Luo 1998) for simulating the linkage disequilibrium
For the reliability model, the new estimates of the un- between a polymorphic marker locus and a trait locus
known parameters �, �, a, and d can be calculated from in random mating natural populations. For any given
the following procedure. set of parameters, n, p, q, D, �, a, and d, random samples

Let �̂0 be the proportion of the unaffected individuals of the individual genotypes at the marker and trait loci
in the sample. Thompson (1972) suggested use of �̂0 were generated. The liability of an individual was deter-
to calculate the maximum-likelihood estimate of the mined by its genotype value at the trait locus plus a
threshold �. In the present context, the following equa- normally distributed random variate, and the trait phe-
tion notype for the individual depended if its liability value

was greater than the simulated threshold, �. In the simu-
�̂0 � �

3

i�1
��

3

j�1

nj

n
hij� 1

√2

�

�

�∞
exp�� (z � � � (2 � k)a � (� 1)kd/2)2

2 �dz lation study, we considered 15 sets of parameters and
these were listed in Table 3 in which genetic effects(19)
of the disease gene were represented in term of h2,

is searched numerically for the MLE of � on the basis heritability of the liability of the disease trait, and dr,
of current estimates of the other model parameters. dominance ratio at the disease locus. Each of the simu-
Derivation of the equation is described in appendix c. lated parameters was repeated 100 or 200 times de-

The MLEs of �, a, and d can be obtained from solving pending on the purposes of the analysis.
the following equations: Behavior of the test statistics under the null hypothe-

sis: To apply the methods developed above in practice,
�

��
Lc(Y, �) � �

3

i�1
�
ni

j�1
�

3

k�1

wijk(yij � fk)

√2
fk(1 � fk)
a question remains to determine appropriate critical
threshold values for significance of the test statistics.
These require knowledge about the distributions of the

� exp �� (� � � � (2 � k)a � (� 1)kd/2)2

2 �(20)
test statistics under the null hypothesis. Under the null
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TABLE 3

Parameter values for the 15 populations considered
in the numerical analyses

Population n p q D � h2 dr

1 300 0.5 0.5 0.10 0.0 0.1 0.0
2 300 0.5 0.5 0.10 0.5 0.1 0.0
3 300 0.5 0.5 0.20 0.0 0.1 0.0
4 300 0.5 0.5 0.10 0.0 0.2 1.0
5 500 0.5 0.5 0.10 0.0 0.1 0.0
6 500 0.5 0.5 0.10 0.5 0.1 0.0
7 500 0.5 0.5 0.00 0.0 0.1 0.0
8 300 0.5 0.5 0.10 0.0 0.1 0.5
9 300 0.5 0.5 0.10 0.0 0.1 1.0

10 300 0.3 0.3 0.09 0.0 0.1 0.0
11 300 0.7 0.7 0.09 0.0 0.1 0.0
12 300 0.3 0.5 0.10 0.0 0.1 0.0
13 300 0.3 0.5 0.10 0.0 0.1 1.0
14 300 0.5 0.3 0.10 0.0 0.1 0.0
15 300 0.5 0.3 0.10 0.0 0.1 1.0

n is the sample size; p and q, the population frequencies of
the marker allele M and the disease allele A; D, the coefficient
of linkage disequilibrium; �, the threshold in the reliability
model; h2 and dr, heritability of the reliability of the disease
trait and dominance ratio of allele effects at the disease locus.

hypothesis, the test statistic of the contingency table
analysis is expected to be a �2

d.f.�2 variable with the
mean � d.f. and the variance � 2 d.f. (Johnson
and Kotz 1970, p. 134). The test statistic of the regres-
sion analysis under the null hypothesis is expected to
have the mean deviation given by √��[(� � 1)/2]/
[√
�(�/2)] and the variance given by �/(� � 2) (John-
son and Kotz 1970, p. 96). In many cases, likelihood-
ratio test statistics under a null hypothesis would have
asymptotically a �2 distribution. In addition, the 95th
percentiles of these distributions can be calculated from
the relevant probability density functions of these ex-
pected distributions. We check the agreement between
the observed distributions of these test statistics under the
null hypothesis and their corresponding expected ones
by comparing these expected distribution parameters with
those calculated from repeated simulations.

