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ABSTRACT
Four maternal-effect sterile genes, mes-2, mes-3, mes-4, and mes-6, are essential for germline development

in Caenorhabditis elegans. Homozygous mes progeny from heterozygous mothers are themselves fertile but
produce sterile progeny with underproliferated and degenerated germlines. All four mes genes encode
chromatin-associated proteins, two of which resemble known regulators of gene expression. To identify
additional components in the MES pathway, we used RNA-mediated interference (RNAi) to test candidate
genes for enhancement of the Mes mutant phenotype. Enhancement in this assay was induction of sterility
a generation earlier, in the otherwise fertile homozygous progeny of heterozygous mothers, which previous
results had suggested represent a sensitized genetic background. We tested seven genes predicted to encode
regulators of chromatin organization for RNAi-induced enhancement of mes-3 sterility and identified one
enhancer, called set-2 after the SET domain encoded by the gene. Depletion of SET-2 also enhances the
sterile phenotype of mes-4 but not of mes-2 or mes-6. set-2 encodes two alternatively spliced transcripts, set-2l

and set-2s, both of which are enriched in the germline of adults. In the adult germline, SET-2L protein is
localized in mitotic and mid-late-stage meiotic nuclei but is undetectable in early pachytene nuclei. SET-2L

protein is localized in all nuclei of embryos. The localization of SET-2L does not depend on any of the
four MES proteins, and none of the MES proteins depend on SET-2 for their normal localization. Our results
suggest that SET-2 participates along with the MES proteins in promoting normal germline development.

GERM cells display numerous unique traits, among multiprotein complexes to repress transcription of tar-
get genes (Gould 1997; Pirrotta 1997; Preuss 1999).them the ability to undergo meiosis and the ability

to generate offspring. These unique traits require Their best known targets in Drosophila are homeotic
genes, which function to determine the anterior-poste-unique control mechanisms. Among the specialized reg-

ulatory molecules required in the germline of Caenorhab- rior body pattern (Pirrotta 1995; Simon 1995; Akam
1998). After the initial expression patterns of homeoticditis elegans are the four maternal-effect sterile (MES)

proteins, named after their maternal-effect sterile mu- genes are established in the early embryo (Carroll et
al. 1986; Celniker et al. 1989), maintenance of thetant phenotype (Capowski et al. 1991). In the progeny

of homozygous mes mothers, the germline undergoes expression patterns is controlled by the antagonistic
functions of the PcG and the trxG (trithorax group).only limited proliferation and then degenerates, re-

sulting in sterile but otherwise healthy adults (Paulsen PcG proteins maintain repression of genes outside of
their expression domains by promoting assembly ofet al. 1995; Garvin et al. 1998). The predicted MES

protein sequences reveal that MES-2 and MES-6 are the chromatin into a repressive state, while trxG proteins
maintain active gene expression within the proper do-C. elegans orthologs of the Drosophila Polycomb group

(PcG) proteins, Enhancer of Zeste [E(Z)], and Extra mains by remodeling chromatin into a transcriptionally
active state (Owen-Hughes et al. 1996; Shao et al. 1999).Sex Combs (ESC), respectively (Holdeman et al. 1998;

Korf et al. 1998). MES-3 is a novel protein with no Although PcG and trxG proteins are generally thought
to function antagonistically in transcriptional regula-recognizable motifs (Paulsen et al. 1995). MES-4 is a

SET-domain protein with multiple PHD fingers (Y. tion, the distinction between them is not always clear.
E(Z), for example, is a classic PcG member. MutationsFong, L. Bender and S. Strome, unpublished results).
in E(Z) cause anterior to posterior segment transforma-The similarity of MES-2 and MES-6 to PcG proteins
tions that are characteristic of loss of PcG gene functionsuggests that the MES proteins are likely to function
(Jones and Gelbart 1990). However, E(Z) has alsosimilarly to PcG proteins. PcG members associate into
been implicated as a trxG protein (LaJeunesse and
Shearn 1996). Animals heterozygous for both a muta-
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RNAi analyses: The cDNAs for RNAi tests were obtainedamorphic mutant alleles of E(z), accumulation of many
from the expressed sequence tag (EST) project (Y. Kohara,homeotic gene products is lost. These results suggest
National Institute of Genetics, Mishima, Japan) as �ZAPII

