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ABSTRACT
Analysis of raw pooled data from distinct studies of a single question generates a single statistical

conclusion with greater power and precision than conventional metaanalysis based on within-study esti-
mates. However, conducting analyses with pooled genetic data, in particular, is a daunting task that raises
important statistical issues. In the process of analyzing data pooled from nine studies on the human leptin
receptor (LEPR) gene for the association of three alleles (K109R, Q223R, and K656N) of LEPR with body
mass index (BMI; kilograms divided by the square of the height in meters) and waist circumference (WC),
we encountered the following methodological challenges: data on relatives, missing data, multivariate
analysis, multiallele analysis at multiple loci, heterogeneity, and epistasis. We propose herein statistical
methods and procedures to deal with such issues. With a total of 3263 related and unrelated subjects
from diverse ethnic backgrounds such as African-American, Caucasian, Danish, Finnish, French-Canadian,
and Nigerian, we tested effects of individual alleles; joint effects of alleles at multiple loci; epistatic effects
among alleles at different loci; effect modification by age, sex, diabetes, and ethnicity; and pleiotropic
genotype effects on BMI and WC. The statistical methodologies were applied, before and after multiple
imputation of missing observations, to pooled data as well as to individual data sets for estimates from
each study, the latter leading to a metaanalysis. The results from the metaanalysis and the pooling analysis
showed that none of the effects were significant at the 0.05 level of significance. Heterogeneity tests showed
that the variations of the nonsignificant effects are within the range of sampling variation. Although
certain genotypic effects could be population specific, there was no statistically compelling evidence that
any of the three LEPR alleles is associated with BMI or waist circumference in the general population.

WHEN many studies on the same topic differ in can be combined to enhance statistical power. The pri-
mary advantages of such analyses include (1) reductionterms of statistical inferences and conclusions
of type I errors by consolidating many tests of the samethereof, combining the information from these separate
hypothesis with many samples into a single test with onestudies by either metaanalysis or raw data pooling pro-
pooled sample; (2) increased statistical power; and (3)vides a means by which data from the individual studies
direct tests of heterogeneity among samples/populations.

In genetic studies, analysis of pooled data can be espe-
cially challenging even if all studies investigated relation-
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observations. Therefore, methodologies accounting for shown to have a strong genetic component (Comuzzie
and Allison 1998). Mice homozygous for inactivatingsuch correlated observations should be employed. Typi-

cally, familial correlations depend upon the degree of mutations of Lepr become massively obese (Chua et al.
1996). Rare instances of human obesity secondary torelationship between pedigree members. With respect

to genotypes, multiple alleles across multiple loci, or homozygosity for inactivating LEPR mutant alleles have
been identified (Clément et al. 1998). Recently, severalmarkers, within the same gene may be of interest, lead-

ing to the need to evaluate multilocus analyses for direct studies have assessed the role of the three common
LEPR alleles in interindividual variations in BMI andand epistatic effects, i.e., interactions among the multi-

ple alleles. Interactions among genotypes and covariates WC. These analyses yielded inconsistent results (e.g.,
Gotoda et al. 1997; Matsuoka et al. 1997; Silver et al.(i.e., gene-by-environment interaction or effect modifi-

cation) should also be considered in modeling; the use 1997; Chagnon et al. 1999; del Giudice et al. 2000). In
an attempt to resolve the physiological significance ofof appropriate covariates can define more precisely the

effects of individual alleles. Pleiotropic (either relational the alleles at the LEPR gene with obesity-related pheno-
types, teams of investigators representing nine studiesor mosaic) effects of genotypes are also of interest and

can be investigated through multivariate analysis. Fi- provided their raw data for a pooling analysis (see ap-
pendix a).nally, missing observations on genotypes and other vari-

ables are not uncommon.
Codes for the same genotypes and discrete variables

SUBJECTS
are often different from study to study. In addition,
there may be increased numbers of missing observations A total of 3263 individuals were included in this study

(Table 1). Sixty-two percent of these individuals arein pooled data because of different lists of covariates
and alleles. The number of members in each pedigree related to one or more subjects in the data set. The

largest number of generations among the family pedi-is usually different within and among studies. The con-
figurations of degrees of relationship among pedigree grees in the pooled data was two. Descriptive statistics

are presented in Table 2 along with percentages of miss-members are not the same over the different pedigrees.
These characteristics of the pooled data require statisti- ing observations. The subjects are ethnically diverse—

i.e., African-American, Caucasian, Danish, Finnish,cal modeling, allowing flexible construction of the resid-
ual covariance matrix. Moreover, the number of inde- French-Canadian, and Nigerian. Approximately half are

female (Table 2).pendent variables in a model can be very large when
all the main effects and interaction effects are included.
Heterogeneity of samples (e.g., in demographic charac-

STATISTICAL ANALYSIS
teristics) among the different studies is also a concern
and necessitates analysis adjusted for study profiles or General model: In general, genetic models can be

represented in the following form:study effects. To our knowledge, neither the guidelines
nor the statistical software for handling such method-

f(phenotype(s)) � genetic effects
ological and practical issues are currently well developed
in the genetics literature, though some guidelines do � main covariate effects
exist in other contexts (e.g., Cooper and Hedges 1994).

� interaction effects � error.
In this article, we illustrate these issues and demon-

strate some appropriate (and in some cases ad hoc) statis- The function f of the phenotype(s) depends upon
the model implemented. For example, f(phenotype(s))tical methodologies and procedures. We used pooled

raw data on body mass index (BMI; measured as the is the squared difference of phenotypes of sibling pairs
in the Haseman-Elston regression. The phenotypes canweight in kilograms divided by the square of the height

in meters) and waist circumference (WC) and the three be univariate or multivariate. Genetic effects can be
random as in variance components analysis or fixed asamino acid substitutions (the polymorphisms or the

allelic variants) K109R at exon 2, Q223R at exon 4, and in usual association studies. Covariates are discrete and/
or continuous, and their coefficients are usually fixed,K656N at exon 12 in the leptin receptor (LEPR) gene

on human chromosome 1p. In the rest of this article, although modeling random coefficients is possible. The
model becomes a mixed-effects model when fixed andto denote any variant at a particular exon, we use the

word “allele” rather than “polymorphism” in accor- random effects are simultaneously included. Interaction
effects can be among genetic effects (i.e., locus-by-locusdance with Elston (2000). The exon-coding nomencla-

ture and the marker names for the alleles used are as interaction, epistasis), among main covariates, and be-
tween genetic and main covariates (i.e., locus-by-envi-in Chung et al. (1997). The alleles at each exon within

the LEPR gene are diallelic and the LEPR gene is a ronment interactions). The expectation of the vector
error term is zero but its covariance may not necessarilycandidate gene influencing human obesity.