Table 4 illustrates the expected and simulated values
of the means, variances, and 95th percentiles of the
four test statistics that were calculated from 200 repeated
simulation trials under the condition D � 0. The popula-
tion numbers that specify the simulation parameter sets
except for the value of D are in accordance with those
given in Table 3. Table 4 shows that the observed values
of the distribution parameters for the contingency and
regression test statistics were in good agreement with
their corresponding theoretical expectations. The ob-
served frequencies of these tests being significant are
in the range of the given significant level. These suggest
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statistics with the expected ones. However, the simulated (population 12) than that when the frequencies take
intermediate values (population 1). The power may bemeans, variances, and 95th percentiles of the likelihood-

ratio test statistics under the penetrance model and the reduced slightly with increase in the threshold. The
powers of both the tests decrease as the dominance ratioliability model may differ markedly from those expected

for the �2 distribution with 1 d.f. Moreover, the frequen- at the trait locus increases (populations 1, 8, and 9).
Comparison of the power between the two tests suggestscies of the tests detected as significant are substantially

lower than the given significance level. These indicate that the regression model is generally a more efficient
method to detect the linkage disequilibrium than thethat approximating distributions of the likelihood-ratio

test statistics given in Equation 23 with �2 is inappropri- contingency analysis.
Maximum-likelihood analyses: The likelihood equa-ate. The deviation of distributions of the likelihood-

ratio test statistics from �2
1 is most likely due to slow tion (13) was used to calculate the maximum-likelihood

estimates of the parameters defining the penetranceconvergence of the statistics to the expected distribu-
tion. The discrepancy may be improved when a larger model and the liability model. Table 6 illustrates the

means and the standard errors of the MLEs of the pa-sample size is used. Here, we suggest using the permuta-
tion test, as is done regularly for mapping QTL in rameters of the penetrance model. It shows that the

parameters are well estimated by their correspondingplanned experiments (Churchill and Doerge 1994),
to empirically estimate the threshold from the data for maximum-likelihood estimates. The standard errors of

the estimates of the marker allele frequencies werethe likelihood-ratio tests.
Contingency and regression analyses: The expected much smaller than those of the estimates of the gene

frequencies and the coefficients of the linkage disequi-value of the �2-test statistic in the contingency analysis
under each of the 15 sets of the simulated parameters librium, revealing the fact that the marker genotype

data provide full information for estimating the markerwas theoretically predicted using the formula d.f. � 	
and calculated from the simulation study. In the regres- gene frequencies, while the estimates of the trait gene

frequencies and the disequilibrium coefficients weresion analysis, the expectation of the regression coeffi-
cient was calculated according to Equation 8 and the based on incomplete information from the data of the

marker genotype and the trait phenotype. The pene-corresponding simulated observation was obtained as
the mean of the regression coefficients over 100 simula- trances of the three genotypes at the trait locus were

adequately predicted by the maximum-likelihood ap-tions. The expected standard deviation of the regression
coefficient was evaluated using Equations 10 (�(1)

b ) and proach. The penetrances of the heterozygote genotype
were estimated with smaller standard errors than those11 (�(2)

b ). The simulated value of the standard deviation
(�̂b) was calculated by standard deviation of the coeffi- of the other two homozygote genotypes. Tabulated in

Table 6 were also the empirical powers, on the basis ofcients computed from the repeated simulations. More-
over, powers of the statistical tests under the two analyses 200 simulations, for detecting the linkage disequilib-

rium model. The critical value used to determine sig-were evaluated both theoretically and by simulation at
the significant level of 
 � 5%. The simulated values nificance of the likelihood-ratio test was based on 200

permutations at the null hypothesis and may changeof the powers were obtained as the frequency of the
significant tests in 100 simulation trials. for each simulation. Table 6 shows that among all pa-

rameters under question, the level of linkage disequilib-Table 5 summarizes results of the analyses. The table
shows a good agreement between the expected values of rium between the marker and trait loci is the most

important factor that determines the efficiency of thethe statistics investigated here and their corresponding
simulated values under both the contingency and re- likelihood-ratio test. There is a trend toward decrease

