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ABSTRACT
A number of statistical methods are now available to map quantitative trait loci (QTL) relative to

markers. However, no existing methodology can simultaneously map QTL for multiple nonnormal traits.
In this article we rectify this deficiency by developing a QTL-mapping approach based on generalized
estimating equations (GEE). Simulation experiments are used to illustrate the application of the GEE-
based approach.

OVER the last 10 years, there has been a great deal data (Liang and Zeger 1986; Diggle et al. 1996). The
advantage of the GEE methodology is its semiparametricof interest in the development of methodology to

map quantitative trait loci (QTL) relative to a known character: Correct specification of the mean and covari-
ance structure of the model is sufficient to guaranteemarker map in populations derived from inbred line

crosses. Perhaps the most commonly used current tech- asymptotically unbiased parameter estimates, regardless
of the actual underlying probability model. In fact, esti-niques for univariate traits are based on the work of

Jansen (1994) and Zeng (1994). These assume a normal mation of mean parameters (we see below that these
include the QTL location and effect) is also robust todistribution for the environmental errors and solve the

resulting likelihood equations via the expectation-max- misspecification of the covariance structure, although
efficiency of estimation is higher the better specifiedimization (EM) algorithm (Dempster et al. 1997). These

methods naturally extend to simultaneous QTL map- the covariance structure is.
In this article we concentrate on F2 populations, butping of several normally distributed traits (Jiang and

Zeng 1995). This is useful because when the environ- the proposed methodology can easily be applied to any
genetic design; we need only derive appropriate meanmental correlation structure is modeled properly, simul-

taneous QTL mapping improves the efficiency of pa- and variance assumptions for the design of interest.
rameter estimates (Korol et al. 1995; Henshall and
Goddard 1999). Furthermore, pleiotropic effects can

METHODSbe included and estimated. Analogues of these methods
based on least-squares also exist (Haley and Knott We begin by introducing the GEE concept. We can
1992; Martı́nez and Curnow 1992; Knott and Haley give only an intuitive motivation of the concept here;
2000) and in most, although not all (Xu 1995; Kao more formal treatments can be found in McCullagh
2000), situations give very similar results to the likeli- and Nelder (1989), Diggle et al. (1996), or Heyde
hood-based methods, with reduced computational com- (1997).
plexity (Knott and Haley 2000). Consider a vector of responses Y such that the expecta-

In contrast, relatively little work has been done on tion of Y can be written E(Y) � �(�) for some function
mapping procedures for nonnormally distributed traits �, where � is a vector of parameters we wish to estimate.
(but see Hackett and Weller 1995; Visscher et al. Intuitively, a sensible way to do this would be to choose �̂
1996a,b; Henshall and Goddard 1999). In particular, to make Y � �(�) “small.” We might therefore consider
no methods map QTL of several correlated nonnormally choosing estimates of �̂ that solve the set of equations
distributed traits simultaneously. This may be because

A(Y � �(�̂)) � 0 (1)of the difficulty in specifying a full probability model
for such data: This makes likelihood-based approaches

for a suitably chosen matrix A. In fact, it can be shown
difficult to implement.

that in many situations the optimal choice of A is DT

Here we avoid these difficulties by using the general-
V(�, �)�, where V(�, �) is the covariance matrix for

ized estimating equation (GEE) approach to correlated
Y, which may depend both on the mean and on a vector
of other parameters �, and the matrix of derivatives D is
given by Dir � ��i/��r . This can be shown to give consistent
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TABLE 1

Typical link and variance functions

Trait type Link function h(�) � Distribution Range φ Variance function V(�)

Continuous � Normal � �2 1

Count ln(�) Poisson �0 1 �

Proportion ln� �

1 � �� Binomial {1, . . . , n}
1
n � (1 � �)

Positive continuous
1
�

Gamma � � 0
1
�

�2

Inverse
Positive continuous

1
�2

Gaussian � � 0 �2 �3

els. As an example, note that the usual least-squares esti- proximate covariance matrix. GEE methods thus rely
on the attractive property that consistent estimates of �mates for linear models are of this form, with � � X�

giving D � X and V(�, �) proportional to the identity can be obtained even if V(�, �) is not the true covari-
ance matrix of Y. Some efficiency is lost relative to usematrix so that we get the familiar estimating equations
of the correct V(�, �), but the loss is often slight, particu-