Interindividual variation in human BMI, direct mea- be in the form of �I, where I is the n-by-n identity matrix
and n is the number of subjects under study.sures of fat mass, and fat distribution have been clearly
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Preliminary analysis: The main objective of the pre- were to test the simultaneous effects of alleles in multi-
ple exons, to test the epistatic effects of alleles in theseliminary analysis was to test the association between

alleles at each exon and BMI and WC. We analyzed BMI exons, and to test effect modification by main covariates
such as age, sex, diabetes, and ethnicity. BMI and WCand WC separately for each exon. The main covariates

were sex and age and no interaction effects were mod- were modeled as separate univariate phenotypes and
as a combined multivariate phenotype. All exons wereeled. In this preliminary analysis, no missing data impu-

tation was employed. The purpose of these approaches simultaneously included in all models. The main covari-
ates included continuous age polynomial variables upwas to overview a crude overall association.

For the association analysis, we utilized the ASSOC to the third degree (i.e., age, age2, age3). In addition,
discrete variables (ethnicity, diabetes, sex, and studyroutine in the S.A.G.E. (1997) software (George and

Elston 1987), which allows for familial (residual) corre- effects) were dummy coded. The powers of the variable
were included because the range of age was wide (3–94lations. The sibling-based permutation test, a valid joint

test for association in the presence of linkage (Allison years), and BMI and WC are nonlinearly associated with
age over that range, especially in children (Rolland-et al. 1999), was also utilized to control for potential

population admixture. The permutation of observations Cachera et al. 1982).
Two- and three-way interaction effects among geno-was performed within each sibship, which therefore

leads to inferences conditional on sibship and hence types and two-way interaction effects between genotype
and main covariates were included in the analysis. How-on family. This step eliminates the possibility of con-

founding by population admixture. In other words, no ever, with regard to two-way interaction effects, age2 and
age3 were excluded to limit the number of independentmatter what population the families came from, infer-

ences conditional upon sibship are equivalent to those variables in the models. The study effects were included
only as main covariates without any related interactionconditional upon population stratification, because sib-

ships are “subunits” of a population with a uniform terms. We used the S.A.G.E. ASSOC routine, fitted ordi-
nary least squares (OLS) regression models, and con-degree of admixture. This has been more fully described

and demonstrated elsewhere (e.g., Allison et al. 1999). ducted general linear model (GLM) multivariate analy-
ses for the main analyses. In this main analysis, onlyWe also analyzed the proportion of alleles shared

identical-in-state (IIS) by sibling pairs because the alleles pooling analyses were conducted. In the following sec-
tion, the theoretical and practical issues that arose inat the three exons are of interest. Specifically, we re-

gressed the square of the phenotypic difference between conducting the main analysis are described.
Multiple imputation for missing values: There were manythe sibling pairs (cf. Haseman-Elston procedure; Hase-

man and Elston 1972) on the proportion of alleles missing observations for the phenotypes and covariates,
e.g., diabetic status (Table 2), and for genotypes at exonshared IIS by sibling pairs. We also regressed the grand-

mean-centered cross product of phenotypes between 2 in particular (Table 3). Because deletion of missing
values (e.g., list-wise deletion) from analyses can intro-the sibling pairs (cf. New Haseman-Elston procedure;

Elston et al. 2000) on the proportion of alleles shared duce biases and inefficient use of collected data (Schafer
1997), we employed the multiple imputation (MI)IIS by sibling pairs. This type of “IIS analysis” is also

valid for association and linkage analysis. We used IIS method proposed by Rubin (1978, 1987, 1996) and
described in Schafer (1997), assuming that the missinginstead of identical-by-descent (IBD) because, when the

marker alleles are causative of variations in the pheno- observations occurred at random as defined in Little
and Rubin (1987). Briefly, imputed values for one miss-type, IIS linkage analysis should be more powerful than

IBD linkage analysis and we were not interested in ing observation are randomly drawn multiple times in-
dependently from an underlying probability model, e.g.,whether the phenotypes of interest are linked to un-

known alleles (in which case IBD analysis would have from a normal distribution whose mean and variance
were determined by regression analysis; i.e., the pre-been more powerful). All of these analyses were adjusted

for age and sex. dicted value is the mean, and the mean squared error
(MSE) is the variance. For the nonmissing observations,For this preliminary analysis we took two methodolog-

ical approaches: metaanalysis and pooling analysis. For imputation is not necessary.
The MI method is appealing because it accommo-the former, we applied the association analyses de-

scribed above to each data set from each study and then dates variation due to random imputation in the infer-
ence procedure (note that single imputed values are“metaanalyzed” the results followed by heterogeneity

analysis (Hedges and Olkin 1985). To combine the P not true observations). In principle, more imputations
provide for better inference with increased accuracy.values, we used Fisher’s approach (Fisher 1954). For

the latter, we applied association and linkage analyses Practically, however, three to five imputations appear
satisfactory in terms of efficiency of estimation even withto a single pooled data set. Finally, we compared the

results of the metaanalysis with those obtained from the 50% observations missing (Schafer and Olsen 1998).
Specifically, the efficiency of estimation by means ofpooling analysis.

Main analysis: The objectives of the main analysis MI is 1/(1 � �/m), where � is the fraction of missing
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information and m is the number of imputations (Rubin
1987). This returns 86 and 91% efficiency for m � 3
and 5, respectively, with � � 0.5, i.e., 50% observations
missing. Herein the missing observations were imputed
five times.

Random values from the normal distribution can be
imputed for missing values of continuous variables. For
missing discrete categorical values, however, the cate-
gorical values nearest to the randomly generated contin-
uous values can be imputed. This imputation method
for the categorical variables is acceptable in general
even under normality assumptions (Schafer and Olsen
1998). However, this technique does not guarantee pro-
ducing imputations with coherent genotypes (i.e., geno-
types satisfying Mendel’s laws) for members within a
family of multiple generations. To avoid possible incon-
sistencies of imputed genotypes among family members,
we employed “restricted” imputation. For instance,
when all family members had missing genotypes, only
offspring genotypes were imputed for computational
simplicity and convenience, or the “aa” genotype was
excluded from possible offspring genotypes when the
parental mating type was AA-AA or AA-Aa. See appendix
b for statistical inferences that include P-value calcula-
tions on the basis of MI.

Practical issues and ad hoc methods: The interaction
terms and dummy codes for genotypes and discrete
variables created models with many independent vari-
ables, making interpretation of results difficult. There-
fore, we applied OLS backward elimination to select
significant variables in the presence of genotype vari-
ables. In doing so, we first “stacked” the five imputed
pooled data sets into one single data set and then as-
signed a weight of one-fifth in count to every data point
in the stacked data set, so that original nonmissing val-
ues have a weight of 1 and imputed values have a weight
of 1⁄5. By “stack” we mean accumulation of (the five
rectangular) missing-imputed data sets by case. This
procedure still does not account for familial correlations
or variations due to MIs and therefore does not produce
unbiased standard errors. However, this ad hoc method
can help identify significant contributors to specific
models; the OLS method provides unbiased coefficient
estimates and reasonably good compatibility for testing
compared to its counterpart that adjusts for correlations
(M. A. Province, T. Rice and D. C. Rao, unpublished
results). Therefore, for subsequent statistical analyses
we took residualized BMI and WC resulting from OLS
regression on some “significant” variables retained from
the backward elimination using the stacked data set.