in the power as the dominance effect at the trait locusgression analyses. The standard deviations of the regres-
sion coefficients predicted using Equation 10 are almost increases (comparisons among populations 1, 8, and 9

and between populations 12 and 13 as well as betweenidentical to that calculated using Equation 11 for all
but population 7 considered here, suggesting that the populations 14 and 15). Comparison among popula-

tions 1, 10, and 11 shows that the test tends to be morenormality assumption of the data is not important in
calculating the standard deviations. When the marker efficient when both the marker and trait genes are at

lower or higher frequencies given the other parameters.gene and allele at the trait locus were in linkage equilib-
rium (population 7), the covariance between the This may reflect that the contrast of difference in value

of the penetrance between the three genotypes is en-marker genotype and the phenotype of the trait was
expected to be zero, and Equation 11 then failed to hanced when the genes are at low or high frequencies.

Tabulated in Table 7 are the means and their stan-provide prediction of the standard deviation. As long
as the power is concerned, it can be seen from Table 4 dard errors of the MLEs of the parameters used in the

liability model as well as the empirical powers of thethat the level of linkage disequilibrium plays a major
role in both the analyses. In addition, the power is ex- likelihood-ratio test under the model. It can be seen

from the table that the parameters are well predictedpected to be higher when allelic frequencies at the
marker and trait loci are low (population 11) or high by their corresponding maximum-likelihood estimates.
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TABLE 5

Theoretical predictions and simulation estimates of the parameters of the test statistics
in the contingency and regression analyses

Contingency analysis Regression analysis

Population E(�2) �̂2 ��2 �̂�2 b b̂ �(1)
b �(2)

b �̂b �t �̂t

1 5.16 5.32 0.34 0.37 0.073 0.079 0.040 0.041 0.041 0.43 0.47
2 4.89 5.06 0.31 0.35 0.065 0.071 0.038 0.038 0.037 0.40 0.41
3 14.63 14.46 0.90 0.88 0.145 0.144 0.039 0.040 0.039 0.96 0.93
4 6.58 7.30 0.47 0.45 0.075 0.080 0.040 0.041 0.040 0.46 0.43
5 7.26 7.00 0.53 0.55 0.075 0.071 0.031 0.032 0.033 0.64 0.63
6 6.81 6.98 0.49 0.53 0.065 0.068 0.029 0.029 0.032 0.60 0.60
7 2.00 2.02 0.05 0.03 0.000 0.002 0.032 — 0.031 0.05 0.04
8 4.85 5.48 0.31 0.38 0.067 0.077 0.040 0.041 0.042 0.38 0.42
9 4.25 4.61 0.25 0.31 0.056 0.061 0.040 0.041 0.040 0.28 0.35

10 6.52 6.69 0.46 0.50 0.094 0.097 0.043 0.044 0.041 0.57 0.58
11 6.52 6.26 0.46 0.43 0.094 0.094 0.043 0.045 0.046 0.57 0.56
12 5.76 6.02 0.39 0.44 0.086 0.089 0.044 0.045 0.043 0.50 0.51
13 4.71 4.76 0.29 0.23 0.067 0.075 0.044 0.045 0.044 0.32 0.37
14 5.80 6.38 0.40 0.40 0.079 0.083 0.040 0.041 0.040 0.50 0.53
15 5.30 4.92 0.35 0.33 0.090 0.083 0.040 0.041 0.040 0.60 0.55

E(�2) and �̂2 are the chi-square test statistics predicted theoretically and by simulation, respectively;
��2 and �̂�2, theoretically predicted and simulation observed powers of the test for linkage disequilibrium
under the contingency analysis; b and b̂, the theoretical predicted and the corresponding mean of simulation
estimates of the regression coefficient; �(1)

b , �(2)
b , and �̂b, the standard deviation of the regression coefficient

predicted using Equations 1 and 2 and from the simulation, respectively; �t and �̂t, the theoretically predicted
and observed powers of the linkage disequilibrium test under the regression analysis.