XT Y � XT X� � 0. (2) larly for large samples.
Finally, note that an alternative motivation of GEE isWe often have a number of correlated observations

possible by defining the quasi-likelihood (QL) q(�; Y) viaon independent individuals, so that the matrix V(�, �)
becomes block diagonal: Alternatively, the estimating �q(�; Y)

��
� V(�, �)�(Y � �). (4)equations may be written as a sum over individuals,

�
n

j�1

DT
j Vj(�j, �)�(Yj � �j(�̂)) � 0, (3) The function q(�; Y) has many of the properties of a

log-likelihood, and in particular the estimates of � given
by the above estimating equation can be viewed as max-where the subscript j refers to the j th individual and

Vj(�, �)� denote the generalized inverse. We are often imizing q(�; Y). Unfortunately, there is in general no
guarantee that a solution of Equation 4 exists, and inunsure about the precise covariance structure for obser-

vations taken on the same individuals, so generalized fact for the QTL mapping application of interest here,
Equation 4 cannot be solved. We therefore rely on theestimating equations are often used for block diagonal

V(�, �): These replace V(�, �) by a “working” or ap- motivation via estimating functions given above.

TABLE 2

Probability of QTL genotype given flanking markers genotype

Marker genotype QTL genotype

M ( jk)
l M ( jk)

r QQ(1) Qq(0) qq(�1)

1 1 1 0 0
1 0 1 � pjk pjk 0
1 �1 (1 � pjk)2 2pjk(1 � pjk) p 2

jk

0 1 pjk 1 � pjk 0
0 0 	kpjk(1 � pjk) 1 � 2	kpjk(1 � pjk) 	jkpjk(1 � pjk)
0 �1 0 1 � pjk pjk

�1 1 p2
jk 2pjk(1 � pjk) (1 � pjk)2

�1 0 0 pjk (1 � pjk)
�1 �1 0 0 1

pjk � rjk/rM
( jk)
l M

( jk)
r

, 	jk � r2
M

( jk)
l M

( jk)
r

/((1 � rM
( jk)
l M

( jk)
r

)2 
 r2
M

( jk)
l M

( jk)
r

), where rjk is the recombination frequency
between marker M ( jk)

l
and QTL Q in the j th individual and rM

( jk)
l M

( jk)
r

is the recombination frequency between
markers M ( jk)

l
and M ( jk)

r
in the j th individual.
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TABLE 3

�̃jk conditional on flanking markers’ genotype, assuming complete interference

Marker genotype

M (k)
l M (k)

r �̃jk based on pjk �̃jk based on �k

1 1 b*k b*k

1 0 b*k (1 � pjk) 
 d*k pjk

b*k 
 d*k e�k

1 
 e�k

1 �1 b*k (1 � 2pjk) 
 2d*k pjk(1 � pjk) �
�b*k 
 b*k e2�k � 2d*k e�k

(1 
 e�k)2

0 1 b*k pjk 
 d*k (1 � pjk)
b*k e�k 
 d*k

1 
 e�k

0 0 d*k (1 � 2	jkpjk(1 � pjk)) �
d*k (�1 � 2e�k � e2�k 
 2	jke�k)

(1 
 e�k)2

0 �1 �b*k pjk 
 d*k (1 � pjk) �
b*k e�k � d*k

1 
 e�k

�1 1 b*k (2pjk � 1) 
 2d*k pjk(1 � pjk)
�b*k 
 b*k e2�k 
 2d*k e�k

(1 
 e�k)2

�1 0 b*k (pjk � 1) 
 d*k pjk �
b*k � d*k e�k

1 
 e�k

�1 �1 �b*k �b*k

In conclusion, provided we can specify the mean func- be dealt with below—and introduce the GEE approach
tion �(�) and the covariance matrix V(�), we can obtain using the familiar special case of normally distributed
consistent estimates of the parameters of interest � using traits. Denoting the phenotypic value of the kth trait
GEE. We now derive a suitable mean and variance struc- in the j th individual by yjk, the corresponding random
ture for multivariate QTL mapping. variable by Yjk, and the random variable of the unob-

