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ABSTRACT
We describe an approximate method for the analysis of quantitative trait loci (QTL) based on model

selection from multiple regression models with trait values regressed on marker genotypes, using a modifi-
cation of the easily calculated Bayesian information criterion to estimate the posterior probability of
models with various subsets of markers as variables. The BIC-� criterion, with the parameter � increasing
the penalty for additional variables in a model, is further modified to incorporate prior information, and
missing values are handled by multiple imputation. Marginal probabilities for model sizes are calculated,
and the posterior probability of nonzero model size is interpreted as the posterior probability of existence
of a QTL linked to one or more markers. The method is demonstrated on analysis of associations between
wood density and markers on two linkage groups in Pinus radiata. Selection bias, which is the bias that
results from using the same data to both select the variables in a model and estimate the coefficients, is
shown to be a problem for commonly used non-Bayesian methods for QTL mapping, which do not average
over alternative possible models that are consistent with the data.

QUANTITATIVE trait loci (QTL) mapping is the or ANOVA) or at each of a series of points on the
genome (interval mapping; Lander and Botstein 1989).process of finding and estimating associations be-

tween a continuous quantitative trait and a set of DNA An alternative to interval mapping, also involving multi-
ple hypothesis tests, is based on regression on flankingmarkers that have been previously placed on a genetic

map, with the ultimate goal of determining the genetic markers (Haley and Knott 1992). See Paterson (1995)
and Doerge et al. (1997) for reviews.architecture of a trait, or finding markers that can be

Markers or loci where the test statistic exceeds aused to select for preferred values of the trait. The
threshold are chosen and considered to be “detected.”map is generally assumed to be known and correct and
Problems with these methods are that QTL are oftenshould cover a significant proportion of the genome.
detected but where an independent verification popula-QTL mapping works on the principle that if a locus
tion is used the markers are subsequently not verified(called a QTL) on the genome is causing variation in
and/or the estimated effects are much smaller in thea trait, and data are obtained from a cross (or pedigree)
verification population (see, e.g., Beavis 1994; Wilcoxin which the QTL is segregating, then values of the trait
et al. 1997; Melchinger et al. 1998). The latter problemwill be correlated with markers linked to that locus.
is an example of selection bias, which is well known toThe closer the marker, the closer the correlation. For
statisticians in the context of stepwise regression (Millera marker at a given distance from the QTL, the larger
1990). Selection bias occurs when the same data arethe effect of the QTL, the larger the effect of the marker,
used to both select the variables in a regression modelas can be estimated from differences between subsets
and to estimate the coefficients.of the population with different marker classes. The

Bayesian statistics: Bayesian statistics aim to computestatistical problem is to estimate the effects and locations
probability distributions for the underlying parametersof QTL or the effects of using associated markers to
in a model. With this information it is, in principle,select progeny. The problem is challenging statistically
possible to compute probabilities of any events or quan-because one or more QTL for a trait could be located
tities of interest such as the probability of a linked QTLanywhere on the genome.
in a region or the expected gain from marker-aidedNon-Bayesian QTL mapping: A common approach is
selection.to carry out a hypothesis test at each marker (a t -test

An important aspect of Bayesian analysis is the use of
marginal distributions. In the method of this article, the
probability distributions of estimates and predictions
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set to their most likely values in the most likely model, OVERVIEW: BAYESIAN QTL MAPPING USING
MODEL SELECTIONas is usually the case in non-Bayesian methods, such as

maximum likelihood. In a single model, estimates and Our approach is to relate trait values directly to
confidence intervals from maximum likelihood will be marker genotypes, using multiple linear regression.
similar to their Bayesian counterparts provided the sam- Since there are many markers in a typical cross, most
ple size is large enough. More significant differences of these will not be near to a QTL. Therefore it is
arise, however, when testing “precise hypotheses” (Ber- necessary to choose a model or models with subsets of
ger and Berry 1988). Existence or nonexistence of a markers selected. Broman (1997) advocated a stepwise
QTL linked to a particular marker is one example. This regression approach for choosing the “best” model.
difference occurs because Bayesian inference considers However, we shall see that particularly with small sample
the probability of the data under each of the two possible sizes there can be a multiplicity of models that are com-
models, e.g., H0:� � 0 and H1:� � 0. The non-Bayesian patible with the data, and these alternative models need
hypothesis test considers the tail probability for a test to be considered along with their probabilities (Raf-
statistic under H0, which can be shown to be approxi- tery 1995, Raftery et al. 1997).
mately equivalent to a tail probability of the posterior Our strategy is to build on methods for model se-
distribution for the parameter, �, being tested under H1. lection in linear models from the statistical literature,
This does not allow for the finite nonzero prior probability starting with the Bayesian information criterion (BIC;
(it must be nonzero or we would not need to test it) Schwartz 1978) in this article, and a modification of
that H0 is true. More generally, where multiple models are the Bayesian method for model selection in hierarchical
consistent with the data, it is necessary to consider all these linear models (a whole family of linear models combined
models according to their probabilities for valid statistical infer- in an overarching single model) of George and McCul-
ence (cf. Raftery 1995, Raftery et al. 1997). loch (1993) in future work. Our methodology is to

Bayesian QTL mapping: A number of articles on the full Bayesian approach as the regression method of
Bayesian approaches to QTL mapping have appeared Haley and Knott (1992) is to interval mapping—a
(reviewed by Hoeschele et al. 1997). simpler more easily calculated method that nevertheless