The standard errors of the parameter estimates under veloped in the present study, the sample sizes required
for detecting the linkage disequilibrium with power ofthis model are comparable with those under the pene-

trance model, suggesting consistency of the two models 80% at the significance level of 0.001 were evaluated
for the methods and were summarized in Table 8. Itin the parameter estimates. The powers of the linkage

disequilibrium test whose significance threshold was shows that the methods modeling the continuous trait
phenotype are usually more powerful than the methodsalso based on 200 permutations at the null hypothesis

are approximately the same as those observed in the analyzing the binary phenotype, with the exception that
the regression analysis under the reliability model ispenetrance model analysis. Effects of the allele frequen-

cies at the marker and trait loci and the dominance only slightly better off when the marker allele is at the
intermediate frequency but the frequency of the traitlevel of the gene at the trait locus on the power show

the same trend as that discussed in the above penetrance gene is low and the gene shows complete dominance
(population 12). The table reveals that the regressionmodel. These reveal that both the models are almost
models require smaller samples for the given powerequally efficient in the parameter estimation and the
than the alternative methods regardless of whether thedisequilibrium test.
trait phenotype is distributed continuously or dichoto-Comparison of the powers observed in the likelihood
mously.analyses to those illustrated in Table 4 shows that the

likelihood-ratio test is probably more powerful in de-
tecting the disequilibrium than the test based on the

DISCUSSIONcontingency or regression analyses.
Comparison of the power between this model and Whole-genome association studies were recently pro-

the normal data model: We previously investigated the posed as a powerful approach for investigating many
statistical test for the linkage disequilibrium between a fundamental questions in evolutionary biology (Clark
polymorphic marker locus and a locus underlying a et al. 1998; Paabo 1999) and for detecting the many
quantitative trait whose phenotype is normally distrib- subtle genetic effects that underlie susceptibility to com-
uted (Luo et al. 2000). It was shown that the unbalanced mon diseases (Lander and Schork 1994; Lander 1996;
nested ANOVA and the regression analyses provided an Risch and Merikangas 1996).
efficient test for the disequilibrium using samples from Appropriate modeling of linkage disequilibria be-
a natural population. To compare these approaches tween polymorphic markers and genes affecting com-

plex genetic variation in natural populations is an essen-analyzing the continuous quantitative traits to those de-
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TABLE 8

The sample sizes required for detecting the linkage disequilibrium with a power of 80%
at the significance level of 0.001

Population p q D � h2 dr Na Nb Nc Nr

1 0.5 0.5 0.10 0.0 0.1 0.0 1200 1006 1839 1569
2 0.5 0.5 0.10 0.5 0.1 0.0 1200 1006 2010 1719
3 0.5 0.5 0.20 0.0 0.1 0.0 293 245 460 373
4 0.5 0.5 0.10 0.0 0.2 1.0 830 753 1267 1457
5 0.5 0.5 0.10 0.0 0.1 0.5 1325 1133 2037 1838
6 0.5 0.5 0.10 0.0 0.1 1.0 1670 1514 2583 2663
7 0.3 0.3 0.09 0.0 0.1 0.0 1043 875 1584 1348
8 0.7 0.7 0.09 0.0 0.1 0.0 1043 875 1584 1348
9 0.3 0.5 0.10 0.0 0.1 0.0 1008 844 1545 1314

10 0.3 0.5 0.10 0.0 0.1 1.0 1384 1270 2140 2233
11 0.5 0.3 0.10 0.0 0.1 0.0 1006 844 1528 1299
12 0.5 0.3 0.10 0.0 0.1 1.0 1176 1027 1760 987

ANOVA (Na) and regression analysis (Nb) are used when the phenotype of the disease trait is normally
distributed; the contingency test (Nc) and the regression test (Nr) are used when the phenotype is a binary
variable. p and q are the population frequencies of the marker allele M and the disease gene A; D is the
coefficient of the linkage disequilibrium. � is the threshold of the liability model; h2 and dr are the heritability
and dominance ratio of the disease gene.