that E(Z), a PcG protein, can in certain contexts display phagemid clones (yk273c7, yk11d12, yk25g10, yk40b5, yk112b11,
trxG characteristics and activate gene expression. yk52e6, yk250a4, and yk427g1). The cDNA inserts are flanked

by T7 and T3 promoters in the context of linearized pBlue-On the basis of analysis of transgene expression, the
Script vectors. After the pBlueScript plasmids were excisedMES proteins participate in repression of gene expres-
from the phagemids by helper phages (Sambrook et al. 1989),sion in the germline of C. elegans, as PcG proteins do
they were transformed into Escherichia coli and amplified. Sense

in the Drosophila soma. Transgenes present in multiple and antisense RNAs of each gene were transcribed separately
copies in extrachromosomal arrays are efficiently ex- in vitro from the cDNA by T7 or T3 polymerases, using the

MEGAscript kit (Ambion, Austin, TX) followed by DNasepressed in somatic tissues but silenced in the germline
treatment. The RNAs were heated to 85� for 5 min and cooledof wild-type C. elegans (Kelly et al. 1997). Such high-
to room temperature to anneal.copy transgenic arrays are desilenced in the germlines To generate the double-stranded RNA that targets set-2l only,

of sterile mes mutants (Kelly and Fire 1998). Trans- an �1-kb set-2l -specific cDNA fragment was amplifed by RT-
genes in arrays also can be desilenced in wild-type germ- PCR using poly(A)� RNA prepared from wild-type worms as

the template as described previously (Sambrook et al. 1989;lines by reducing their copy number and placing them
Conrad et al. 1991). The downstream primer for reverse tran-in the context of complex DNA (Kelly et al. 1997).
scription and for PCR was 5�-AAAAGCGGCCGCTCGGTTTTTaken together, these findings suggest that the MES TCAGCTTC-3�. The upstream primer for PCR was 5�-AAAG

proteins participate in repressing transgene expression GATCCGCATCGGGAAGCTCTTC-3�. The PCR product was
in wild-type germlines and that this is via an effect on cloned into pBlueScript. The sequence of the PCR product

was verified by sequencing. Double-stranded RNA from thischromatin state.
PCR product was produced as described above.To identify new components in the MES regulatory

Double-stranded RNA (�500 ng/�l) of each above cDNApathway, a powerful approach is to search for enhancers was injected into heterozygous mes mutants that were raised
of the Mes phenotype in a sensitized genetic back- at 20�. Embryos laid 12 hr and later after injection were grown
ground. We reasoned that M�Z� mes mutants (M, ma- to adult stage at 20� and scored for their sterility under a

dissecting microscope. Worms with an empty uterus, indicat-ternal; Z, zygotic or nonmaternal) might represent such
ing the absence of embryos, were scored as sterile.a sensitized background for this kind of search. First,

Antibody production and immunostaining: Anti-SET-2L anti-M�Z� mes hermarphrodites (i.e., mes/mes hermaphro- bodies were generated against the N-terminal peptide of SET-
dites from mes/� mothers) are fertile but have reduced 2L, MSTHDMNHHPPRKSHSKRDK. The peptide was synthe-
brood sizes, indicating that their germlines are compro- sized and conjugated to keyhole limpet hemocyanin carrier

protein by Research Genetics (Huntsville, AL). The conju-mised (Capowski et al. 1991). In the case of mes-3,
gated peptide was injected into rats by Cocalico. The freeM�Z� hermaphrodites are occasionally sterile. Second,
peptide was crosslinked to immunopure epoxy-activated aga-transgene desilencing occurs in the germlines of M�Z� rose (Pierce, Rockford, IL) for affinity purification of anti-

mes-3 and mes-4 hermaphrodites (Kelly and Fire 1998), SET-2L antibodies. Anti-SET-2L antibodies were eluted from
suggesting that the germlines of M�Z� mes mutants the affinity column by 5 m KI and dialyzed against PBS over-

night at 4�. Immunostaining was performed as previously de-display some characteristics of the sterile M�Z� mes
scribed (Strome and Wood 1983).germlines. We hoped that additional mutations that