Although the S.A.G.E. ASSOC routine was developed
to allow familial correlations and to produce consistent
standard error estimates, it has several practical limita-
tions in terms of the number of interactions that can
be included. However, one can include more than one
locus by coding the other loci as covariates since ASSOC
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TABLE 2

Descriptive statistics from a total of 3263 observations

Continuous variables Mean � SD (min, max) % missing

Age (year) 38.2 � 15.8 (3, 94) 2.4
BMI (kg/m2) 28.2 � 7.2 (14, 77) 1.2
WC (cm) 90.2 � 18.4 (33, 178) 22.9

Discrete variables Category %a % missing

Sex Female 50.9 �0.05
Diabetes Yes 24.4 64.0
Ethnicity Caucasian 74.7 None

African-American 18.4
African 6.8
Hispanic 0.1

a Out of nonmissing observations.

ASSOC provides the estimated coefficients for each co- 0.20, respectively (Table 3). Using the maximum-likeli-
hood (ML) test for departure from Hardy-Weinbergvariate and their standard errors. Through the use of

the statistics, we can test the effect of the additional loci equilibrium (HWE) described by Lynch and Walsh
(1998, pp. 60–61) there was no evidence for a departureby a Wald-type test. The choice of which locus is utilized

as a genetic locus (“marker” in the S.A.G.E. ASSOC from HWE for alleles at any exon (exon 2, P � 0.285;
exon 4, P � 0.597; and exon 12, P � 0.537). The MIterminology) and which loci are treated as covariates

should not affect the inferences about genotypic effects resulted in little change in statistical significance (exon
2, P � 0.960; exon 4, P � 0.770; and exon 12, P �at each locus because the Wald (for the covariates) and

likelihood-ratio tests (for the genetic locus, the marker) 0.374). On the basis of the ML test in Lynch and Walsh
(1998, pp. 98–99), however, the three exons are (asare asymptotically equivalent. On the other hand, most

programs for OLS regression are easy and flexible to expected) all significantly in pairwise linkage disequilib-
rium regardless of the imputation (exon 2 vs. exon 4,run and produce unbiased point estimates, but they do

produce biased estimates of standard errors. To adjust P � 0.001; exon 2 vs. exon 12, P � 0.001; and exon 4
vs. exon 12, P � 0.001).the bias of the standard errors of the OLS regression,

we calculated a “correction factor”: the ratio of average Table 3 also presents genotype-specific mean BMI
and WC by locus. Within each exon, the mean values areestimated variances of the point estimates from S.A.G.E.

ASSOC to that of estimated variances from the OLS almost the same before or after imputation. However,
before imputation, overall means of BMI and WC atregression. This calculation resulted in “corrected” flex-

ible use of OLS in various model-fitting procedures in exon 2 are smaller than those at the other exons because
the genotypes at exon 2 in the Baltimore study (Tablethe presence of correlations among observations across

data points. We also tried the OLS approach with the 1) are all missing and Baltimore study subjects have
relatively larger BMI and WC compared to subjects instacked data, using weights of 1⁄5 to compare the esti-

mates and P values obtained from the MI inference the other studies. After imputation, on the other hand,
the overall mean values become almost the same acrossdescribed in appendix b.

With respect to multivariate analysis for testing pleio- the exons. These results, unadjusted for covariates or
familial correlations, provide a preliminary view of thetropic effects, many approaches can be employed (e.g.,

Amos et al. 1990; Allison et al. 1998; Mangin et al. association between the phenotypes and genotypes.
Preliminary analysis: Results of the ASSOC analyses1998). In this study, we employed GLM multivariate

analysis without controlling for familial correlations, be- are presented in terms of differences of the estimated
effects of the two genotypes, “wild-type” homozygotecause P values could be adjusted by using the correction

factors described above. and heterozygote, on BMI and WC, separately, from
those of the “mutant” homozygous genotypes (Table 4)
after adjusting for age and sex. For example, subjects

RESULTS heterozygous (K109R) for the exon 2 allele had a meta-
estimate effect size of 0.03 on BMI when comparedDescriptive statistics: Demographic descriptive statis-
to subjects with K109K genotype. No single effect wastics are presented in Tables 1 and 2 along with percent-
significant from either the individual studies or theages of missing observations. The range of age is large,
metaanalysis (Table 4). The number of subjects for eachas are the ranges of BMI and WC. The estimated allele

frequencies at exons 2, 4, and 12 were 0.23, 0.48, and estimate is presented in Table 5, which also shows P
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TABLE 3

Proportion, mean, and SD of BMI and WC by genotypes

Proportions (%)a Mean BMI � SD (kg/m2) Mean WC � SD (cm)

Before After Before After Before After
Locus Genotypes imputation imputation imputation imputation imputation imputation

Exon 2 K109K 59.8 58.8 27.3 � 6.1 28.0 � 7.1 88.0 � 16.2 90.8 � 17.8
K109R 34.6 35.8 27.5 � 6.5 28.4 � 7.6 89.3 � 16.8 91.8 � 18.8
R109R 5.6 5.4 26.9 � 5.8 27.4 � 6.4 87.4 � 16.8 89.3 � 17.5
Total 13.9b 1.6b 27.4 � 6.3 28.1 � 7.2 88.4 � 16.5 91.1 � 18.1

Exon 4 Q223Q 27.0 26.9 28.0 � 7.2 27.9 � 7.2 90.3 � 18.9 90.8 � 18.1
Q223R 49.5 49.7 28.3 � 7.3 28.2 � 7.3 90.3 � 18.6 91.1 � 17.5
R223R 23.6 23.4 28.4 � 7.2 28.3 � 7.2 91.1 � 17.7 91.2 � 17.5
Total 4.8b 1.1b 28.2 � 7.3 28.1 � 7.2 90.5 � 18.5 91.0 � 18.1

Exon 12 K656K 63.8 63.7 28.3 � 7.4 28.2 � 7.4 90.7 � 18.7 91.3 � 18.5
K656N 32.4 32.5 28.1 � 6.9 28.0 � 6.9 89.7 � 17.7 90.5 � 17.5
N656N 3.8 3.8 28.3 � 7.1 28.2 � 7.1 91.5 � 18.0 91.6 � 16.5
Total 4.8b 1.1b 28.2 � 7.2 28.1 � 7.2 90.4 � 18.4 91.0 � 18.1

a Proportions of genotypes calculated from nonmissing observations. The proportion of missing values was
calculated from all subjects.

b Percentage of total observations missing.

values to assess the significance of the phenotypic varia- imputation adopted herein, �5% of subjects still have
missing genotypes for at least one exon even after impu-tion due to genotypic variation, by exon. The calculation

of these P values was based on the contribution of the tation. Mean BMIs and WCs over the genotypes at exon
2 were increased after imputation. However, frequen-genotypic variation to the likelihood. The effects were

again not significant for either phenotype for any exon cies of alleles at each exon changed little.
Backward elimination and effect modifications: Signifi-from individual studies or from the metaanalysis. Table