Several more recent articles have appeared that simul- captures (at least approximately) the important aspects
taneously consider multiple models with different num- of the full Bayesian analysis, i.e., the posterior probability
bers of QTL (Satagopan and Yandell 1996; Satago- that a QTL is located in a given region, or the marginal
pan et al. 1996; Heath 1997; Sillanpää and Arjas 1998, distribution for the size of effects.
1999; Stephens and Fisch 1998). These articles use the There is a major difference between our approach
“reversible jump” methodology of Green (1995) for and others that consider multiple models. Previous ap-
constructing a sampler that jumps between models of proaches consider the model as specifying only the num-
different dimension. A major challenge remains to ob- ber of QTL on each linkage group, while the locations
tain a rapidly converging sampler for the full Bayesian of the QTL are parameters in the model. In our ap-
model (D. A. Stephens, personal communication). The proach the QTL are at fixed locations. In other words
methods are complex to program and as yet there is a QTL in our model really is a quantitative trait locus.
no publicly available program with demonstrated rapid A QTL at a different position is considered a different
convergence. QTL and is represented by a different model. This in-

More easily implemented and faster methods are use- creases the number of models but simplifies the analysis
ful, for people without access to the above programs, of a given model.
for checking the results of the more complex programs, Statistical inference is carried out by combining infor-
or for preliminary or exploratory analysis as data are mation from each model according to its posterior prob-
collected and may be useful for generating approximate ability. The following quantities of interest are estimated
starting values for algorithms for the full Bayesian mod- below: (i) marginal probabilities of selection of one or
els. Moreover, when data are limited and the actual more markers in a linkage group or region, (ii) model-
genetic architecture is unknown, more generic statisti- averaged effect of a marker, and (iii) model-averaged
cal methods based on linear models with main effects effect of allelic substitution of a marker. These quanti-
and interactions may be more appropriate and more ties have the following interpretations: (i) probability
efficient (in terms of ease of application, rate of conver- of existence of one or more QTL in the linkage group
gence, and validity) than the detailed modeling of ge- or region, (ii) posterior expected gain attributable to
netic parameters from a particular genetic architecture. QTL in the immediate vicinity of the marker (defined
The information from the simpler methods is adequate as the region closer to the marker than to any other
to assess the evidence for the existence of QTL in a marker), and (iii) posterior expected gain from marker-
region, for marker-aided selection, or for determining aided selection using the marker, resulting from all QTL
QTL location to within a resolution of the distance be- linked to the marker, respectively. The need for model

averaging is demonstrated by estimation of the selectiontween markers.
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bias that results when the effects of markers and the tively genotyped data, where individuals genotyped
are selected from the tails of the trait distribution.effects of allelic substitution are estimated conditional

on selection. Further discussion of selection bias is given
Two linkage groups (linkage groups 1 and 3) werebelow and a small simulation study demonstrating the

chosen for illustration of our method. Linkage groupeffect of model averaging on selection bias is given in
3 was chosen because it contained statistically significantthe appendix.
associations found from previous (non-Bayesian) analy-In this article approximate posterior probabilities for
ses (Kumar et al. 2000). Linkage group 1 was chosenmodels are obtained using a modification of the easily
as simply another linkage group where no significantcalculated BIC (Schwartz 1978). The probabilities are
association had previously been found.approximate but good enough to give a rough indica-

A non-Bayesian analysis is given for comparison. Thistion. Moreover, it may be possible, by adjusting a single
is based on t -tests for the regression coefficient of aparameter, to fine tune the method. We apply the
marker in a single-marker model for the trait and re-method to QTL mapping data for wood density in Pinus
peated for each available marker. Missing data wereradiata and demonstrate the need to consider multiple
removed (rather than using multiple imputation) be-models in assessing the probability of existence of a
fore testing each marker. Genome-wise thresholds forQTL and obtaining estimates of the effects of allelic
the t -statistics were estimated using a permutation testsubstitution at a marker free of selection bias.
(cf. Churchill and Doerge 1994).

Bayesian information criterion: Approximate probabili-
ties for models can be obtained from the BIC, given byDATA AND METHODS

BIC � n log(1 � R 2) � k log(n), (1)The method is demonstrated on analysis of associa-
tions between wood density and markers from two link- where k is the number of parameters fitted in the model,
age groups in P. radiata. n is the number of observations, and R 2 is the proportion

Marker and trait data were obtained from a single of variance explained by the model. Schwartz (1978)
full-sib family with parents 850.55 and 850.96, for the showed that with no prior (all models a priori equally
purpose of QTL detection. likely), the posterior probability (p) of a model is ap-

Trait data: Two 5-mm pith-to-bark cores were taken proximately proportional to
from each tree. Usable data were available from 93 trees.

p � exp(� BIC/2). (2)Wood density was assessed from each of the cores by
X-ray densitometry (Cown and Clement 1983). The This approach has the advantage of relative simplicity
traits considered here were juvenile wood density at and consequent ease of computation. It has the disad-
ages 1–5 years (estimated as the area weighted average vantage that the relationship (2) between BIC and prob-
of rings 1–5) as the average outerwood density (esti- abilities of models is asymptotic ; i.e., it relies on large
mated as the average density of the outer 5 cm from sample sizes. To allow for this Broman (1997) advocates
each core), adjusted for site and replicate differences, a modification, BIC-�,
and standardized. These traits are similar to the traits
WD1_5, WD14 (outerwood density, not standardized) BIC-� � n log(1 � R 2) � k� log(n), (3)
analyzed by Kumar et al. (2000).