Northern blot hybridization analyses: poly(A)� RNA wasenhance the Mes phenotype might induce sterility in prepared as previously described from N2, glp-4(bn2), and fem-2
these M�Z� mes worms. We used RNA-mediated inter- (b245ts) mutant hermaphrodites raised at 25� (Sambrook et
ference (RNAi) to test candidate genes for enhance- al. 1989; Conrad et al. 1991). It was electrophoresed on a

0.8% agarose 6% formaldehyde gel and blotted to Hybond-ment of mes-3. We found that RNA-mediated interfer-
Nylon membrane. The blots were hybridized with a set-2 probe,ence with one gene, called set-2, caused sterility in
which was amplified by PCR using yk25g10 as the template andM�Z� mes-3 and mes-4 mutants, but not in mes-2 or radiolabeled with [�-32P]dCTP using a Boehringer Mannheim

mes-6 mutants or in wild-type worms. set-2 encodes two (Indianapolis) random-primed labeling kit. rpp-1, a ribosomal
alternative transcripts, set-2l and set-2s, both of which are protein gene (Evans et al. 1997), served as a loading control.

RNA bands were quantified using NIH Image software (Na-germline enriched. The larger protein product, SET-
tional Institutes of Health). The relative intensity of each band2L, is distributed similarly to the MES proteins in the
was expressed as the hybridization intensity of the set-2 bandnuclei of germ cells and embryos. relative to the rpp-1 band in each lane, and the ratio in the
mutants was compared to that in N2, which was arbitrarily set
to 1.

RT-PCR and Southern blot analyses: RT-PCR reactions wereMATERIALS AND METHODS
performed as previously reported (Spieth et al. 1993).
Poly(A)� RNA prepared as described above was used as theAlleles and strain maintenance: N2 var. Bristol was used as

the wild-type C. elegans strain in this report. The following mutant RNA template. The downstream primers used for reverse tran-
scription and for PCR were 5�-GAAGATGGGCTCGACATstrains were used for RNAi analyses: mes-3(bn35) dpy-5 (e61)/mes-

3(bn35)dpy-5(e61)I/hDp20(I;V, f), mes-4(bn67) dpy-11(e224)V/nT1 AAG-3� for set-2l and 5�-CGAAGCACGTCTTCGTCGC-3� for
set-2s. The upstream primers for PCR were SL1 (5�-GGTT[let(m435)](IV,V), mes-2(bn11) unc-4(e120)/mnC1[dpy-10(e128) unc-

52(e444)]II, and mes-6(bn38)IV/DnT1[unc(n754)let](IV,V). Strains TAATTACCCAAGTTTGAG-3�) and SL2 (5�-GGTTTTAACC
CAGTTACTCAAG-3�). The PCR products were electropho-were maintained following standard procedures (Brenner 1974).
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Figure 1.—Strategy used to search for en-
hancers of mes-3. The strain mes-3 dpy-5/mes-3
dpy-5/hDp20 was used to search for enhancers
of mes-3. (Left) The genotypes and phenotypes
of the progeny from mothers without RNA
injection. (Right) The genotypes and pheno-
types of the progeny from mothers injected
with double-stranded RNA made from a gene
whose depletion enhances the Mes-3 pheno-
type. RNAi depletion of such an enhancer will
cause the homozygous mes F1 progeny to de-
velop into sterile adults, while their heterozy-
gous siblings remain fertile.

resed on a 0.8% agarose gel and probed for set-2l or set-2s by RESULTS
Southern blot, following standard procedures (Sambrook et

Test for enhancers of mes-3: To identify new compo-al. 1989). The probes used were 5�-CGTACTTCACAACGT
nents in the MES regulatory pathway, we tested candi-CCC-3� to detect set-2l and 5�-GACGACGTGGAAACTGTACG-

3� to detect set-2s. The PCR products were cloned into pGEM-T date genes for whether depletion of gene product by
vector and sequenced using T7 and SP6 promoter sequence RNAi enhances mes-3 sterility. RNAi, which involves in-
as the primers. jection of gene-specific double-stranded RNA (dsRNA)Sequence analyses of set-2l and set-2s cDNAs: set-2l -specific

into hermaphrodites, is an extremely potent and spe-cDNA was amplified as three overlapping fragments by RT-
cific method of reducing gene expression and has beenPCR as described above. Fragment 1 was as described in RT-