tial step and has proved to be an effective approach in mapping is to quantify the relationship between recom-
bination fraction and linkage disequilibrium measure.improving resolution of gene mapping. Linkage dis-

equilibrium analysis of gene mapping may provide a Since recombinant events are not observed, the recom-
bination fraction between the marker and trait locusmapping resolution �1 cM so that molecular screening

at the DNA sequence level for the candidate gene can be must be estimated on the basis of a population genetics
model. Several methods were suggested to address thisperformed. This is an improvement over the traditional

pedigree-based or crossing population-based linkage problem. One of these attempted to search for the repa-
rameterization by which the disequilibrium measure cananalysis where the candidate gene can hardly be nar-

rowed down to such a resolution (de la Chapelle and be directly related to the recombination fraction. For
instance, Devlin and Risch (1995) found that, in theWright 1998; Kearsey and Farquhar 1998; Guo and

Lange 2000). The theoretical analysis of this article present notations, the measure of the disequilibrium
offers insight into the degree of association between the
marker and trait and serves as an important first step in � �

D
q[(1 � p)(1 � q) � D]the direction of analyzing complex dichotomous traits

using population-level LD at linked markers.
has some interesting properties. In certain situations,Efficiency and statistical properties of three methods
the disequilibrium measure is related to the recombina-proposed here for detecting and estimating linkage dis-
tion fraction r as � � (1 � r)T, where T representsequilibrium are investigated analytically or by simula-
the generation number since the creation of the initialtion. It is shown that linkage disequilibrium under a
disequilibrium and may be estimated either from epide-defined spectrum of inheritance models may be de-
miological survey (i.e., in Hastbacka et al. 1992) ortected with 80% power using a sample size of a few
directly from the sampled data (i.e., Kaplan et al. 1995;hundred to 2000. The contingency analysis and the re-
Thompson and Neel 1996). Kaplan and Weir (1997)gression analysis developed in this study provide the
proposed a simulation-based approach, which allows thedisequilibrium test, and the maximum-likelihood ap-
maximum-likelihood estimate of the recombinationproach presented here can be used to estimate the
fraction and its confidence interval to be estimated en-model parameters, i.e., gene frequencies at both the
tirely on the basis of the observation of linkage disequi-marker and trait loci, the coefficient of linkage disequi-
librium between a polymorphic marker locus and a sim-librium between the two loci, and the genetic effects of
ple monogenic disease locus. These analyses werethe genes. These estimates may be useful in interpreting
confined to the circumstances where the genotypes atthe demographic history of the natural populations un-
the trait locus can be observed. However, the basic ideader question (Thompson and Neel 1996; Fay and Wu
may be extended to the case where the genotypes at the1999) and, in turn, to extend the principle of linkage
trait locus are not observed such as the circumstancesdisequilibrium-based mapping to complex traits.
considered in this study. In fact, the information canThe major difficulty in linkage disequilibrium-based
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be, at least partially, uncovered for the joint distribution genetic parameters of the traits. However, it must be
noted that a distinct feature of the TDT methods is theirof genotypes at both the marker and trait loci using the
robustness to population stratification. The questionmaximum-likelihood estimates of the parameters, p, q,
remains how this analysis may be affected by stratifica-and D. The predicted recombination fraction will bear
tion. This may be tackled readily if the dynamics anda larger sampling variation since q and D have to be
properties of linkage disequilibrium in admixed popula-estimated from data with incomplete information.
tions are taken into account as we recently showed inDevelopment of a dense map of biallelic single-nucle-
Tao et al. (2000).otide polymorphisms (SNPs) was suggested to be an