where � is a constant. Broman recommends � � 2 orMarker data: There were 126 markers of various types
� � 3; however, the best value to use depends on sample[randomly amplified polymorphic DNA (RAPD), ampli-
size and other factors and is a topic for future research.fied fragment length polymorphism (AFLP), and simple

To handle missing values, multiple imputation (Rubinsequence repeat (SSR)] in 23 linkage groups with from
and Schenker 1986) was used to generate multiple2 to 16 markers per linkage group, which were segregat-
instances of the data sets with missing markers randomlying in pseudobackcross configuration, for the 850.55
estimated according to the values and proximity ofparent. There were 1171 missing marker values (10%
flanking markers. This is an alternative to the Haleyof the marker data). These values were due to indistinct
and Knott (1992) method of assigning a weighted aver-bands or PCR failure and are assumed missing at ran-
age of flanking marker values to the missing markers.dom. All 93 trees had one or more missing marker
The multiple imputation approach allows for uncer-values. For further information on the study see Kumar
tainty in the imputed values.et al. (2000).

Ten imputations were used. Rubin and Schenker re-Note that
port good results with 2–3 imputations for estimating
means and confidence intervals for continuous random1. with markers in pseudobackcross configuration, the

analysis is equivalent to the analysis of a backcross, variables. However, since we apply imputation to marker
values that take on discrete values (0 or 1) we may needand

2. the method of this article, in particular multiple im- more imputations. As a check on the effectiveness of
multiple imputations the model-averaged effects of al-putation for missing markers, does not apply to selec-
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lelic substitution for outerwood density at markers We now modify the probabilities of (2) by considering
the prior probability for a QTL to be present at a givenRAPD.192 and A47.c were reestimated for each of the

10 imputations separately. locus. If there are k QTL present, and markers are
spaced on average at s cM in a genome of length LRather than repeating model fits for each imputation,

the data from each imputation were combined, giving cM, then the probability that a QTL is present in the
immediate neighborhood of a marker isa data set with n � nI points, where nI denotes the

number of imputations used. The multiple imputation
estimate of BIC is given by applying (1), with n being � ≈ 1 � �1 �

s
L�

k

. (4)
the number of observations in the original (unimputed)
data and R 2 the value of R 2 from the model fitted to Our markers are spaced at �12–15 cM on a genome
the combined data set. This can be justified by consider- of estimated length 2000 cM (Wilcox 1997). A genetic
ing the likelihood function for an analysis with each of architecture with many small QTL seems likely since
the nI imputations of an observation given weight 1/nI; large effect QTL should have been detected by previous
i.e., the likelihood contribution for all imputations of a studies (Wilcox et al. 1997). If there are 20 QTL we
data point is the same as the likelihood contribution have k � 20, s � 12, L � 2000 cM, giving � ≈ 0.1. To
for the data point in the unimputed data set, if there show sensitivity to �, and to accommodate readers who
is no missing marker, and the average of the likelihood believe there are fewer QTL likely to be present, we
contributions from the various imputations if there is a also calculate posterior probabilities for model size for
missing marker. � � 0.03 or 0.06 corresponding to 5 or 10 QTL, respec-

Calculations for this work used Splus version 3.4 for tively, in the analysis below.
Unix (Becker et al. 1988). The Splus function bicreg.qtl, Ideally one would like to have a marker at each QTL
a modification of the function bicreg (Raftery 1995), location. What we can guarantee is a marker at each
was used to search through possible models and calcu- QTL location to within the resolution of the marker linkage
late the BIC criterion and associated quantities. The map. So for each QTL configuration, the “true” model
search procedure used by bicreg is essentially an exhaus- (our best approximation) will be a model such that each
tive search using the all subsets regression function marker is selected (in the model) if and only if it is the
leaps, returning the value of R 2, for each model, from closest marker to some QTL or, equivalently, there is a
which BIC is calculated. Backward elimination is used QTL in the region around a marker extending halfway
to reduce the number of variables to the limit of 30 prior to each of the adjacent flanking markers. QTL are as-
to calling leaps. Our function contains modifications to sumed to occur randomly in any s -cM interval, with
allow for adjustment for multiple imputations, prior occurrences in various intervals being mutually inde-
distributions, and the parameter �. The function bicreg pendent. So the prior probability that each marker is
gives estimates of average effects for variable conditional selected is �, and the events of selection or nonselection
on selection (i.e., averaged over models in which the vari- of the various markers are a priori mutually independent.
able is selected). We also give unconditional estimates, The prior probability that a given model with k markers
where the effect of a variable (marker effect) is defined selected is the true model is therefore
to be zero in models where the marker is not selected,
and model-averaged effects of allelic substitution (i.e., �k(1 � �)(n�k). (5)
estimates of the difference between marker classes).

The combined prior probability for all models with kSeveral options from bicreg can be adjusted to control
markers linked to QTL is therefore the binomial proba-the amount of computing done. These are Occam’s
bilityrazor constant OR and the lower limit on number of

models nbest considered for each model size. Initially q!
(q � k)!k!

�k(1 � �)(q�k), (6)at least nbest models of each size are considered, then
models less likely than the most likely model by the
factor OR or more are eliminated from consideration. where q is the total number or markers being consid-

ered.The calculations for Tables 2–4 all used OR � 10,000
and nbest � 100. In calculating the posterior probability of a model

the estimate from (2) is multiplied by the probabilityIncorporating prior probabilities: The BIC criterion
does not incorporate prior information. For any given from (5).