PCR and Southern blot analyses. For fragment 2, the downstream demonstrated to phenocopy strong or null mutations
primer for reverse transcription and for PCR was 5�-GCT in many genes (Rocheleau et al. 1997; Fire et al. 1998).
TCCCGATGCAGATTCGG-3� and the upstream primer for Consequently, RNAi has been used extensively to exam-PCR was 5�-CTTATGTCGAGCCCATCTTC-3�. For fragment

ine the functions of genes with known nucleotide se-3, the downstream primer for reverse transcription and
quences but unknown mutant phenotypes. The parentfor PCR was 5�-AAAAGCGGCCGCTCGGTTTTTCAGCTTC-3�

and the upstream primer for PCR was 5�-AAAGGATCCGC strain we used to test for RNAi-induced enhancement
ATCGGGAAGCTCTTC-3�. of the Mes phenotype contains the mes-3(bn35) mutation

The 231 bp of set-2s-specific cDNA was sequenced using on both chromosomes balanced by a duplication, hDp20,
yk25g10 as the template and the T7 promoter sequence as

which contains a wild-type copy of mes-3 (i.e., bn35/bn35/the primer. yk25g10 is a cDNA clone from the EST project,
hDp20 ; Figure 1). This strain is similar to a heterozygouswhich contains the set-2s-specific sequence as well as the com-

mon region between set-2l and set-2s. mes-3 strain and produces predominantly fertile F1 prog-
The common region between set-2l and set-2s was sequenced eny. The fertile bn35/bn35 F1 hermaphrodites produce

using yk25g10 and yk11d12 as the templates. yk11d12 is a all sterile F2 progeny. We reasoned that RNAi depletion
cDNA clone from the EST project, which contains 249 bp of

of a protein that functions with MES-3 might inducethe set-2l -specific region and overlaps with fragment 3 of set-
sterility in the bn35/bn35 F1’s (Figure 1). The bn35/�2l (see above) and the common region between set-2l and

set-2s. Sequencing was performed using an ABI PRISM DNA siblings, however, might remain fertile as a result of
sequencing kit and ABI PRISM 310 genetic analyzer (PE Ap- zygotic expression of MES-3.
plied Biosystems). The genes that we selected to test for a genetic interac-

Bioinformatics: The predicted amino acid sequences of
tion with mes-3 encode potential chromatin regulators.TRX, BRM, ASH-1, FSH, E(PC), and NURF p55 in Drosophila
They included a gene encoding a protein that shares awere obtained by searching GenBank (http://www3.ncbi.nlm.

nih.gov/Entrez/). They were used to search for potential ho- domain with the Drosophila PcG protein Enhancer of
mologs in C. elegans using the Wu-BLAST program (http:// Polycomb [E(PC)] (Stankunas et al. 1998); a gene en-
www.sanger.ac.uk/Projects/C_elegans/blast_server.shtml). In- coding a homolog of the chromatin remodeling factor,
formation on the cDNA clones available for each homolog

nucleosomal remodeling factor p55 (NURF p55; Mar-was provided by GenBank.
tinez-Balbas et al. 1998); and five C. elegans homologsThe RNA recognition motif (RRM) in SET-2L was predicted

by the Pfam program (http://www.sanger.ac.uk/Software/ of trxG genes. As described above, although PcG and
Pfam/search.shtml). The secondary structure of this putative trxG proteins are generally thought to function antago-
RRM in SET-2L was predicted by the following programs: SSP nistically in Drosophila, there is evidence that certain
(http://searchlauncher.bcm.tmc.edu/seq-search/struc-predict.

proteins belong to both groups. In particular, the PcGhtml), SSpro (http://promoter.ics.uci.edu/BRNN-PRED/), Pred-
member, E(Z), sometimes presents trxG characteristics.ator (http://www.embl-heidelberg.de/cgi/predator_serv.pl), and

PSIpred (http://insulin.brunel.ac.uk/psiform.html). Therefore, the C. elegans trxG homologs were consid-
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TABLE 1