QTL mapping via GEE: Suppose we have n individuals served QTL score by Q jk, we assume the connection be-
from an F2 population resulting from a cross between tween the phenotypic information Yij and Q jk is given by
two inbred lines, with observations on m quantitative

Yjk � b*k Q jk 
 d*k 1{Qjk�0} 
 xjk� 
 εjk, (5)traits and on a number of codominant genetic markers
for each individual. The markers are recorded as 1 and where b*k is the additive effect of the QTL that is to be
�1 for the homozygotes in the two parental lines and

mapped for the kth trait, d*k is the dominance effect of
0 for the heterozygotes. The same notation is also ap-

the QTL that is to be mapped for the kth trait, Xj �plied for the unobserved QTL genotypes, with homozy-
(xt

j1, . . . , xt
jm)t � �mp is the design matrix and xjk �gotes coded as 1 and �1 and heterozygotes as 0. We

�1p, k � 1, . . . , m is the design vector of other predictorassume that a marker map exists, although we show
variables for the j th individual, � � �p is the parameterbelow that uncertainty about intermarker recombina-
vector, 1{.} is the indicator function, and εjk is the errortion fractions can easily be accommodated.
term. Note that Xj may include other markers fitted asWe now derive the mean and variance structure re-
cofactors, as is standard in univariate QTL mapping, toquired for our GEE model. We begin by considering
give an approximate multiple-QTL model. Alternatively,the estimation of location and effect for a single QTL
we can easily extend Equation 5 to include multiplefor each trait—we consider how multiple QTL might
QTL for each trait by adding appropriate terms depen-
dent on a second unobserved QTL score, Q �jk. For ease

TABLE 4 of explanation we omitted epistatic and pleiotropic ef-
fects, but these can also easily be added to Equation 5.Locations and distributions of the QTL

Let the random variables representing the marker
genotype of the left and right flanking markers in theTrait k Position Distribution �k φk b*k d*k
j th individual and the kth trait be M (jk)

l and M (jk)
r , respec-

1 3 Poisson 3.00 1.00 0.20 �0.10 tively, and the realized values of these random variables2 94 Binomial 0.00 1⁄10 0.30 0.15
be x (jk)

l and x (jk)
r . The superscript k is needed here since
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Figure 1.—Simulation experiment. Comparison of simultaneous QTL-mapping methods for two nonnormal traits. The box
plots for the estimates for the QTL location of the first trait and second trait are shown. The plots are described in Table 5.

we are allowing the marker interval containing the QTL genotype, the phenotypic distribution is a mixture of
to be mapped for the kth trait to depend on k. Assume components corresponding to the unknown QTL geno-
that the environmental random errors (εj1, . . . , εjm) type, we average out the unknown QTL genotypes to
have a multivariate normal distribution with mean zero get the conditional mean. Our approach can therefore
and covariance matrix �(�) � �mm dependent on a be seen to be a generalization of the mean assumption of
parameter vector � � �s: Errors are assumed indepen- the least-squares-based QTL-mapping methods (Haley
dent across individuals, but correlated across traits. De- and Knott 1992; Martı́nez and Curnow 1992) to mul-
noting the mean of Yij conditional on the flanking tivariate data.
marker information, M (jk)

l � x (jk)
l and M (jk)

r � x (jk)
r , and Now consider the second moment assumption. To

other potentially genetically determined predictor vari- simplify notation, we initially derive the “working” vari-
ables, Xjk � xjk, by ance matrix under the simplest possible model. We as-

sume that there is no gene-environment or genetic inter-�jk � E(Yjk|M (jk)
l � x (jk)

l , M (jk)
r � x (jk)

r , Xjk � xjk), (6)
action and that the predictor variables Xjk are independent

we formulate our first moment assumption as of the flanking marker score. Then the variance of Yjk

conditional on the flanking marker information can be�jk � E(b*k Q jk 
 d*k 1{Qjk�0}|M (jk)
l � x (jk)

l , M (jk)
r � x (jk)

r ) 
 xjk�i .
written as

Note the distinction between this and the full-likeli-
hood approach of Jiang and Zeng (1995): Rather than

Var




Yj1|M ( j1)
l � x ( j1)

l , M ( j1)
r � x ( j1)

r , Xj1 � xj1
�

Yjm|M ( jm)
l � x ( jm)

l , M (jm)
r � x ( jm)

r , Xjm � xjm



allowing for the fact that, conditional on a given marker
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Figure 1.—Continued.