Marginal probabilities of QTL location: The marginalprior, the effect of the prior will be negligible for a
sufficiently large sample size. For BIC-� increasing � may probability that a QTL is in a region is estimated as the

marginal probability that one or more of the markerscompensate for a lower prior probability of linkage. We
prefer, however, to explicitly incorporate the prior and in the region are selected, which is obtained from the

BIC calculation by summing posterior probabilities forleave the parameter � to compensate for the effects
of finite sample size on the asymptotic approximation models containing one or more of the markers.

Models, effects of markers, and effects of allelic sub-involved in (2).
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stitution: Let m denote the number of markers and n the where the marker is not selected) of the marker effect
for marker i given bynumber of progeny. We consider all possible models,

corresponding to all 2m possible subsets of markers. Each
b̂i,av � �

k
pkb̂i,k . (10)model is characterized by a set of markers that are se-

lected. Let Mk denote the kth model, let pk denote the
Similarly, let d̂i,av be the model-averaged estimate ofposterior probability of Mk, let Mk(i) denote the model

allelic substitution for the ith marker given bywhere only marker i is selected, and let Si denote the
set of models with marker i selected.

d̂i,av � �
k

pkd̂i,k . (11)Let Mj be the jth marker, with alleles labeled 1 and
2, and yi and Mj(i) the trait value and value of the jth

Selection bias: Selection bias is a well-known phenom-marker for the ith individual, respectively. Let V(Mj)
enon that occurs when using a model selection method,(the vicinity of marker j), be defined as the set of points
such as stepwise regression, to select the variables in acloser to marker j than to any other marker.
model, and the same data used for model selection areThe models fitted are of the form
used to estimate the effects. Conditional on selection,
the estimates of effects are greater in absolute value thanyi � �

m

j�1

bj,kxij � eij, i � 1, . . . , n, (7)
the true values, because in the sampling distribution
of effects, the values larger than some threshold arewhere
selected. An implicit model selection step is being car-
ried out when selecting markers using the conventional

xij �




�1/2 if Mj(i) � 2

�1/2 if Mj(i) � 1,
(8) t -test or interval mapping methods.

Our estimate of selection bias is obtained by compar-
and the errors eij are assumed to be normally distributed. ing the model-averaged estimates, which we argue have

Effects of markers: The regression coefficients for Mk no problem with selection bias (cf. appendix), to corre-
are denoted by bj,k or simply bj when there is no need sponding estimates conditional on selection, i.e., esti-
to distinguish models. We refer to bj,k as the effect of the mates averaged over models in which the marker is
jth marker in Mk. The coefficients bj,k for unselected mark- selected.
ers are set to zero by convention, so that the sum in (7) Selection bias in the effect of allelic substitution is
is effectively over selected markers. estimated as

Effects of allelic substitution: The effect of allelic substitu-
tion, di,k, for Mi in Mk is defined as the difference in

selection bias ≈ d̂i,k(i) � d̂i,av

d̂i,av

(12)population means between the two marker classes if Mk

is the true model.
and is given to indicate the bias likely to result fromNote that
commonly used methods that both select a marker or

1. the effect of allelic substitution di,k(i) in the model markers on the basis of some test (effectively selectingMk(i) where only marker i is selected and is the same a model) and estimate the effect of the marker using
as the conventional effect of allelic substitution, and the same data. The actual selection bias when using the

2. the effects of allelic substitution di,k are not the same non-Bayesian methods depends on the threshold used
as the effects of markers bi,k, except in the model for the test statistic (it is higher with higher thresholdMk(i), in which case or lower P value).

The concepts of this selection and their interpreta-bi,k(i) � di,k(i)

tions are summarized in Table 1. Further discussion of
and the observed difference between the averages selection bias and a small simulation study are given in
of marker classes is an unbiased estimate of both the appendix, showing the selection bias in the t -test
quantities. method, that Bayesian estimates have negative bias (shrink-

age toward zero), in the case of model uncertainty, andEstimation: Let b̂i,k, d̂i,k be the conventional maximum-
that even conditional on selection using the t -test atlikelihood estimates of estimates of bi,k, di,k, respectively,
quite low thresholds, the model-averaged estimates didin model Mk.
not show selection bias.Let b̂i,s be the estimated effect for the ith marker

conditional on selection (i.e., the effect, averaged over
models, in which the marker is selected) given by

RESULTS

b̂i,s�
RMk�Si

pkb̂i,k

RMk�Si
pk

, (9) Results are given for � � 1, 1.5, 2, and 3. For simplicity
of discussion, unless otherwise stated, all comments be-
low refer to the case � � 1. Higher values are moreand let b̂i,av, be the unconditional estimate (averaged

over all models with the effect set to zero in models conservative, leading to lower probabilities for a QTL
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TABLE 1

Notation, terminology, and interpretations for models, effects of markers,
effects of allelic substitution, and associated estimates

Symbol Concept Practical interpretation

Mi ith marker
V(Mi) Vicinity of ith marker Region closer to ith marker than any other
Mk kth model
pk Posterior probability of Mk

— Marginal probability of selection of Probability of existence of one or more QTL in
markers(s) in a region the region

b̂i,s Estimated effect of marker Mi condi- Estimate of QTL effect assuming QTL exists in
tional on selection V(Mi)

b̂i,av Unconditional (i.e., model averaged) Posterior expected gain from QTL in V(Mi)
effect of Mi

d̂i,k(i) Conditional effect of allelic substitution Estimated gain from selection on Mi assuming
QTL exists only in V(Mi)

d̂i,av Unconditional (i.e., model averaged) Posterior expected gain if using Mi for marker-
effect of allelic substitution aided selection

on a linkage group, larger amounts of selection bias, probabilities for a QTL; e.g., with � � 2, 3 the probability
that a QTL is present on linkage group 3 is 0.97, 0.76,and smaller estimates of effects of allelic substitution.