6 presents results of the sibling-based permutation asso- cance of various effect modifications was evaluated by
testing for interaction effects among genotypes andciation test from individual studies, from the metaana-

lysis, and from the pooling analysis. In this sibling-based main covariates. We tested such interaction effects by
OLS regression with the weighted stacked data. Back-permutation association test, only studies with related

subjects were analyzed, because the test requires siblings ward elimination—starting with a full model with main
genotype effects, epistatic effects (i.e., interaction effectswithin each family. Table 6 also shows absence of sig-

nificant genotypic effects on the phenotypes. among genotypes), main covariate effects, and interac-
tion among genotypes and covariates—was applied toResults of the regression on proportions of alleles

shared IIS are presented in Tables 7 and 8. These results identify significant interaction effects. The OLS back-
ward elimination results are listed in Table 9.were obtained from the regression of squared pheno-

type differences and the regression of grand-mean cen- Only the interaction effect between R109R at exon 2
and sex was significant for BMI, implying that maletered phenotype cross products, respectively. There was

no statistical evidence that the alleles examined are asso- subjects with R109R genotype at exon 2 have signifi-
cantly higher BMI than the other subjects. However, theciated with (or linked to) significant variation in either

phenotype. However, the result of such IIS analysis of contribution of this interaction effect to the variations of
BMI is minimal (increase in R 2 � 0.01%). The nonsig-one study (Quebec family study) showed a significant

linkage of the Q223R allele to BMI (P � 0.04), which is nificant allele-by-environment interaction effects sug-
gest that the genotypic effects, if any, might not bein agreement with the result of the IBD linkage analysis

reported in Chagnon et al. (1999; P � 0.02). modified by the main covariates such as diabetes, sex,
age, and ethnicity. In terms of epistatic effects, however,Heterogeneity analysis: Heterogeneity analysis (Ta-

bles 4, 7, and 8) showed that the nonsignificant results subjects with K109R at exon 2 and N656N at exon 12
(see HT2HM12 in Table 9) appeared to have signifi-are consistent over the three loci and over all of the

individual studies, which implies that the variation in cantly higher BMIs. Age, sex, ethnicity, diabetes, and
study effects are major contributors to the variation ofeffects over the studies is within the range of sampling

variation. BMI and WC. Therefore, we took the “residualized,” or
adjusted, BMI and WC for sex, diabetes, ethnicity, ageMain analysis: Missing data imputation: The results of

missing data imputation are presented in Table 3 with polynomials, and study effects for the following analyses.
Joint effects of multiple alleles at different loci and epistasis:a comparison of descriptive statistics before and after

imputation, as presented earlier. Due to the “restricted” The results for BMI from the S.A.G.E. ASSOC routine



1169LEPR Pooling Analysis

TABLE 4

Estimated effects (with reference to mutant homozygotes) of each genotype at each locus
adjusted for age and sex (and their standard errors)

Exon 2 Exon 4 Exon 12

Study K109R (SE) R109R (SE) Q223R (SE) R223R (SE) K656N (SE) N656N (SE)

BMI
Finnish 1 0.39 (0.529) 0.90 (0.574) 0.40 (0.612) 1.03 (0.637) �0.24 (0.517) �0.55 (1.308)
Finnish 2 0.90 (0.757) 0.44 (1.147) 0.12 (0.929) 0.96 (1.012) �0.24 (0.821) 0.27 (3.775)
QFS 0.12 (0.499) �0.15 (0.933) �0.83 (0.541) �0.30 (0.745) 0.45 (0.545) 1.13 (1.137)
HFS 0.07 (0.407) �0.20 (0.818) 0.65 (0.422) 0.73 (0.548) 0.24 (0.399) �0.86 (1.123)
MIFS �0.51 (0.625) �1.45 (1.426) �0.46 (0.654) �0.32 (0.860) �0.14 (0.590) 1.06 (1.969)
Baltimore — — 0.77 (1.448) 0.76 (1.766) �0.98 (1.300) 0.84 (3.585)
Danish �0.90 (0.678) 1.17 (1.974) 0.35 (0.670) 1.58 (0.892) �0.24 (0.639) 0.64 (1.239)
Nigerian �0.52 (—a) 0.00 (—a) �0.76 (0.996) �0.53 (1.017) 0.55 (0.710) 3.12 (1.796)
AfAm 0.13 (1.045) 5.24 (5.043) 1.80 (1.187) �0.06 (1.251) 0.07 (0.988) �1.51 (1.858)

Meta estb 0.03 (0.22), 0.33 (0.37), 0.13 (0.23), 0.50 (0.28), 0.06 (0.21), 0.31 (0.51),
P � 0.892 P � 0.372 P � 0.571 P � 0.074 P � 0.775 P � 0.543

Q c 4.46, d.f. � 6, 4.37, d.f. � 6, 8.76, d.f. � 8, 5.85, d.f. � 8, 2.64, d.f. � 8, 5.68, d.f. � 8,
P � 0.615 P � 0.626 P � 0.363 P � 0.664 P � 0.955 P � 0.683

WC
Finnish 1 — — — — — —
Finnish 2 3.92 (2.023) 1.63 (3.045) 0.46 (2.469) 3.34 (2.700) 0.50 (2.223) 2.21 (10.079)
QFS 0.65 (1.224) �0.73 (2.248) �0.84 (1.317) �0.28 (1.808) 1.05 (1.336) 2.51 (2.764)
HFS 0.67 (1.057) 0.03 (2.111) 1.07 (1.102) 1.70 (1.416) 0.72 (1.040) �0.76 (2.987)
MIFS �1.14 (1.593) �4.98 (3.623) �1.71 (1.666) �3.88 (2.180) �0.84 (1.513) 4.58 (5.007)
Baltimore — — �1.52 (3.216) �3.58 (3.913) �0.91 (2.908) �2.36 (7.412)
Danish — — — — — —
Nigerian �0.67 (—a) 0.00 (—a) �3.94 (2.630) �3.46 (2.676) 0.23 (1.885) 10.02 (4.528)
AfAm — — — — — —

Meta estb 0.70 (0.67), �0.56 (1.28), �0.40 (0.68), �0.23 (0.86), 0.37 (0.63), 2.48 (1.67),
P � 0.296 P � 0.662 P � 0.556 P � 0.789 P � 0.557 P � 0.137

Q c 3.87, d.f. � 3, 2.09, d.f. � 3, 4.56, d.f. � 5, 8.60, d.f. � 5, 1.21, d.f. � 5, 4.55, d.f. � 5,
P � 0.276 P � 0.554 P � 0.472 P � 0.126 P � 0.944 P � 0.473

a Failed to converge and excluded from metaanalysis.
b Metapooled estimate weighted by standard errors (Hedges and Olkin 1985).
c �2 statistics for testing heterogeneity of effect sizes (Hedges and Olkin 1985).