� Var




b*1 Q j1 
 d*1 1{Q j1�0}|M ( j1)
l � x ( j1)

l , M ( j1)
r � x ( j1)

r , Xj1 � xj1
�

b*m Q jm 
 d*m1{Q jm�0}|M ( jm)
l � x ( jm)

l , M (jm)
r � x ( jm)

r , Xjm � xjm





Var




Yj1|M ( j1)
l � x ( j1)

l , M ( j1)
r � x ( j1)

r , Xj1 � xj1
�

Yjm|M ( jm)
l � x ( jm)

l , M (jm)
r � x ( jm)

r , Xjm � xjm





≈ Var




εj1

εjm




. (8)

Again this is the variance assumption taken by the least-
 Var




εj1

εjm




.

(7) squares-based QTL mapping methods (Haley and
Knott 1992; Martı́nez and Curnow 1992). The limita-This is the well-known decomposition of the phenotypic tions of variance assumption (8), which are primarily

variance Var(Yjk | M ( jk)
l � x ( jk)

l , M ( jk)
r � x ( jk)

r ) into the due to ignoring variance due to the segregation of QTL
genetic variance due to segregation of the QTL within within marker classes, have been discussed in detail by
marker classes and the environmental variance Var(εjk) Xu (1995) and Kao (2000). However, recall that, in
(Falconer and Mackay 1997). We now assume that contrast to standard least-squares regression, GEE-based
the variance of the QTL genotypes conditional on the methods are robust against misspecification of the vari-
flanking markers is small relative to the environmental ance assumption (Liang and Zeger 1986). Even in the

presence of, for instance, gene-environmental interac-variance and can be ignored, so that
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Figure 2.—Simulation experiment. Comparison of simultaneous QTL-mapping methods for two nonnormal traits. The box
plots for the estimates for additive effect and for the dominance effect of the first trait are shown. The plots are described in
Table 5.

tion and multiple QTL, the GEE approach based on such that we can transform the mean of Yjk, conditional
on the explanatory variables, to be a linear functionvariance assumption (8) will provide consistent esti-

mates for all mean parameters and correct standard of those explanatory variables. Although there are no
general rules of thumb for the choice of the link func-errors for these estimates. Although a misspecified vari-

ance assumption might have an influence on the effi- tion, it is usually suggested to choose the link function
so that the data, after being transformed by the linkciency of the estimates, the loss of efficiency is usually
function, look as “normal” as possible (Johnson andslight, even if the working variance matrix (8) is substan-
Wichern 1992). For some typical traits, e.g., continuoustially misspecified (Liang and Zeger 1986; Liang et al.
phenotype, counts, proportions, Table 1 lists some ap-1992). The use of a GEE approach thus largely compen-
propriate link functions that are commonly used forsates for the limitations of variance assumption (8).
GEE models (McCullagh and Nelder 1989).We now extend this model to deal with nonnormal

The variance matrix is then constructed on the basistraits. This is easily done by applying a link function
of the link function. We assume that a correlation matrixhk(�jk) to the conditional mean of Yjk (McCullagh and
R(�) � �mm is given that depends upon correlationNelder 1989), which gives the following mean assump-
parameter vector � � �q that can be interpreted as thetion:
environmental correlation. When more sophisticatedhk(�jk) � E(b*k Q jk 
 d*k 1{Q jk�0}|M ( jk)

l � x ( jk)
l M ( jk)

r � x ( jk)
r )

variance structures are modeled � might also contain

 xjk�. (9)

parameters describing gene-environmental interaction
and/or multiple QTL. We can specify the variance ma-That is, we assume that there exists a function hk(�jk)
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Figure 2.—Continued.

trix for nonnormal traits by rescaling the correlation are based on a graphical data analysis where one tries to
investigate functional relationship between the variancematrix R(�) with the corresponding variance functions

and dispersion parameters; i.e., and the mean. Typical choices for dispersion parame-
ters and variance functions are listed in Table 1 (McCul-
lagh and Nelder 1989).Vj � Var�Yj ��

M ( j1)
l � x ( j1)

l , M ( j1)
r � x ( j1)

r , Xj1 � xj1
�

M ( jm)
l � x ( jm)

l , M (jm)
r � x ( jm)

r , Xjm � xjm
�� Calculation of the conditional means: Here we show how

to calculate the expectations given marker genotypes
� �

1
2
A 1/2

j R(�)A 1/2
j �1/2, (10) required in �jk; that is, we calculate

�̃jk � b*k �
1

qjk��1

qjkp(qjk|M ( jk)
l � x ( jk)

l , M ( jk)
r � x ( jk)

r )where Aj � diag(V1(�j1), . . . , Vm(�jm)) is a diagonal
matrix of variance functions and � � diag(φ1, . . . , φm)


 d*k p(0|M ( jk)
l � x ( jk)

l , M ( jk)
r � x ( jk)

r ). (11)
is a diagonal matrix of the dispersion parameters for
the m traits. The variance functions and dispersion pa- The conditional probability p(qjk|M ( jk)

l � x ( jk)
l , M ( jk)

r �
rameters must also be specified by the scientist. They x ( jk)

r ) is easily done given a model for recombination.
Most univariate methods assume no interference, whileare usually chosen on the basis of the link function or
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Figure 3.—Simulation experiment. Comparison of simultaneous QTL-mapping methods for two nonnormal traits. The box
plots for the estimates for the additive effect and for the dominance effect of the second trait are shown. The plots are described
in Table 5.

Jiang and Zeng (1995) assumed complete interference the conditional mean �jk in Table 3 is influenced only
within marker intervals (i.e., no double recombinants) by the marker interval length for marker score (0, 0).
in the multivariate approach. Either assumption is easily It can be shown that when �k is estimated instead of rjk,
incorporated into the GEE approach. For simplicity, we the conditional mean �̃jk in Table 3 is virtually indepen-
consider here only the complete interference case. dent of the marker interval length rM ( jk)

l M ( jk)
r (appendix).

Following the complete interference assumption of The GEE approach with parameterization (12) is there-
Jiang and Zeng (1995), expressions for p(qjk|M (k)

l � fore also robust against misspecification of the marker-
x ( jk)

l , M (k)
r � x (jk)

r ) and hence for �jk can be easily derived; interval length, which allows QTL analysis to be per-
these are given in Tables 2 and 3. Further, when we formed even if the intermarker distances are unknown,
reparameterize the recombination fraction between the provided the marker ordering is known reliably. This
left-flanking marker and the QTL by is potentially valuable since Stringham and Boehnke

(2001) reported that misspecification of the marker
rjk �

exp(�k)
1 
 exp(�k)

rM ( jk)
l M ( jk)

r , (12) map can have a substantial effect on likelihood analysis
for human data. For parameterization (12) the analyti-
cal expressions for �̃jk are also shown in Table 3. Notewhere rM ( jk)

l M ( jk)
r is the recombination fraction between

that when the marker-interval lengths are known param-the flanking markers, parameter pjk in Table 2 becomes
independent of the marker interval length rM ( jk)

l M ( jk)
r and eterization (12) has the advantage over the standard
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Figure 3.—Continued.

parameterization that the estimate for the QTL location �
n

j�1

DT
j Vj(�j, �)� (Yj � �j(�̂)) � 0. (13)

is range preserving; i.e., the estimated QTL position
must lie between the flanking markers, which give much Here Vj(�, �) is the working variance described above
improved numerical properties. and �j � (�j1, . . . , �jm), where �jk is the expected value

Parameterization (12) also gives robustness to varia- of the kth trait for the j th individual, which is easily
calculated under either the complete interference as-tion in map lengths between individuals, for example,
sumption or the no-interference assumption:because of sex effects, although in practice sex-averaged

recombination rates usually give satisfactory results with
�jk � E(Yjk) � h�1

j ��̃jk 
 �
i
xki�i�. (14)

most methods. Finally, note that these results also hold
for the no-interference case.