Table 2 shows the marginal probabilities for models respectively. Evidence for a QTL, albeit not strong, per-
sists to � � 3.of various sizes for two linkage groups, linkage groups

1 and 3. These probabilities are obtained by amalgamat- For outerwood, from Table 2 with � � 1, the probabil-
ity that a QTL is present on linkage groups 1, 3 is 0.38,ing probabilities of all models of each given size.

The marginal probability that one or more QTL are 0.88, respectively. On linkage group 3 the probability
of model size 2 was 0.28, indicating the possibility ofpresent on a linkage group is the probability that the

model size is 1 or more or 1 minus the probability that two QTL separated by one or more markers. With � 	
2 the probability that a QTL is present is 
0.5 on eachthe model size is zero.

For juvenile wood, from Table 2 with � � 1, the linkage group.
Marginal probabilities for model size for various val-probability that a QTL is present on linkage groups 1,

3 is 0.17, 0.997, respectively. On linkage group 3 the ues of the prior probability � � 0.03, 0.06, 0.1, corre-
sponding to a prior expectation of 5, 10, 20 QTL, respec-probability of model size 2 was 0.26, indicating the possi-

bility of two QTL separated by one or more markers. tively, are shown in Table 3.
Table 4 shows the probability of selection, estimatedHigher values of � are more conservative, giving lower

TABLE 2

Marginal probabilities for model size estimated using the BIC-� criterion for various values of �

Linkage group 1 Linkage group 3

k � � 1 � � 1.5 � � 2 � � 3 � � 1 � � 1.5 � � 2 � � 3

Juvenile wood density (ages 1–5 years)
0 0.832 0.940 0.979 0.998 0.003 0.010 0.033 0.240
1 0.155 0.058 0.020 0.002 0.710 0.877 0.928 0.757
2 0.013 0.002 
0.001 
0.001 0.263 0.109 0.038 0.003
3 
0.001 
0.001 
0.001 
0.001 0.024 0.003 
0.001 
0.001

Outerwood density (age 14 years)
0 0.618 0.840 0.943 0.994 0.123 0.369 0.668 0.953
1 0.359 0.157 0.057 0.006 0.562 0.542 0.316 0.047
2 0.022 0.003 
0.001 
0.001 0.275 0.085 0.016 
0.001
3 
0.001 
0.001 
0.001 
0.001 0.038 0.004 
0.001 
0.001
4 
0.001 
0.001 
0.001 
0.001 0.003 
0.001 
0.001 
0.001

Marginal probabilities for model size (k) for linkage groups 1 and 3, for juvenile wood density (ages 1–5
years), and outerwood density (age 14 years). Probabilities were estimated using BIC-�, with � � 1, 1.5, 2, 3,
and a prior probability of 0.1 for each marker to be in the model.
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TABLE 3

Marginal probabilities for model size estimated using the BIC-� criterion for
various prior probabilities of selection of markers

Linkage group 1 Linkage group 3

k � � 0.03 � � 0.06 � � 0.1 � � 0.03 � � 0.06 � � 0.1

Juvenile wood density (ages 1–5 years)
0 0.94 0.90 0.83 0.013 0.006 0.003
1 0.049 0.096 0.154 0.893 0.812 0.710
2 0.001 0.005 0.013 0.092 0.173 0.263
3 
0.001 
0.001 
0.001 0.002 0.009 0.024

Outerwood density (age 14 years)
0 0.859 0.743 0.618 0.408 0.226 0.123
1 0.139 0.248 0.359 0.518 0.593 0.562
2 0.002 0.009 0.022 0.070 0.167 0.274
3 
0.001 
0.001 
0.001 0.002 0.013 0.038
4 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001

Marginal probabilities for model size (k) for linkage groups 1 and 3, for juvenile wood density (ages 1–5
years), and outerwood density (age 14 years). Probabilities were estimated using BIC-�, with � � 1, and a prior
probability of � � 0.03, 0.06, and 0.1 for each marker to be in the model, corresponding to 5, 10, and 20
QTL, respectively.

effects, and standard errors for markers, obtained by nome-wise P 
 0.01) and markers A329.c3 and A297.b2
had comparison-wise P values of �0.0001 (genome-wisecombining effects across models according to their

probabilities. Effects (b̂i,s) are shown conditional on se- P 
 0.05).
For outerwood density, RAPD.192 and A47.c havelection (averaged over models, in which the marker is

selected, corresponding to estimated QTL effects assum- comparison-wise P values of �0.002.
Note the selection bias of 27, 25, and 75% for theing a QTL is present) or unconditionally (b̂i,av, averaged

over all models with the effect set to zero in models three largest effect markers for juvenile wood density
and 85 and 77% for the two largest effect markers. Ifwhere the marker is not selected, corresponding to the

posterior mean of estimated QTL effects for QTL in higher values of � are used these estimates will increase.
The calculations for outerwood density for linkagethe vicinity of marker i).