Tests for enhancement of mes-3 sterility by RNAi depletion of selected genes

Enhancement Enhancement
cDNA clones Homolog in of sterility of of sterility of Embryonic
tested by RNAi Drosophila mes-3 a (%) mes-3/�a (%) lethalityb (%)

T12D8.1 (yk273c7) trx Yes (0–66) No Yes (�50)
C26E6.9a and C26E6.9b trx SET domain Yes (92) Slight (11) No

(yk11d12 and yk25g10)
T12F5.4 (yk40b5) ash-1 No No No
C52B9.8 (yk112b11) brm No No No
F57C7.1A and 1B (yk52e6) fsh No No No
yk250a4 E(Pc) No No Yes (�50)
K07A1.12 (yk427g1) NURF p55 Yes (83) Yes (25) Yes (�50)

a Double-stranded RNAs were injected into mes-3(bn35) dpy-5/mes-3(bn35) dpy-5/hDp20 mothers and their mes-3
(Dpy) progeny, and mes-3/mes-3/hDp20 (non-Dpy) progeny were scored for sterility.

b Embryonic lethality was scored among the embryos of the injected mothers.

ered candidates to genetically interact with the MES According to the GeneFinder prediction program, the
proteins, two of which (MES-2 and MES-6) are PcG locus encodes two overlapping transcripts; this was
homologs. The C. elegans genome contains two genes confirmed by Northern hybridization (see below). We
with significant sequence similarity to trithorax (Stassen call the longer one [open reading frame (ORF) no.
et al. 1995). One of them, T12D8.1, encodes a predicted C26E6.9a] set-2l and the shorter one (C26E6.9b) set-
protein that is similar to TRX throughout its length; it 2s. When both transcripts were depleted by RNAi, the
contains three PHD fingers and a SET domain, as does sterility of F1 mes-3 worms was increased from 15 to 92%
TRX. The other gene, C26E6.9, encodes two predicted (Figure 2). RNAi depletion of set-2 in wild-type worms,
proteins that have sequence similarity with TRX only in however, did not cause sterility or any other significant
the SET domain. We also found homologs of the trxG defects. The sterile germlines observed in mes-3; set-
genes ash-1 (Tripoulas et al. 1996), brm (Tamkun et al. 2(RNAi) worms were quite variable in appearance. Ap-
1992), and fsh (Haynes et al. 1989). proximately 15% of sterile adults contained a severely

Double-stranded RNA to each of the above genes underproliferated germline, resembling the phenotype
was synthesized and injected into heterozygous mes-3 of sterile mes-3 worms from homozygous mes-3 mothers.
mutants, and the F1 progeny were scored for sterility. However, the remaining sterile worms contained fairly
As summarized in Table 1, three types of RNAi effects well-proliferated germlines and some contained ga-
were observed: metes; none of them produced fertilized embryos. We

do not know whether this variability in germline pheno-
1. No enhancement of sterility in the mes-3 F1’s: We did type reflects variability in RNAi depletion of SET-2 or

not pursue these genes further. variable effects of full depletion of SET-2. This issue, as
2. Embryonic lethality among embryos of the injected well as whether set-2 RNAi enhancement of sterility is

worms and also enhancement of sterility in the mes-3
due to depletion of maternal or zygotic SET-2 or both,

F1’s: The embryonic lethality phenotype indicated
will be addressed when a null mutant of set-2 is isolated.

that RNAi depletion of these genes generated early
To test whether set-2l and set-2s both function to en-

somatic defects in the F1 progeny, which led to the
hance mes-3, we injected mes-3 heterozygous worms with

concern that the sterile phenotype may be a second-
dsRNA that targets both isoforms or with dsRNA thatary consequence of somatic defects or of general
targets only set-2l. RNAi depletion of set-2l alone causedsickliness. Therefore, we did not pursue these genes
53% sterility in mes-3 F1’s, whereas RNAi depletion offurther.
both isoforms of set-2 caused 92% sterility in mes-3 F1’s3. Enhancement of the sterility of mes-3 F1’s, no signifi-
(Figure 2). Therefore, the enhancement was more se-cant enhancement of the sterility of mes-3/� F1’s, vere when both transcripts were depleted by RNAi thanand no embryonic lethality: Among the seven genes
when only the larger one was depleted. This indicatestested, one gene displayed this genetic enhancement
that depletion of either set-2l or set-2s partially enhancesof the mes-3 phenotype. This gene, C26E6.9, was
the mes-3 mutant phenotype.named set-2 and is the focus of the remainder of this