Equation 3 also involves the matrix of derivatives ofParameter estimation: Parameter estimation is per-
each individual’s phenotypic means, Dj, which is given byformed using a simple extension of the standard GEE

approach described by Liang and Zeger (1986). The
details, which are by their nature rather technical, can Dj � diag��h�1

1 (�)
�� �

��h1(�j1)

, . . . ,
�h�1

m (�)
�� �

��h1(�jm)
�(X̃j|Xj)

be found in Lange (2000); here we sketch the key steps
of the estimation procedure. Recall from Equation 3
that the GEE estimates are defined as the solution of with X̃j � (x̃ki) �
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TABLE 5

Description of plots for Figures 1–3: notation for the
combinations of QTL-mapping methods and environmental

correlations











��̃j1

�b*1

��̃j1

�d*1

��̃j1

��1

0 0 0 … … 0

0 0 0
��̃j 2

�b*2

��̃j 2

�d*2

��̃j2

��2

0 �

0 0 0 0 0 0 � � �
� � � 0 0 0

0 … … 0
��̃jm

�b*m

��̃jm

�d*m

��̃jm

��*m











. Environmental correlation

Method �0.6 �0.3 0.0 0.3 0.6 0.9

I 1a 2a 3a 4a 5a 6a
II 1b 2b 3b 4b 5b 6b
III 1c 2c 3c 4c 5c 6c

The partial derivatives in matrix X̃j are easily computed
Method I, GEE approach using link functions and untrans-from the expressions given in Table 2.

formed data; method II, transforming the data to normalityEquation 3 can then be solved by a two-step procedure
and using the GEE approach under normality assumption;that iterates between an updating step for the mean
method III, ignoring the nonnormality of the data and usingparameter estimates, on the basis of the current values the GEE approach under normality assumption.

of the variance parameters, and an updating step for The solid lines in the box plots in Figures 2–4 show the
the variance parameters, on the basis of the current true QTL positions. Box plots show the median, 25th, and
estimates of the mean parameters. In the first step, the 75th percentiles, together with whiskers showing the range of
estimates of the mean parameter vector � � (b*1 , d*1 , the data provided it is �1.5 times the interquartile range;

points beyond this are marked as outliers.�1, . . . , b*m , d*m , �m, �T ) are updated by

�̂t
1 � �̂t

types relies on searching the genome for putative QTL
 ��
n

j�1

DT
j (�̂t)V �(�̂t, �̂t)Dj(�̂t)	�

locations, which give maxima in the likelihood or min-
ima in the residual sum of squares, according to the

 ��
n

j�1

DT
j (�̂t)V �(�̂t, �̂)�yj � (�j1(�̂t), . . . , �jm(�̂t))T )	 approach chosen; approximate multiple-QTL models

(15) are usually fitted by selecting a set of markers, usually
with yj � (yj1, . . . , yjm)T. Then in the second step new via a model selection criterion such as AIC, to include
estimates for the variance parameters are calculated as as cofactors when scanning the genome. The evidence
follows. We compute the residuals by sjk � (yjk � �̂jk)/ for a QTL at any location can then be assessed.
(Vk(�̂jk))0.5, estimate the dispersion parameters by φ̂k � In the above we have shown how QTL location and
1/(n � 3m � p)�n

j�1s 2
jk, compute the standardized re- effect size can be estimated for a given set of marker

siduals by ŝ �jk � rjk/√φ̂k, and estimate the correlation pa- intervals using our GEE approach, but we have not yet
rameter vector � by moment-based estimators using the considered how models for different marker intervals
standardized residuals ŝ �jk. This two-step procedure is can be compared. It is not obvious how to do this in the
then repeated until parameter estimates converge. GEE framework: One of the strengths of the approach is
Note that this gives estimates of all parameters, includ- that we need not specify a full probability model for
ing the QTL locations �, conditional on the specified the data, so we have no likelihood to use in model
flanking markers. Refitting with QTL at a number of comparison. The quasi-likelihood defined above can
points within the specified marker intervals to produce sometimes be used to play a similar role, but we have
a residual sum of squares (RSS) surface as is usual in already commented that quasi-likelihood is not available
least-squares-base QTL mapping is not required. for our QTL model.