are displayed in Table 10 with the five imputed pooled to accommodate all of the interactions in a particular
model. The results are displayed in terms of P valuesdata sets. No single genotype at any exon has significant

effect on BMI. The joint effects of all the genotypes for simultaneous effect of such interactions in Table
12. This analysis shows that the epistatic effects amongat all exons are also not significant. These results are

consistent with those from OLS regression without con- genotypes of the three exons are not jointly significant
from the results of MI nor from the results of weightedtrolling for the familial correlations (Table 10). Similar

results were observed (Table 11) with respect to WC. OLS, regardless of the presence of the main genotype
effects in models after adjusting for sex, diabetes, eth-Interestingly, estimated coefficients, their standard er-

rors, and P values for individual genotypes obtained nicity, age polynomials, and study effects.
Multivariate analysis for pleiotropic effects: The results forfrom the OLS regressions after employing the estima-

tion process described in appendix b were almost ex- testing the pleiotropic effects are shown in Table 13.
Although P values vary with imputation, no main effectsactly the same as those from the OLS regressions with

the stacked data (with weights of 1⁄5; Tables 10 and 11). or interaction effects are significant. These results indi-
cate that the polymorphisms do not have any statisticallyThe correction factors from both BMI and WC analy-

ses were, however, �1, which is counterintuitive, im- significant simultaneous effects on BMI and WC.
plying that the standard errors estimated without con-
trolling for familial correlations are bigger than those

DISCUSSION
that include such controlling. In regard to testing epista-
sis, i.e., two- and three-way interaction effects among We presented practical and ad hoc statistical method-

ologies that can accommodate many of the challengesgenotypes over all exons, we applied the OLS regression
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TABLE 5

P values of joint effects of the three genotypes at each locus on the phenotypes
from association tests adjusted for age and sex

BMI WC

Study Exon 2 (n) Exon 4 (n) Exon 12 (n) Exon 2 (n) Exon 4 (n) Exon 12 (n)

Finnish 1 0.297 (63) 0.229 (65) 0.839 (65) — — —
Finnish 2 0.443 (112) 0.514 (112) 0.956 (112) 0.147 (110) 0.333 (110) 0.956 (110)
QFS 0.932 (649) 0.257 (652) 0.527 (653) 0.730 (630) 0.791 (633) 0.574 (634)
HFS 0.937 (776) 0.273 (775) 0.541 (776) 0.807 (775) 0.465 (774) 0.719 (775)
MIFS 0.499 (403) 0.783 (434) 0.819 (436) 0.364 (402) 0.209 (434) 0.499 (436)
Baltimore — 0.861 (245) 0.715 (245) — 0.657 (222) 0.914 (222)
Danish 0.320 (358) 0.198 (358) 0.775 (358) — — —
Nigerian 0.791 (197) 0.745 (203) 0.180 (204) 0.946 (191) 0.317 (197) 0.102 (196)
AfAm 0.557 (207) 0.131 (214) 0.708 (213) — — —

Overalla 0.885 0.437 0.967 0.723 0.575 0.786

From �2 test with 2 d.f. from the likelihood-ratio test.
a From Fisher combination of P values (Fisher 1954).

encountered in pooled genetic data analysis. Although This deficiency creates a particular type of problem
because, even after all data management issues are re-data pooling may be ideal for enhancement of power

of statistical inferences, it is a daunting task to manage solved, analysts are sometimes forced to change software
and/or write additional programs with specific com-and analyze pooled data, as we have seen so far. Even

a task as seemingly simple as coordinating the pooling puter languages to conduct appropriate and necessary
procedures and analyses. For example, one statisticalof different data sets by creating a coherent coding

system and uniform variable names can prove to be time software package may be able to provide a multiple-
imputed data set but not be able to generate the esti-consuming. Developing a coherent coding system for

the pedigree members is important and creating appro- mates from the imputed data using advanced statistical
analytical approaches. To obtain such estimates, datapriate dummy family members is often required for

application of software. Therefore, investigators plan- analysts generally need to apply a different software
package to the multiple-imputed data; it is importantning a pooling study should be aware of the large

amount of time required for data management before to note that some types of software are not compatible
with all forms of electronic data. This emphasizes an-the pooled data are analyzed.

In addition, the availability of statistical software that other consideration. While there are many forms of
genetic data analysis software available, few are flexiblecan handle the analytic problems raised here is limited.

TABLE 6

Results from sibling-based permutation test for association adjusted for age and sex

Phenotype Study Exon 2 Exon 4 Exon 12

Pooling analysis: �2a, P (nb)
BMI 3.06, 0.080 (1067) 1.73, 0.189 (1092) 0.25, 0.619 (1095)
WC 2.01, 0.155 (1065) 1.37, 0.242 (1092) 1.85, 0.174 (1095)

Analysis by study and metaanalysis: �2, P (n)
BMI QFS 0.53, 0.465 (379) 0.53, 0.469 (381) 0.02, 0.878 (383)

HFS 3.00, 0.083 (476) 1.09, 0.296 (476) 0.28, 0.601 (476)
MIFS 0.84, 0.359 (212) 0.35, 0.555 (235) 0.05, 0.827 (236)
Overallc P � 0.200 P � 0.528 P � 0.948

WC QFS 0.274, 0.601 (379) 0.09, 0.761 (381) 0.79, 0.375 (383)
HFS 1.59, 0.208 (475) 1.49, 0.223 (475) 1.28, 0.259 (475)
MIFS 0.83, 0.364 (211) 0.38, 0.538 (236) 0.03, 0.866 (237)
Overallc P � 0.403 P � 0.571 P � 0.550

a Degrees of freedom are 1 for the chi-square distributions.
b n represents the available number of siblings.
c From Fisher combination of P values (Fisher 1954).
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TABLE 7

Results from sibling-pair IIS analysis on the squared phenotype difference

Phenotype Study Exon 2 Exon 4 Exon 12

Pooling analysis: 	 (SE) P, na

BMI �12.3 (10.9) 0.260, 1084 �16.1 (9.6) 0.093, 1117 �3.4 (11.4) 0.769, 1112
WC �33.4 (63.4) 0.598, 1080 �86.1(55.7) 0.123, 1114 �56.9 (65.6) 0.386,1109

Analysis by study and metaanalysis: 	 (SE) P, n
BMI QFS �14.6 (21.1), 0.490, 431 �39.1 (19.0) 0.040, 439 �12.0 (23.3) 0.607, 440

HFS �6.8 (11.0) 0.538, 480 0.4 (10.0) 0.965, 480 3.14 (10.8) 0.771, 480
MIFS 13.4 (25.1) 0.594, 172 14.6 (19.9) 0.464, 198 �15.6 (24.9) 0.533, 192
Meta estb �5.6 (9.1) 0.538 �4.4 (8.1) 0.586 �1.69 (9.1) 0.852
Q c 0.77, d.f. � 2, P � 0.682 4.48, d.f. � 2, P � 0.107 0.71, d.f. � 2, P � 0.702

WC QFS 39.3 (116) 0.735, 432 �156 (106) 0.140, 439 �75.2 (128), 0.558, 440
HFS �59.6 (72.7) 0.413, 478 �9.2 (66.1) 0.889, 478 �36.9 (71.5) 0.606, 478
MIFS �6.3 (156) 0.968, 170 �19.6 (119) 0.870, 197 �131 (149) 0.379, 191
Meta estb �28.3 (57.3) P � 0.622 �44.7 (50.7) P � 0.378 �58.6 (57.6) P � 0.308
Q c 0.54, d.f. � 2, P � 0.762 1.44, d.f. � 2, P � 0.488 0.35, d.f. � 2, P � 0.841

a n represents the available number of sibling pairs.
b Metapooled estimate (Hedges and Olkin 1985).
c �2 statistics for testing heterogeneity of effect sizes (Hedges and Olkin 1985).