We also tested whether RNAi depletion of set-2 en-article.
hances the sterility caused by mutations in the other
three mes genes. As described above, we injected set-2set-2 is an enhancer of mes-3 and mes-4: set-2 was named

for the SET domain in the predicted protein products. dsRNA into heterozygous mes mothers and analyzed
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Figure 2.—RNAi analysis of set-2. Double-
stranded RNA was made from a region specific
to set-2l or common to set-2s and set-2l and was
injected into N2, mes-2/�, mes-3/�, mes-4/�,
or mes-6/� young adult hermaphrodites. The
percentage of sterile F1 progeny was calculated
for the various genotypes (A) and graphed
(B).

their mes and mes/� F1 progeny. RNAi depletion of set-2 Finder prediction, the 5� end of set-2l starts after the
predicted GTP-binding domain-containing exon. Con-enhanced the sterility of mes-4 F1’s to a similar degree

as seen in mes-3 but did not enhance the sterility of mes-2 sistent with our determined 5� end, we found that RNAi
using RNA directed against the GTP-binding domainor mes-6 F1’s (Figure 2).

set-2l is trans-spliced to SL1: Northern hybridization did not enhance mes-3 sterility (data not shown). Conse-
quently, we conclude that the SET-2L protein does notanalysis demonstrated that the set-2 locus encodes two

transcripts, estimated to be 6.5 and 3.4 kb (Figure 3A). include the GTP-binding domain; this domain might
be encoded by the gene upstream of set-2l. The set-2lAccording to GeneFinder, the first four exons of set-2l

encode a GTP-binding domain and the last three exons cDNA was subsequently sequenced (see materials and
methods), and its gene structure is shown in Figureencode a SET domain. To verify this prediction, the 5�

end of set-2l was determined by RT-PCR followed by 4B. Since set-2s appears not to be trans-spliced to either
SL1 or SL2 (data not shown), we did not verify its 5�sequence analysis (see materials and methods). We

found that at least some set-2l transcripts are trans-spliced end. However, our sequencing of a cDNA clone of set-2s

(yk25g10) suggests that it encodes the full-length SET-2Sto SL1 but not to SL2 (Figure 4A). set-2s is not trans-
spliced to either SL1 or SL2. Sequencing of the set-2l protein; it includes a region of predicted 5� UTR, the

entire ORF predicted by GeneFinder, and a 3� UTR.RT-PCR product showed that, different from the Gene-
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Figure 3.—Northern blot hybridization
analysis of set-2. (A) poly(A)� RNA was pre-
pared from N2, glp-4(bn2ts), and fem-2(b245ts)
adult hermaphrodites grown at 25� and probed
with a region common to set-2s and set-2l on
Northern blots. After growth at 25�, glp-4 adults
have a severely underproliferated germline,
and fem-2 adults produce oocytes but no sperm.
The probe recognizes two bands estimated to
be 6.5 and 3.4 kb. The predicted sizes of set-2l

and set-2s mRNAs without poly(A) tails are �5.2
and �2.8 kb, respectively. The same blot was
probed with the C. elegans ribosomal protein
gene, rpp-1, as a loading control. The numbers
on the right of the blot are in kilobases. (B)
The levels of set-2l and set-2s in each strain were
normalized to the loading control and are
shown in the histogram with the level in N2
arbitrarily set to 1.

Protein motifs in SET-2: The predicted 1507-amino- characterized are associated with chromatin (Kuzin et
al. 1994; Tschiersch et al. 1994; Chinwalla et al. 1995;acid SET-2L and 739-amino-acid SET-2s proteins both

contain a C-terminal SET domain that displays 58% Carrington and Jones 1996; Tripoulas et al. 1996),
suggesting that SET domain proteins are generally in-amino acid identity with the SET domain in TRX (Fig-

ure 5). The SET domain was first identified as a shared volved in chromatin regulation. However, the SET do-
mains in different proteins appear to function throughmotif among Suppressor of variegation 3-9 [SU(VAR)