An attractive property of this procedure is that under A natural alternative to quasi-likelihood is the general-
mild conditions, notably that the moment-based estima- ized Pearson chi-square statistic
tors �̂ and φ̂1, . . ., φ̂m are consistent, the GEE estimate �̂G

is also consistent and asymptotically multivariate normal, d* � �
n

j�1

(yj � �j)T V�
j (�j)(yj � �j). (16)

i.e., n1/2 (�̂G � �) is asymptotically multivariate normal
with mean zero and covariance matrix VG given by

Loosely, d* is a weighted sum of residuals with the
VG � lim

n→∞
n ���

n

j�1

DT
j V�

j Dj�
�

��
n

j�1

DT V�
j Cov(Yj)V�

j Dj���
n

j�1

DT
j V �

j Dj�
�

� weights calculated from the variance matrix calculated
at the parameter estimates. Other statistics could be
utilized here, but d* is attractive since it fulfills all thewith Yj � (Yj1, . . . , Yjm)T.
requirements of a goodness-of-fit statistic (Cox and Hink-It is important to note that the validity of this result
ley 1974) and has attractive theoretical propertiesdoes not depend on the correct specification of the
(Lange 2000); i.e., d* is a second-order approximationvariance assumption. Regardless of the degree of mis-
of the true quasi-deviance function.specification, the mean parameter estimates are always

Models can now be compared just as for the least-consistent and the standard errors provided are correct.
Model selection: QTL mapping for univariate pheno- squares-based methods (see, e.g. Haley and Knott
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2000) by replacing the usual RSS by d*. However, as with data. This is of interest since Visscher et al. (1996a,b)
the least-squares-based methods, significance thresholds found that assuming normality often works well for
should be obtained by permutation (Doerge and univariate binary traits.
Churchill 1996) or by use of the parametric bootstrap,

A relatively simple experiment is sufficient to comparerather than by reliance on asymptotic results. Further-
these methods. We simulate a single chromosome withmore, analogues of the standard model selection criteria
16 uniformly distributed markers; the marker intervalused for linear models can then be defined by replacing
length is 10 cM, giving a total length of 150 cM. Datathe usual residual sum of squares by d*. For example,
are simulated using the following mean assumption:we can define the Akaike information criterion (AIC)

for a given GEE model to be
qjk � 1: E(Yjk) � h�1

k (�k 
 b*k )
qjk � 0: E(Yjk) � h�1

k (�k 
 d*k )AIC � d* 
 2
number of predictor variables

sample size
.

qjk � �1: E(Yjk) � h�1
k (�k � b*k ). (17)

Alternatively, the AIC-value approximation for general- Two traits are simulated, both representing count data,
ized estimating equations by Pan (2001) may be applied with the first generated by a Poisson distribution and
here. the second from a binomial distribution on 10 trials.

Any of the standard approaches for QTL analysis can The parameter values used can be found in Table 4.
now be implemented. For instance, to reproduce the By standard theory, the appropriate transformations to
original interval-mapping approach of Lander and normality for use in method II are thus ln (·) for the
Botstein (1988) for a single trait using GEE we would first trait and ln{(·/10)/(1 � ·/10)} for the second trait.
simply fit a single-QTL model for each interval in turn The simulation was conducted for environmental corre-
using the procedure outlined above. This provides esti- lation values
mates of QTL location and effect, together with a value
of d*, corresponding to a model with a single QTL in �0.6, �0.3, 0.0, 0.3, 0.6, and 0.9,
the interval currently under consideration. The interval

with sample size 600 in each case and 200 replicates.with the smallest value of d* is then selected, and the
Results are summarized using box plots displaying thecorresponding estimates of QTL location and effect are

median, 25th percentile, 75th percentile, and the rangerecorded. The QTL will be declared significant if d* is
of the estimated location; and additive and dominancebelow an appropriate threshold, determined by permu-
effects over the 200 replicates. The results are in Figurestation or simulation as in the least-squares-based ap-
1–3 and Table 5. It is immediately obvious that theproaches.
efficiency of the methods differs substantially. MethodEquivalents to composite interval mapping (Zeng
I gives more efficient estimates of QTL location and1994) or multiple-QTL mapping (Jansen 1994) can
additive effect, with methods II and III giving estimatesbe produced by including markers, usually selected by
of additive effect with considerable bias. Thus even mar-stepwise variable selection using AIC or similar criteria,
ginal transformation to normality followed by an analy-as cofactors to control for the presence of QTL outside
sis assuming multivariate normality (method II), al-the interval currently under consideration. It is also of
though an improvement on use of the untransformedcourse possible to fit models containing QTL in several
data, is less efficient than the pure GEE approach. Nor-intervals simultaneously, by adding the appropriate terms
mal theory alone is clearly not sufficient to cope withto the models described above. Tests to dissect the genetic