In a recent study, Nielsen and Weir (1999) proposedeffective strategy for genome-wide search for linkage
the model for association studies between a marker anddisequilibrium between the polymorphisms and candi-
a trait and showed that there is a simple relationshipdate genes. Under that setting, a proportion of SNP
between the marker being examined and the trait loci.markers are considered within the candidate genes; thus
Their model is a very useful framework for specifyingthe recombination fraction between the marker and
the structure of linkage disequilibrium between the locitrait loci may be assumed to be zero (Martin et al.
and for investigating the genetic context of many2000). However, efficiency of the genome scan scheme
marker-based statistic tests. Our main purpose is, how-with SNPs is still controversial (Kruglyak 1999; Ott
ever, to directly estimate the linkage disequilibrium and2000).
the genetic parameters of the dichotomous trait locus.In this study, we considered inference of linkage dis-
Sharing the same theoretical model of gene segregationequilibrium using a random sample from natural popu-
at both marker and trait loci, our previous studies (Luolations. In practice, selected samples may be favored in
1998; Luo et al. 2000) focused on inferring linkage dis-relevant genetics studies. In principle, this study can be
equilibrium between a polymorphic marker locus andextended to analyze the selected samples. We note that
a locus affecting continuous complex genetic traits. Inthe joint genotypic distribution at the marker and trait
this study, however, the trait locus was assumed to affectloci within the selected sample (say, for example, �ij) is
a complex dichotomous phenotype. We found that therelated to that in the natural population (hij given in
disequilibrium test with the dichotomous traits is gener-Table 1) from which the sample is collected, as
ally less efficient than the test where the traits display
a continuous phenotypic distribution. Furthermore, a

�ij �
[φfj � (1 � φ � f j)�]

�(1 � �)
hij, statistical method was suggested in Xu and Atchley

(1996) for mapping quantitative trait loci underlying
where φ represents the proportion of individuals with complex binary diseases using planned crossing experi-
the phenotype (y � 1) in the sample and � � q2f1 � ments. The genetic structure of the experiment popula-
2q(1 � q)f2 � (1 � q)2f3. It may take different values for tion under the quantitative trait loci (QTL) mapping
different data sets in practice. Replacement of hij by consideration allows more information about the QTL
�ij in the theory presented above allows nonrandomly genotype to be extracted from the flanking markers
sampled data sets to be analyzed straightforwardly using because the parental linkage phases of genes at the
the methods. In addition, the analyses based on choos- marker and QTL loci are assumed known, and thus it
ing appropriate φ open a window of flexibility for screen- provides a direct prediction of cosegregation of marker
ing the optimized sampling schemes, which may yield genes and genes at the QTL. With natural populations,
the most efficient detection of linkage disequilibrium none of the information is available.
for a given set of parameters. Our model considers a biallelic model at both marker

The methods presented here differ from others in and trait loci. For two reasons, multiple alleles at the
several aspects. Allison (1997) extended the transmis- marker loci may need to be taken into account. First,
sion disequilibrium test (TDT) theory to detect associa- multiple alleles may be common in natural populations
tion between the marker locus and a locus contributing for molecular DNA markers like microsatellites. Second,
to quantitative genetic variation using family data. As a analysis of haplotypes over several marker loci may be
member of the TDT family, Allison’s method can detect effectively reduced to a multiallelic model as demon-
linkage between the marker locus and the trait locus strated in Service et al. (1999) and Clayton and Jones
only if linkage disequilibrium is present. An important (1999). In principle, our model may be integrated into
assumption made in the TDT model is that the marker the multiallelic analysis by taking into account the prob-
locus is the trait locus itself and is not just in linkage ability that each of the marker alleles is in linkage dis-
disequilibrium with the trait locus, indicating that the equilibrium with the trait allele A. If, for example, the
genotype information at the trait locus is assumed. This ith marker allele is in linkage disequilibrium with the
does not apply to the methods proposed in this study allele A, the rest of marker alleles are sorted into one
where information on the trait locus is missing. Rabi- class. With this strategy, a likelihood-based modeling of
nowitz (1997) generalized the TDT test for analyzing the multiallelic marker such as that proposed in Ter-

williger (1995) may thus be tractable. It is much morequantitative traits, but no effort was made to estimate
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equilibrium between two or three loci. Theor. Popul. Biol. 8:challenging to consider multiple alleles at the trait locus
184–201.

because the individual allelic effect cannot be identified Churchill, G. A., and R. W. Doerge, 1994 Empirical threshold for
quantitative trait mapping. Genetics 128: 963–971.with certainty from the trait phenotype. The problem

Clark, A. G., K. M. Weiss, D. A. Nickerson, S. L. Taylor, A.was usually addressed by the way that individuals with
Buchanan et al., 1998 Haplotype structure and population-ge-

a specific phenotype were recognized as carrying one netics inferences from nucleotide-sequence variation in human
lipoprotein lipase. Am. J. Hum. Genet. 63: 595–612.class of alleles and the rest without the phenotype were