Note that no single marker has a high posterior proba- group 3 with 16 markers took �9 min in Splus on a
Silicon Graphics Indigo Impact 10,000 running Irix 6.2,bility. This reflects uncertainty in the positional location

of a QTL. For example, for juvenile wood density the finding probabilities for a total of 332 models.
Calculations of just the model probabilities in Tablemarkers RAPD.38 to A297.b2 had probabilities of 12–

42%. Outside this region posterior probabilities dropped 2 with � � 1 and nbest � 10 took 6 sec.
The effects of allelic substitution for outerwood den-off to low values. This suggests that a QTL if present is

most likely to be in the region between these two mark- sity at markers RAPD.192 and A47.c were reestimated
for each of the 10 imputations separately. The standarders or possibly in the closer one-half of the adjoining

intervals beyond this region. The marginal probability deviation between imputations was 0.075, giving a stan-
dard error of the mean for 10 imputations of �0.02,that a QTL is in this region is estimated at 0.995 and

contains practically all of the posterior probability of which is acceptable.
models of nonzero size.

Table 5 gives the conventional t -test/LOD score anal-
DISCUSSION

ysis one marker at a time for linkage group 3 plus model-
averaged estimates of the effect of allelic substitution The BIC method with multiple imputations for miss-

ing values gives estimates of posterior probabilities thatand estimates of selection bias in the non-model-aver-
aged estimates of allelic substitution. The conventional can be easily and rapidly calculated for a linkage group.

With 10 imputations the standard error of the mean ofestimate of allelic substitution d̂i,k(i) for the ith marker
is subject to selection bias—it was obtained from the the effects of allelic substitution estimated separately

for each imputation was only about one-eighth of thesame data that were used to select the marker. The
model averaged estimate d̂i,av in Table 5 is not subject standard error of the non-model-averaged estimate of

the effect of allelic substitution. Therefore, more impu-to selection bias.
For juvenile wood density, the markers RAPD.38 and tations would not significantly decrease the error of the

model-averaged estimate.A113.a1 had comparison-wise P values of �0.00001 (ge-
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For juvenile wood density the posterior probability can be weaker than appears to be the case with P val-
that there is a QTL on linkage group 1 is �0.17. The ues: A genome-wise significance level of � � 0.05 (com-
posterior probability that there is a QTL is high for parison-wise 4.4 � 10�4) can correspond to only weak
linkage group 3 with a posterior probability �0.95 for evidence for a real effect. This is to be expected because
� 
 2. the strength of evidence implied by a given P value

The putative QTL for juvenile wood density on link- decreases with sample size. This occurs because the P
age group 3 was (or were) located in the region between value is measuring evidence that H0 is not the true model
or adjoining the markers RAPD.38 and A297.b2 with under which the data are generated. In practice, any
probability 0.995. By comparison, Kumar et al. (2000), model is only an approximation for the process generat-
applying the bootstrap method of Visscher et al. (1996), ing the observed data, and hence as the sample size gets
obtained a 95% confidence interval of 56–96 cM, the large the probability of observing the data under H0
region from approximately midway between RAPD.59 tends to zero. The problem is that the probability of
and RAPD.38 to just before marker A297.b2. This is observing the data under the alternative hypothesis H1
comparable to our result, although a 95% confidence of a real effect also tends to zero (for the same reason)
interval is not the same as a 95% posterior interval, and may be equally small; i.e., the data do not favor H1
and the posterior probabilities decrease rapidly as one over H0 just because the P value is small. Therefore,
moves beyond this interval so that a 95% probability with larger sample sizes the differences between the P
interval is not much different in size to a 99% or higher value and the posterior probability of H0 are likely to
probability interval. increase.

For outerwood density, the posterior probability that The problem remains with approaches using P val-
there is a QTL on linkage group 1 is �0.38 and on ues, whether comparison-wise, chromosome-wise, or ex-
linkage group 3 the probability is �0.88. This is evi- periment-wise: what threshold to use and how to inter-
dence against a QTL on linkage group 1 and evidence pret the results. Is the evidence strong, fair, or weak if
for a QTL on linkage group 3. The evidence is not we get an experiment-wise P value or 0.05 or 0.01? There
strong, however, so we should not be surprised, if, as is no relation between the experiment-wise P value and
was the case, the QTL association was not subsequently posterior probabilities that is independent of sample
verified on linkage group 3. Nor does the evidence rule size and problem setup.
out the existence of a small undetected QTL on linkage The 2 linkage groups analyzed here were preselected
group 1. A larger sample size is recommended. from 23 linkage groups. For the Bayesian approaches

Although no single marker for outerwood density this poses no problem—the results of a Bayesian analysis
attained the experiment-wise level of P 
 0.05, Kumar

depend only on the data analyzed and not other infor-
et al. (2000) obtained a P value of 0.002 (experiment-

mation such as what other data had been, or might havewise P 
 0.05) for the F-test when seven equally spaced
been, or will be analyzed. This avoids complexities suchmarkers from linkage group 3 were jointly regressed on
as whether to use comparison-wise, genome-wise, or ex-outerwood density. Their experiment-wise P value of
periment-wise thresholds for QTL detection, and thejust 
0.05 can be compared to our marginal probability
difficulties of interpretation and use of any of thesefor model size greater than zero of 0.88 for linkage
quantities for decisions.group 3 with � � 1. The experiment-wise P value is