3-9] (Tschiersch et al. 1994), E(Z) (Jones and Gel- different mechanisms. For example, the SET domains
in vertebrate homologs of SU(VAR)3-9 have histonebart 1993), and TRX (Stassen et al. 1995) in Drosoph-

ila. All SET domain-containing proteins that have been H3 methyltransferase (HMTase) activity, but the SET

Figure 4.—The 5� end of set-2l and the
gene structures of the set-2 isoforms. (A)
RT-PCR products of set-2l, generated using
SL1 or SL2 as the upstream primer, were
probed with a set-2l -specific probe. The
results show that set-2l is trans-spliced to
SL1 and not to SL2. (B) Gene structures
of the two predicted isoforms of set-2, set-
2l and set-2s. set-2s starts within intron 9 of
set-2l and shares the 3� �3 kb with set-2l.
The regions used for RNAi analysis are
indicated.
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Figure 5.—Protein motifs in
SET-2. (A) Schematic align-
ment of SET-2 isoforms and
TRX, showing the relative pro-
tein lengths and motifs. (B)
Alignment of the SET domains
in TRX and SET-2. Identical
residues are in black boxes.
The alignment was done using
NCSA BIOLOGY WORK-
BENCH software (http://work-
bench.sdsc.edu).

domains in TRX and E(Z) do not display HMTase activ- type, glp-4(bn2ts), and fem-2(b245ts) adult hermaphro-
dites (Figure 3). glp-4 adult hermaphrodites, which haveity (Rea et al. 2000).

SET-2L also contains two consecutive proline-rich re- a severely underproliferated germline (Beanan and
Strome 1992), contain 	10% of the level of set-2l tran-gions (Figure 5A). Since proline residues enhance the

flexibility of protein structures, they often appear in scripts present in wild-type adult hermaphrodites. set-2l

is present at a higher level in fem-2 hermaphroditesproteins that are involved in dynamic processes. Many
proline-rich proteins function in signal transduction (�145% of wild type), which produce only oocytes (Kim-

ble et al. 1984). However, the level of set-2s is lower inpathways, and the proline-rich regions in them are im-
portant for protein-protein interactions (Kay et al. fem-2 hermaphrodites than in wild type. These results

suggest that set-2 mRNA is expressed predominantly in2000).
SET-2L has a putative RRM on the basis of analysis the germline. Consistent with this, in situ hybridization

analysis showed germline-enriched accumulation of set-2by the Pfam program (see materials and methods).
RRMs have been found in a variety of RNA-binding transcript in larvae and adults (Y. Kohara, personal

communication).proteins (Swanson et al. 1987; Bandziulis et al. 1989;
Kenan et al. 1991). The primary sequences of RRMs are SET-2L protein is localized in the nuclei of embryos

and germ cells: To determine the distribution of SET-2Lnot well conserved. However, their structures typically
contain four 
 sheets and two � helices, which form protein, antibodies were raised against the N-terminal

peptide of SET-2L. The distribution of SET-2L in wild-two consecutive 
�
 sandwiches (Burd and Dreyfuss
1994). The second 
�
 sandwich, especially the last 
 type worms and embryos was determined by immuno-

staining. SET-2L protein is localized in the nuclei of allsheet, is less well conserved. Several structure prediction
programs (see materials and methods) predicted that cells in embryos at all stages of embryogenesis (Figure

6). In L1 larvae, SET-2L remains visible in the nuclei ofthe putative RRM of SET-2L contains the first 
�
 sand-
wich and the 
� portion of the second 
�
 sandwich. most cell types but is most prominent in Z2 and Z3,

the primordial germ cells. In adults, SET-2L staining isAnother 
 sheet was predicted to be adjacent to the C
terminus of the predicted RRM domain. This may serve nuclear and is strongest in the germline (Figure 7),

although it is also detectable in other cell types, suchas the last 
 sheet to form the second 
�
 sandwich
and a functional RRM in SET-2L. as intestinal, pharyngeal, and neuronal cells (data not

shown). Interestingly, the level of SET-2L varies in differ-set-2 mRNAs are germline enriched: To gain insight
into the pattern of set-2 expression, a set-2 cDNA frag- ent portions of the gonad. It is present in the distal