architecture of multiple traits can be defined as in Knott nonnormally distributed traits.
and Haley (2000), with d* replacing the RSS. In particu- The poor performance of method III above shows
lar, a test of a single pleiotropic QTL against linked QTL, that the good performance of method III for univariate
each affecting a single trait, is produced by comparing binary traits observed by Visscher et al. (1996a,b) does
the d* values for the relevant models. not generalize. We can explain the good performance

of method III for univariate binary traits by noting that
RESULTS for univariate binary data the score equation of the GEE

model for method I is given bySimultaneous QTL mapping for two nonnormally dis-
tributed traits: Here we compare the GEE approach to
two alternatives that do not explicitly model the nonnor- 0 � �

n

j�1
��h�1(�)

�� ���h(�j)(X̃j|Xj)	φ�1V�(�j)(Yj � �j(�))
mality of the data. The methods used were as follows:

� �
n

j�1


V(�j)(X̃j|Xj)�φ�1V�(�j)(Yj � �j(�))Method I: The GEE approach described above.
Method II: The data are transformed to normality and

� φ�1�
n

j�1

(X̃j|Xj)(Yj � h�1)
(X̃j|Xj)��) (18)the appropriate GEE for multivariate normal re-
sponses is used (i.e., identity link function, etc.).

with �j(�) = (�j1(�), . . . , �jm(�)). Since the inverse linkMethod III: The GEE method appropriate for multivar-
iate normal responses is used on the untransformed function h�1(·) = exp(·)/(1 
 exp(·)) for univariate



1336 C. Lange and J. C. Whittaker

binary data is a rather “linear” function that can locally could be obtained by bootstrapping as in Visscher et
al. (1996a,b). However, multivariate QTL mapping by itsbe approximated very well by its first-order Taylor ap-

proximation, Equation 18 can be approximated by nature becomes increasingly computationally demanding
as the number of responses increases, so these com-

φ�1�
n

j�1

(X̃j|Xj)(Yj � 
(X̃j|Xj)�̃�), (19) puter-intensive techniques may be at present limited to
relatively small numbers of responses. These are in any

which is the estimating equation of method III. Thus case the situation where application of multivariate tech-
for univariate binary data methods I and III give almost niques seems most likely, but less computationally de-
equivalent estimating equations, but this will not be true manding solutions to the threshold/confidence interval
in general. problems would nonetheless be useful, and this subject

Note that this argument applies also to univariate deserves further study. Finally we note that the GEE
likelihood-based methods, since in the univariate case approach developed here has obvious applications to
the likelihood score and GEE score are identical. marker-assisted selection for multivariate nonnormal

traits. We hope to investigate this elsewhere.
DISCUSSION
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APPENDIX

Robustness of reparameterization (12): We can inves-
tigate the influence of the marker interval length
rM ( jk)

l M ( jk)
l on the component of the conditional mean for

marker class (0, 0) that depends on rM ( jk)
l M ( jk)

l by plotting

f(�, x) � {1 � 2·	jkpjk(1 � pjk)} (20)

against x, the marker interval width in centimorgans,
and �, the relative location of the QTL. This is shown
as the top surface in Figure A1. The bottom surface
presents the relative frequency of marker class (0, 0) Figure A1.—Relative influence of the marker-interval size

on the mean equation for the marker-score (0, 0). The topdependent on the marker interval width in centi-
plane shows the relative dependency of the mean equationmorgans; Haldane’s mapping function has been used to
for marker score (0, 0) as a function of the marker intervalconvert distances in centimorgans into recombination length and the relative QTL position, assuming complete in-

fractions. We see that the conditional mean is only terference. The bottom plane shows the frequency of marker
weakly dependent on x and that marker-class (0, 0) is score (0, 0) as a function of the marker interval length and

the relative QTL position.relatively infrequent (frequency �7.5%).