Using a high threshold reduces the number of falseabout one-half the posterior probability of model size
positives but also reduces the probability of detectionzero in this case. If � � 2 or � � 1 and � � 0.03
of real QTL. To be “wrong” only 5% of the time whencorresponding to a prior expectation of only five QTL
there is no effect may be comforting for an experi-then the experiment-wise P value is about one-third or
menter, but this is no comfort to decision makers whoone-eighth of the posterior probability of model size
may be presented with only the 5% of “significant” re-zero.
sults, which could well be all wrong. Decision makersThese results demonstrate the difference between the
need to know the posterior probability of presence ofresults of the Bayesian approach to QTL mapping and
a QTL in a region vs. the cost of using more markersthe non-Bayesian or frequentist approaches, where, to
or carrying out further, or larger, QTL mapping experi-the naive user, the evidence in the form of P values
ments. Decision makers also need unbiased estimatesappears stronger. If using P values, controlling for
of effects of allelic substitution at a marker putativelymultiple comparisons is certainly necessary in this case—
associated to a QTL. Our best estimate, given the datathe comparison-wise P values were orders of magni-
and prior knowledge, is one-half the model-averagedtude less than the probability of model size zero. The
effect of allelic substitution. This is unbiased in the senseexperiment-wise P values were somewhat less than but
that the model-averaged effect is the posterior meanof the same order of magnitude as the probabilities of
for the effect. To obtain unbiased estimates with themodel size zero in this example.
non-Bayesian QTL mapping methods requires separateAs has been demonstrated in other applications (see,

e.g., Berger and Berry 1988), the evidence for a QTL data for selection (QTL “detection”) and estimation
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(or “verification”). For these reasons we recommend bootstrap to other than the simplest setups. For a discus-
sion see Young (1994).readers adopt the Bayesian approach.

There are two major differences between our ap- In the Bayesian context an alternative approach to
analyzing and averaging over multiple models accordingproach and non-Bayesian methods—considering the

prior probability for a QTL to be present and the use to their probabilities is to fit one large model with all
possible predictors, with the appropriate prior correla-of multiple models. These are important to avoid exag-

gerating the evidence for a QTL, for estimating the tion structure. Determining the “appropriate” correla-
tion structure is the difficulty with this approach. Again from marker-aided selection, and for avoiding the

problems with selection bias (Miller 1990). Selection generic method that effectively does this is ridge regres-
sion, where predictors are shrunk toward zero, pre-bias is shown to be a problem that cannot be ignored

for the data of this article. The method of this article dictors with less support from the data being shrunk
more. Ridge regression has a Bayesian interpretationexplains, and asymptotically (to within the accuracy of

the estimates of probabilities based on BIC) overcomes, (Frank and Friedman 1993) corresponding to a uni-
form prior distribution on directions in the vector spacethe problems of selection bias and QTL being frequently

detected but not verified (see, e.g., Beavis 1994; Wilcox spanned by predictors. The ridge parameter controlling
the overall shrinkage can be chosen by cross-validationet al. 1997; Melchinger et al. 1998).

We compared the proposed Bayesian approach with (see, e.g., Ball et al. 1998, for an example relating chemi-
cal analysis to sensory perception).standard non-Bayesian QTL mapping methods, as com-

monly used. In the context of non-Bayesian QTL map- We prefer the approach of this article over the above
alternatives on philosophical grounds because our priorping, other techniques have been suggested such as

cross-validation (Utz et al. 2000) and bootstrapping relates more naturally to prior expectations about the
number of QTL than the Bayesian alternative and fol-(Beavis 1994; Visscher et al. 1996), which could poten-

tially be used to ameliorate problems of selection bias. lows logically from the natural prior using probability
theory, i.e., does not involve the ad hoc-ery of the fre-Cross-validation is a technique where the analysis is

repeated with various disjoint subsets of the data left quentist alternatives. Assuming our prior distributions
are a reasonable representation of our prior knowledge,out and results combined. Cross-validation is generally

used, in the context of a single model, to obtain an Bayesian theory guarantees the full Bayesian approach
is optimal.estimate of prediction error. Utz et al. (2000) point out

that estimates of QTL effects are often inflated (we The probabilities calculated in this article depend on
the values of the parameter � and the value of the priorsuggest mainly because of selection bias). They use cross-

validation to obtain unbiased estimates of the magni- probability � � 0.1. Higher values of � correspond to
lower probabilities for presence of a QTL and highertude of QTL effects. However, they had already elimi-

nated selection bias prior to cross-validation, by using selection bias. The adjustment factor � was proposed
by Broman (1997) to correct for the finite sample size,“test data sets” for the cross-validation separate from

their “estimation data” that were used to select the mark- which may not be large enough to rely on the asymptotic
approximation in (2). We expect the appropriate valueers. A common problem with cross-validation is the

inaccuracy in cross-validation estimates of error. To use to use depends on sample size, with � � 1 being the
appropriate choice for large sample size, � � 2 beingcross-validation with a method such as interval mapping,

which selects models, the cross-validation subsets would fairly conservative. Broman recommends � � 2 or � �
3. However, since we, unlike Broman, adjust for thehave to be chosen to be sufficiently large to result in a

range of different models being selected. Therefore the prior, we may not need as high values for � as Broman
recommends.overall sample size would have to be large to give a

reasonable number of cross validations. Bootstrap bag- The appropriate value(s) of � could be determined
by comparison with simulation consistent estimates forging (Breiman 1996) or boosting (Freund 1995; Freund

and Schapire 1996) may be better. See, e.g., Dudoit et the hierarchical model obtained from a Markov chain
Monte Carlo (MCMC) method. Another possible ap-al. (2000) for an application to microarray data analysis.

These methods should be more robust than single- proach is to compare results with analytical calculations
of Bayes factors (cf. Smith and Kohn 1996) for onemodel methods and may give acceptable results for

some purposes—if one is interested solely in a “black or more single-marker models compared with the null
model, with a suitable prior on the size of marker effects.box” type of model for prediction only and not infer-

ences about individual loci. However, they will be effec- The reader can and should try other values of �. The
marginal probabilities for model sizes in Table 2 cantive in reducing selection bias only to the extent that

they effectively average over a set of possible models be adjusted for different values of � using (6). More
generally a continuous prior distribution for �, ratherapproximately proportional to their probabilities. Note

that bootstrapping (Efron 1982) was invented for use than a single value as we have used here, can be approxi-
mated by combining results from several different valuesas a general method; however, considerable sophistica-

tion is needed to rigorously justify applications of the of �.
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APPENDIX: SELECTION BIAS AND MODEL is the standard least-squares estimate, which is unbiased.