enough to meet the rapidly increasing genetic statistical the estimated standard errors from OLS methods are
bigger than those from methods accounting for familialneeds. For example, statistical methodologies and theo-

ries exist, such as GLM and generalized estimating equa- correlations. This result may initially seem to be counter-
intuitive, because treating correlated observations as iftions, that can flexibly account for varying familial corre-

lation matrices due to different pedigree structures. At they were uncorrelated often yields smaller standard
errors due to inflated information. However, appro-the same time, to our knowledge, there are no statistical

packages that can easily handle such variations. priate control for correlation may yield smaller standard
errors. For example, suppose that random variables XAs such, the procedures and analyses proposed herein

should be an example for conducting a pooled analysis and Y are perfectly correlated [i.e., corr(X, Y) � 1] and
X � Y � 
 for some nonrandom 
. Now, we have nin the absence of “bona fide” methodologies, although

some methodological issues are still in question. For pairs of observed X and Y. If we apply a paired t-test to
testing the null hypothesis of 
 � 0, the result will beexample, the empirical correction factors obtained in

this study were all �1 (Tables 10 and 11), implying that significant no matter how small a nonzero 
, because

TABLE 8

Results from sibling-pair IIS analysis: the product of deviations of the phenotype from grand mean

Phenotype Study Exon 2 Exon 4 Exon 12

Pooling analysis: 	 (SE) P, na

BMI 4.4 (4.4) 0.312, 1084 �4.4 (4.1) 0.283, 1117 �3.5 (4.7) 0.458, 1112
WC 6.9 (30.9) 0.822, 1080 �24.1(28.5) 0.399, 1114 0.3 (32.6) 0.992, 1109

Analysis by study and metaanalysis: 	 (SE) P, n
BMI QFS �1.1 (6.9) 0.876, 432 �8.6 (7.0) 0.216, 439 �5.4 (8.0) 0.496, 440

HFS 11.8 (6.9) 0.090, 480 0.8 (6.3) 0.900, 480 0.8 (6.8) 0.901, 480
MIFS 2.1 (10.0) 0.833, 172 �7.2 (8.1) 0.373, 198 �4.5 (10.1) 0.658, 192
Meta estb 4.7 (4.4) 0.281 �4.4 (4.1) 0.283 �2.4 (4.6) 0.608
Q c 1.83, d.f. � 2, P � 0.400 1.16, d.f. � 2, P � 0.560 �2.4, d.f. � 2, P � 0.817

WC QFS �35.8 (44.5) 0.422, 432 �74.3 (44.5) 0.095, 438 �5.3 (51.6) 0.918, 440
HFS 60.0 (49.1) 0.222, 478 �28.2 (44.7) 0.527, 478 �7.8 (48.4) 0.873, 478
MIFS �56.1 (90.2) 0.535, 170 94.0 (67.5) 0.166, 197 35.5 (85.8) 0.679, 191
Meta estb �0.1 (31.0) P � 0.998 �25.3 (28.6) P � 0.376 �0.6 (32.6) P � 0.986
Q c 2.53, d.f. � 2, P � 0.283 4.34, d.f. � 2, P � 0.11 0.21, d.f. � 2, P � 0.902

a n represents the available number of sibling pairs.
b Metapooled estimate (Hedges and Olkin 1985).
c �2 statistics for testing heterogeneity of effect sizes (Hedges and Olkin 1985).
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TABLE 9

Backward elimination results

Phenotype Effects Variablesa Coefficients SE P value

BMI (Constant) 20.775 0.565 �0.001
Main genotypes HM_EX2 �1.315 0.641 0.040
Epistasis HT2HM12 5.736 2.325 0.014
Covariates Study 1 �2.419 0.347 �0.001

Study 2 �1.916 0.344 �0.001
Study 3 �1.805 0.677 0.008
Study 4 �3.804 0.499 �0.001
Study 5 5.822 0.644 �0.001
Study 6 8.529 0.474 �0.001
Study 7 �3.857 0.812 �0.001
AA 2.338 0.408 �0.001
Age 0.347 0.029 �0.001
Age2 �0.003 �0.001 �0.001

Interactions HM2_Sex 2.219 0.960 0.027
WC (Constant) 63.700 1.617 �0.001

Covariates Study 2 �4.612 0.793 �0.001
Study 4 �6.813 1.180 �0.001
Study 5 �14.679 1.574 �0.001
Study 6 19.593 1.080 �0.001
Study 7 �9.175 1.948 �0.001
Study 8 �2.629 0.945 0.005
Sex 8.471 0.570 �0.001
Diabetes �1.841 0.693 0.008
AA 2.569 0.825 0.002
Age 0.901 0.074 �0.001
Age2 �0.006 0.001 �0.001

a Variable labels: Genotypes: HM_EX2, 1 for subjects with R109R at exon 2, 0 for the other subjects. Epistasis:
HT2HM12, 1 for subjects with K109R at exon 2 and N656N at exon 12, 0 for the other subjects. Main Covariates:
Study no.: 1 for subjects in Study no., 0 otherwise (see Table 1). The subjects in the ninth study are the
referent. AA: 1 for African-American subjects, 0 for the other subjects. Sex: 1 for male subjects, 0 for female
subjects. Diabetes: 1 for diabetic subjects, 0 for the other subjects. Interactions: HM2_Sex, interaction between
HM2 and sex, where HM2 is 1 for subjects with R109R at exon 2 and 0 for the other subjects. Therefore
HM2_Sex is 1 for male subjects with R109R at exon 2 and 0 for the other subjects.

the estimated standard error of 
, the denominator of is done multiple times and the variance in the results
that occur from imputation to imputation enter intothe test statistic, will be 0. But if we apply a two-sample

t-test, which ignores the correlation, then the results the calculation of standard errors and P values, thereby
“penalizing” one for uncertainty rather than artifactu-will depend on the magnitude of 
 and the number of

subjects, because the estimated standard error will not ally augmenting one’s certainty. In some cases, the vari-
ance around the imputation is zero because the missingbe zero. However, the question of whether this reason-

ing also applies to the situation described in this article genotypes are known without error by Mendel’s laws.
In those cases, the imputation adds the correct amountis still unanswered. If this were the case in general, P

values based on OLS methods would provide only an of uncertainty; it just happens that that amount is zero.
More broadly, the justification of the regression imputa-upper limit of “true” P values. Thus, the OLS-based P

values may not provide a reasonable conclusion about tion is that genotypes can be predicted on the basis of
observed phenotypes and covariates just as phenotypeshypotheses tests unless the OLS P values are large.

Therefore, when the P values from OLS methods are can be predicted on the basis of observed genotypes.
Although imputing such genotypes does not in and ofborderline (between 0.05 and 0.10), application of cor-

relation-adjusting methods may be needed for more itself create new information, the regression imputation
of missing genotypes in this way allows one to use theaccurate P values.