Clayton, D., and H. Jones, 1999 Transmission disequilibrium testsassigned as carrying other class of alleles (Lazzeron
for extended marker haplotypes. Am. J. Hum. Genet. 65: 1161–

1998; Service et al. 1999). In this study, the putative 1169.
Collins, A., and N. E. Morton, 1998 Mapping a disease locus byallele A may be considered as a set of alleles that increase

allelic association. Proc. Natl. Acad. Sci. USA 95: 1741–1745.the presence of the trait phenotype (y � 1) while the
Coyne, J. A., A. O. Crittenden and K. Mah, 1994 Genetics of a

allele a is a set of alleles that decrease the presence of pheromonal difference contributing to reproductive isolation in
Drosophila. Science 265: 1461–1464.the phenotype.

Darvasi, A., 1998 Experimental strategies for the genetic dissectionMoreover, we recognize there are several multiloci
of complex traits in animal models. Nat. Genet. 18: 19–24.

linkage disequilibrium mapping methods. Some of Dempster, A. P., N. M. Laird and D. B. Rubin, 1977 Maximum
likelihood from incomplete data via EM algorithm (with discus-them are based on comparison of pairwise linkage dis-
sion). J. R. Stat. Soc. Ser. B 39: 1–38.equilibria between the single trait locus and a set of

de la Chapelle, A., and F. A. Wright, 1998 Linkage disequilibrium
marker polymorphisms and use the peak value of dis- mapping in isolated populations: the example of Finland revis-

ited. Proc. Natl. Acad. Sci. USA 95: 12416–12423.equilibrium measure over several marker loci as evi-
Devlin, B., and N. Risch, 1995 A comparison of linkage disequilib-dence for location of the hypothesized QTL (e.g., Ter-

rium measures for fine-scale mapping. Genomics 29: 311–322.
williger 1995; Rannala and Slatkin 1998; Slatkin Devlin, B., N. Risch and K. Roeder, 1996 Disequilibrium mapping:

composite likelihood for pairwise disequilibrium. Genomics 36:1999). In addition, some theoretical effort has been
1–16.made to combine the pairwise disequilibrium between

Fay, J. C., and C.-I Wu, 1999 A human population bottleneck can
the putative trait locus and each of a set of marker loci account for the discordance between patterns of mitochondrial

versus nuclear DNA variation. Mol. Biol. Evol. 16: 1003–1005.by use of the composite likelihood principle (Devlin
Guo, S. W., and K. Lange, 2000 Genetic mapping of complex traits:et al. 1996; Collins and Morton 1998). Our study

promises, problems, and prospects. Theor. Popul. Biol. 57: 1–11.
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APPENDIX A: CALCULATION OF THE � (q2f1 � 2q(1 � q)f2 � (1 � q)2f3)
NONCENTRALITY PARAMETER OF
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In Table 2, let T � 1, 2, 3 correspond to the three and the basic statistics for the joint distribution between
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where the joint probabilities hik are listed in Table 1,
and then

APPENDIX C: CALCULATION OF MLE
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where m̂j represents the observed frequency of the jth
marker genotype and the conditional probability hjk is(r � 1, 2, . . .)

given in Table 1. Given the other model parameters,
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Therefore the coefficient of regression of Y on T is
derived as the form given by Equation 8 in this article.
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with (�/��)(gk) � 1, (2 � k) or (�1)k/2 when � � �, and
a, or d correspondingly.

The second derivatives are more messy but a general
form was found as
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With these derivatives, the MLEs of parameters �, a,� [ fk(1 � fk) � (yij � fk)(1 � 2 fk)]
and d can be obtained using the numerical algorithm,
for example, in Press et al. (1992), which solve the�

�

��
(gk)

�

��
(gk)




,

equation

where �

��
Lc(Y, φ) � 0

�2

����
fk �

1

√2

exp�� (zij � gk)2

2 �(� � gk)
�

��
(gk)

�

��
(gk)

for � � �, a, d accordingly.

�
1

√2

exp�� (zij � gk)2

2 � �2

����
gk