AVERAGING Suppose the true model is Mk( j) but Mk(i) has been
selected [in preference to Mk( j) and other markers] byWe explain why there is no problem with selection
a single-marker hypothesis testing procedure. Then thebias in model-averaged estimates of allelic substitution,
estimate d̂i of di under Mk(i) is greater than the estimatederive an approximate relationship between selection
d̂j of dj under Mk( j). The latter estimate is unbiased sobias and uncertainty in QTL location, then give the
d̂i is likely to be comparable to or greater than dj.results of a small simulation study comparing selection

Since Mk( j) is the true model, dj is the QTL effect [upbias from the t -test method using several thresholds to
to a factor of (1 � �r/2)].results from model averaging, which are given both

Then the true effect of allelic substitution at markerunconditionally and conditional on selection for each
threshold. i is
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TABLE A1

Selection bias in estimation of effects of allelic substitution, for single marker t-test analysis
and model averaging using BIC-�

h2
Q � 0.05, a � 0.45 h2

Q � 0.20, a � 0.89

Threshold P � 0.01 P � 0.001 P � 0.0001 P � 0.01 P � 0.001 P � 0.0001

t -test 0.265 0.377 0.444 0.096 0.127 0.160
BIC-1 (no selection) �0.098 �0.098 �0.098 �0.199 �0.199 �0.1997
BIC-1 (selected according �0.254 �0.294 �0.328 �0.567 �0.631 �0.6726

to t -test)

Bias in estimation of effects of allelic substitution in units of one phenotypic standard deviation from 2000
simulations, each with 100 progeny with six markers on a single chromosome of length 120 cM, is shown. A
QTL was present with probability 0.53, and if present had QTL heritability h2

Q � 0.05 or h2
Q � 0.2, is given for

the t -test, model averaging using BIC, and model averaging conditional on selection by the t -test. Selection
was for various thresholds corresponding to P � 0.01, 0.001, and 0.0001.

di � di,j � dj � (1 � 2rij). nificant markers only. This may be an artifact of the
fact that as the threshold increases, the simulated QTL,

Thus selection bias in d̂i is �1/(1 � 2rij). Furthermore, if selected, is more likely to be at or near the marker
assuming model Mk(i) we estimate under consideration, so the effect is larger; hence the

potential shrinkage toward zero is larger.d̂j � d̂i � (1 � 2rij).
Selection bias and model averaging—summary:

Thus assuming Mk(i) when Mk( j) is the true model 1. Selection bias occurs when the same data are used
induces a relative bias of the order of (1 � 2rij)2 in the to select a regression model and to estimate the coef-
ratio of d̂i/d̂j. ficients (here marker effects) in the model.

If the model selected is the null model M0 with no 2. Selection bias occurs because expected values of esti-
QTL, the estimated effect is zero. mates of the effect of allelic substitution at a marker

Selection bias and model averaging—a simulation are always greater under the model with that marker
study: For each of h2

Q� 0.05 and h2
Q � 0.2, 2000 simulated selected than under any other single-marker model

data sets were generated each with 100 backcross prog- or the null model.
eny, with 0 (probability 0.53) or 1 QTL explaining pro- 3. Estimates of allelic substitution at a marker are unbi-
portion h2

Q of total variance, randomly placed on a chro- ased, if the true model is known, or selected with
mosome of length 120 cM with six markers evenly independent data.
spaced at positions 10, 30, 50, 70, 90, and 110 cM. The 4. Selection bias is not a problem if Bayesian model
size of the QTL effect if present always had a positive averaging is used. The model-averaged Bayesian esti-
sign, corresponding to a QTL effect of a � 0.45 (or a � mates are not unbiased under any assumed QTL
0.89 in units of 1 phenotypic standard deviation). The configuration but are the average of unbiased esti-
analysis used model averaging with BIC-�, with � � 1 mates under various models, averaged according to
and prior probability � � 0.1 for a marker to be selected. the posterior probability that each model is the true

Table A1 gives bias in units of 1 phenotypic standard model. From observation (2) it follows that model-
deviation for the single-marker t -test and model averag- averaging estimates of QTL effects are shrunk toward
ing using BIC. zero. The amount of shrinkage reduces with the pre-

The fourth row of Table A1 is the average “bias” using cision with which the QTL location can be deter-
model averaging with BIC-1 (� � 1). A negative bias mined.
(shrinkage toward zero) is expected with the Bayesian 5. The Bayesian method can be applied even if a previ-
method if there is any model uncertainty. ous hypothesis test or tests have selected a chromo-

The fifth row of Table A1 is the average bias using some or region (as was the case for linkage group 3 in
model averaging conditional on markers being selected this study). This is because the posterior probability
by the t -test method (not something we would necessar- distribution for that chromosome or region depends
ily advocate). Interestingly, while the bias for the t -test only on the data through the likelihood function
method as used increases with selection intensity, as and the prior probability for that chromosome or
expected, the bias for BIC actually decreases (increases region.
in magnitude) with selection intensity; i.e., model aver- 6. Model averaging can overcome selection bias even

if markers are selected using non-Bayesian tests.aging is more than compensating for selection of sig-