The MI method adds (or more precisely “allows for”) full information that is available in a data set by, for
example, not requiring one to drop subjects who areuncertainty around the unknown missing genotypes by

generating multiple randomly imputed genotypes where missing genotypic information at one locus but who
have information at other loci when conducting athe imputed values are the predicted values plus some

random error for which the expected squared value is multilocus analysis; i.e., it avoids list-wise deletions.
Under the null hypothesis of no association, there isequal to the estimated variance of the prediction. This
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TABLE 12 among statisticians. However, it has not made significant
headway into many applied areas, including genetic re-Epistasis effects adjusted for sex, ethnicity, diabetes,
search. We hope that this illustration of its use mayand age polynomials
encourage further adoption of it or something analo-
gous by genetic researchers.P values of joint effect of the two-

and three-way interactions In terms of combining P values, when the dimension
among genotypes of the parameter vector is one, the procedure described

in appendix b [when dim(Qi) � 1] is well justifiedIn the presence In the absence
theoretically and by simulation studies (e.g., Rubinof main of main

genotype effects genotype effects 1996). Therefore, it is surprising that the overall com-
bined P values based on weighted OLS are all very closeImputation BMI WC BMI WC
to the P values based on that procedure (Tables 10 and

1 0.122 0.659 0.330 0.899 11), despite the fact that the weighting does not account
2 0.051 0.389 0.204 0.564 for incompleteness of random missing imputation. This
3 0.079 0.209 0.241 0.383 could support the use of weighting because of its simplic-4 0.046 0.312 0.127 0.616

ity, effectiveness, and reliability, which in turn may allow5 0.013 0.257 0.067 0.572
its use to be extended to the case of multidimensionalOverall P values
parameters. In the cases of multidimensions, on theMIa 0.195 0.687 0.470 0.942
other hand, the particular procedure adopted hereinWeighted OLSb 0.212 0.706 0.471 0.893
[appendix b; when dim(Qi) � 1] can be used as onlya P values based on multiple imputation; see appendix b a rough guide—providing an estimate of the range offor dim(Q i) � 1.
P values between one-half and twice the calculated valueb P values obtained from the weighted OLS.
(Li et al. 1991), although the use of this procedure has
been advocated because of its computational simplicity
in comparison with other procedures. However, the Pno reason to suspect that such imputation, if properly

accounted for, would bias the expected results. How- values obtained from this procedure and from the
weighted OLS are again very similar (Table 12). Calcula-ever, under an alternative hypothesis, MI methods can

give different results. This results from (a) reducing tion of the overall P values for pleiotropic effects (Table
13) based on weighting was not possible because ofpossible biases if the data are missing at random (MAR)

but not missing completely at random (MCAR) in the software limitation.
With respect to allele-by-allele interaction analysis, itterminology of Little and Rubin (1987); (b) increas-

ing the precision of estimates by using all of the informa- should be pointed out that when several loci, or mark-
ers, are in close physical proximity to each other, as intion available in the data set in contrast to analysis of

only complete cases; and (c) thereby increasing power. the current case, and interactions among loci are tested
for, such interactions, if observed, may be due to linkageIn our example, the nonsignificant results were not

changed after missing values were imputed. That is, disequilibrium and not true epistasis. To understand
why, consider a hypothetical situation of two diallelicanalysis of complete cases and MI yielded equivalent

results (data not shown). This further consolidates the loci, A and B, with alleles A1 and A2 and B1 and B2,
respectively, in close proximity to each other. Assumenull association and serves as a form of sensitivity analy-

sis. MI is now generally accepted and widely advocated that they are in equilibrium and that neither has any

TABLE 13

Pleiotropic effects of the alleles on BMI and WC adjusted for sex, ethnicity, diabetes, and age polynomials

P values from Wilk’s � test statistic

Three-way
Main Two-way interaction interaction

Imputation Exon 2 Exon 4 Exon 12 Exons 2 and 4 Exons 2 and 12 Exons 4 and 12 Exons 2, 4, and 12

1 0.332 0.893 0.298 0.483 0.353 0.498 0.635
2 0.086 0.340 0.025 0.865 0.023 0.278 0.491
3 0.009 0.423 0.057 0.641 0.027 0.607 0.808
4 0.039 0.630 0.028 0.262 0.007 0.366 0.673
5 0.0005 0.137 0.001 0.110 0.0004 0.043 0.152
Overall P valuesa 0.586 0.921 0.433 0.984 0.786 0.874 0.958

a P values based on multiple imputation; see appendix b for dim(Q i) � 1.
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individual or interactive effect on the phenotype. Then effects across the studies. Although the study effects are
large (Table 9), this does not mean that the genotypicat some point in history, an allelic variation might have

occurred at locus C, which is also very close to A and effects are different over the studies, but rather that
average levels of the phenotypes are different in theB, and that C now has alleles C1 and C2, with the C2 allele

conferring a predisposition to increased phenotypic val- different studies. However, we acknowledge that model-
ing study effects alone may not capture all possible het-ues. Suppose further that C2 arose on a chromosome

with alleles A2 and B2 and, due to tight linkage, to this erogeneity across the study populations due to differ-
ences in sampling schemes, degrees of demographicday C2 occurs primarily (though not necessarily exclu-

sively) on chromosomes with the A2, B2 haplotype. Fi- homogeneity within samples, and so on. For example,
the Danish samples (Echwald et al. 1997) were col-nally, assume that loci A and B are genotyped in a study

but C is not (i.e., C is unobserved). Then, given a suffi- lected under a unique sampling scheme. Moreover, the
Finnish samples (Oksanen et al. 1998) may be relativelyciently large sample, one will detect an interaction “ef-

fect” of the A and B loci. However, this is solely due to the homogenous compared to the other study samples, al-
though the significance of this remains open to ques-fact that when A2 and B2 occur together, they represent a

haplotype with a higher likelihood of having a C2 allele tions (Abbott 2000).
An alternative approach would be a mixed-effectsat the C locus. For the present study, such “phase” infor-

mation is not available. However, if a polymorphism model with cohort as a random effect. Such a model
could include empirical Bayes estimation and testingunder study does not cause variation but is both linked

to and in disequilibrium with a polymorphism that (Carlin and Louis 2000), which we are currently ex-
ploring. Such mixed-effects (random effect for studies)causes variation in the phenotype, power to detect epis-

tasis may be enhanced through the use of estimated model approaches to testing heterogeneity are certainly
a reasonable alternative that can be pursued in futurehaplotypes rather than single nucleotide polymor-

phisms (Fallin and Schork 2000; Fallin et al. 2001). work.
On the basis of the results from the backward elimina-The power will depend critically on the degree of dis-

equilibrium between the polymorphism and the caus- tion procedures (Table 9), subjects who are heterozy-
gous at exon 2 and homozygous at exon 4 are signifi-ative allele. Nevertheless, the haplotype analysis should

be very close (though not identical) to our analyses cantly greater in imputed missing BMI compared to the
other subjects (Table 9). Although these subjects (theretesting for epistasis.

With respect to comparison between metaanalysis and were five such) could deserve more investigation, only
one subject with this combination is extremely obese,pooling analysis, both methods should yield similar re-

sults in terms of estimated effects and their significance, with BMI 51. It is therefore unlikely that this particular
allele interaction can cause obesity and there is a limita-as was the case in this study. Metaanalysis can be as

powerful as pooling analysis in certain particular situa- tion in epistasis analysis because we used only three
exons; i.e., we do not know the pathways of how thetions (e.g., Olkin and Sampson 1998). However, pool-

ing analysis has advantages over metaanalysis, including three exons interact with unknown alleles in other exons
and introns. Furthermore, if we had adjusted for thethe ability to run analyses in a consistent fashion across

studies, to test certain assumptions (e.g., normality), and number of tests, each adjusted P value would have been
much higher than that reported in this article. For ex-to run analyses beyond those the original investigators

ran. In addition, pooling analysis enables us to consis- ample, if all tests were independent, a multiple-test ad-
justed P value p b may be written as p b � 1 � (1 � p)t,tently provide the same analysis to each data set and

impose a degree of quality control on the data analyses where t is the number of tests and p is an unadjusted P
value. It follows that p b is 0.06 even with t � 6 and P �that is uniform across all data sets. Finally, raw data

pooling allows examination for outliers, use of transfor- 0.01. This further confirms that it is unlikely that all the
nonsignificant results from this study are due to typemations, and full use of the statistician’s usual armamen-

tarium. In this sense, raw data pooling may be preferable 2 error, although, when the tests are dependent, the
adjusted P value will be �0.06 but �0.01. Moreover,to metaanalysis of published summary statistics. Never-

theless, if all analyses are conducted identically and cor- even 1% of variation of phenotype due to their allelic
variants would have been detected with �99% powerrectly both within each data set separately and in the

pooled data set, then there may be no theoretical differ- with 3000 subjects. As far as confidence intervals of
point estimates are concerned, they can be immediatelyence in power.

Interaction of study effects with genotypic effects was computed from the standard errors provided in the
tables.assessed by means of testing heterogeneity of effects

among studies. The heterogeneity of the effects was not The lack of association between the amino acid substi-
tutions and obesity indices, despite a large sample, sug-significant, as presented earlier. Because of this nonsig-

nificance and concerns about possible overfitting, we gests that the substitutions do not affect the phenotypes.
While amino acid substitutions may result in either non-did not include study-by-allele interaction effects in the

main pooling analysis; i.e., we estimated equal genetic functioning or poorly functioning proteins, or even
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Donohoue, P. A., T. L. Burns, M. C. B. Mendoza, W. K. Chung andfunctional proteins (if the effect is silent), it is important
R. L. Leibel, 2000 Lys656Asn variant of the leptin receptor gene

to note that among complex traits with multiple path- (LEPR) and the 	-3 adrenergic receptor (	3AR) gene linked to
body mass index in humans: the Muscatine study. Pediatr. Res.ways, such as obesity, the absence of association might
47: 127A.not necessarily indicate a lack of effect. It may simply

Echwald, S. M., T. D. Sørensen, T. I. A. Sørensen, A. Tybjærg-
be that persons with the amino acid substitution com- Hansen, T. Andersen et al., 1997 Amino acid variants in the

human leptin receptor: lack of association to juvenile onset obe-pensated by other means or that additional genotypic
sity. Biochem. Biophys. Res. Commun. 233: 248–252.factors may be involved and need to be taken into ac-

Elston, R. C., 2000 Introduction and overview. Stat. Methods Med.
count before the phenotype becomes manifest. How- Res. 9: 527–541.

Elston, R. C., S. Buxbaum, K. B. Jacobs and J. M. Olson,ever, the lack of association does not rule out the possi-
2000 Haseman and Elston revisited. Genet. Epidemiol. 19: 1–17.bility that the three alleles may influence intermediate

Fallin, D., and N. J. Schork, 2000 Accuracy of haplotype frequency
traits, or phenotypes, not examined as part of the analy- estimation for biallelic loci, via the expectation-maximization al-

gorithm for unphased diploid genotype data. Am. J. Hum. Genet.ses conducted in this article.
67: 947–959.In conclusion, conducting appropriate statistical pro-

Fallin, D., A. Cohen, L. Essioux, I. Chumakov, M. Blumenfeld et
cedure and analysis of pooled genetic data requires al., 2001 Genetic analysis of case/control data using estimated

haplotype frequencies: application to APOE louc variation andcareful data management and flexible adaptation of
Alzheimer’s disease. Genome Res. 11: 143–151.methods and software to effectively model biological

Fisher, R. A., 1954 Statistical Methods for Research Workers, Ed. 12.
effects of the genes under study. In the absence of well- Hafner Publishing, New York.

George, V. T., and R. C. Elston, 1987 Testing the association be-developed guidelines, we hope that the procedures and
tween polymorphic markers and quantitative traits in pedigrees.methods illustrated herein can be useful as an example
Genet. Epidemiol. 4: 193–201.

for future pooling of genetic studies of quantitative trait Gotoda, T., B. S. Manning, A. P. Goldstone, H. Imrie, A. L. Evans
et al., 1997 Leptin receptor gene variation and obesity: lack ofloci.
association in a white British male population. Hum. Mol. Genet.
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where Q 0 is the true parameter value and the number
of degrees of freedom isAPPENDIX A: DATA PROVIDERS

See Table 1 for the study names. v � (m � 1)�1 �
U

(1 � 1/m)B�
2

.
Finnish Studies 1 and 2: Markku Koulu, M. Karvonen,

U. Pesonen, A. Rissanen, M. Laakso, and M. Uusitupa. When dim(Qi) � k � 1, calculation of an “overall” P
QFS and HFS: Claude Bouchard and Yvonne Chagnon. value for testing H0: Q � Q0 can be performed on the
MIFS: Trudy L. Burns and Patricia A. Donohoue. basis of the Wald test statistic; that is,
Baltimore Study: Ross E. Andersen, Alan R. Shuldiner,

dW
i � (Qi � Q0)T U�1

i (Qi � Q0),and Kristi Silver.
Danish Study: Soren Echwald, Olaf Pedersen, and or equivalently,

T. I. A. Sørensen.
dW

i � �2
k(1 � pi),Nigerian Study and AfAm Study: Philip Behn and M.

Alan Permutt. where pi is the P value obtained from the ith imputed
complete data set. Then we obtained a test statistic

D2 � (dw/k � (m � 1)(m � 1)�1r2)/(1 � r2) � Fk,v,
APPENDIX B: INFERENCE BASED ON MULTIPLE

IMPUTATION (Shafer 1997) where

We conducted appropriate analysis with each im- dw � �dw
i /m, r2 � (1 � 1/m)�1/(m � 1)��√dw

i � √dw�2
�,

puted complete data set to obtain five estimates, Qi, i �
and1, . . . , m(� 5), and their estimated variance Ui �

Var(Qi), i � 1, . . . , m(� 5). In the following, dim(Qi) v � k�3/m(m � 1)(1 � 1/r2)2.
denotes the dimension of the parameter vector Qi. We then obtained the overall P value,When dim(Qi) � 1, the final estimate, its variance T,
and sampling distribution are p � Pr[D2 � Fk,v].