mitotic cells, diminishes to very low levels in the transi-ment common to both isoforms was used to probe
Northern blots of poly(A)� RNA prepared from wild- tion zone and early pachytene regions, and increases
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Figure 7.—Immunolocalization of SET-2L in the germline.
Extruded gonads of wild-type worms were stained with affinity-
purified anti-SET-2L antibody and DAPI to visualize DNA. The
distal region of the gonad, where germ nuclei divide mitoti-
cally and enter meiosis, is to the left, and oocytes are in the
upper right. SET-2L is visible in the distal mitotic region of the
gonad, undetectable in early pachytene nuclei, and present at
high levels in mid- and late-pachytene nuclei. Its level de-
creases again in oocytes. Bar, 20 �m.

whether the localization of MES proteins is altered in
the absence of SET-2. Wild-type worms injected with set-
2l -specific dsRNA were stained with anti-MES-2, anti-
MES-3, anti-MES-4, and anti-MES-6. The staining pat-Figure 6.—Immunolocalization of SET-2L in embryos and
terns of all four MES proteins resembled the stainingL1 larvae. Wild-type worms were stained with affinity-purified

anti-SET-2L antibody and 4�,6-diamidino-2-phenylindole (DAPI) patterns in uninjected worms (data not shown). Thus,
to visualize DNA. During all stages of embryogenesis, SET-2L the enhancement of sterility in mes-3 and mes-4 mutants
is localized in the nuclei of all cells. In L1 larvae, it appears by RNAi depletion of SET-2L does not result from sig-to be present at higher levels in the primordial germ cells,

nificant destabilization or mislocalization of MES pro-Z2 and Z3 (arrow). (Bottom) SET-2L staining is not detectable
teins.in set-2l(RNAi) embryos. Bar, 10 �m.

Conversely, to test whether the localization of SET-2
depends on any of the MES proteins, we compared the
staining pattern of SET-2L in mes-2, mes-3, mes-4, and mes-6dramatically in mid-pachytene nuclei. In oocytes, the
worms and embryos with the pattern in wild type. Welevel of SET-2L appears relatively low. The specificity of
found that SET-2L staining in embryos and germlines isthe antibodies was demonstrated by the observation that
not altered in any of the mes mutants (data not shown).SET-2L immunostaining is reduced to below detection

in set-2(RNAi) embryos and worms (Figure 6).
SET-2L and the MES proteins do not depend upon

DISCUSSIONeach other for correct nuclear localization: One hypoth-
esis to explain set-2 RNAi enhancement of the sterility Screen for enhancers in a sensitized genetic back-
of mes-3 and mes-4 is that depletion of SET-2 causes ground: Screening for enhancers or suppressors of mu-
defects in the accumulation or distribution of MES-3 tant phenotypes in a sensitized genetic background has

proven to be a powerful approach to identify new com-and/or MES-4. To test this possibility, we investigated



1027SET-2 and Germline Development

ponents in a regulatory pathway. For example, Karim MES-3 may be able to participate in propagation of the
germline state. In the absence of both SET-2 and MES-et al. (1996) took this approach to identify downstream

genes of Ras1 signal transduction in Drosophila, using 3, chromatin defects in the germline lead to sterility.
Thus far, we have no evidence that SET-2 interacts physi-eye-specific expression of a mutant form of Ras1 to

render eye development particularly sensitive to reduc- cally with MES-3. The distributions of MES-3 and SET-
2L do not depend upon one another, and the estimatedtion in levels of other pathway components (Karim et

al. 1996). As reported here, by searching for inducers size of the MES-3/MES-2/MES-6 complex in embryo
extracts (�255 kD; Xu et al. 2001a) predicts that theof mes-3 sterility in the M�Z� generation, which we

consider to be a sensitized genetic background, we iden- complex does not contain an additional large protein,
such as SET-2S or SET-2L.tified SET-2 as an additional participant in MES regula-

tion of germline development. Furthermore, using It is interesting that SET-2 depletion enhances the
sterility of both mes-3 and mes-4 but not of mes-2 or mes-6.RNAi as the method of gene depletion greatly acceler-

ated the testing process. Our search for enhancers could Because the mutant phenotypes of the four mes genes
are very similar in most respects (Capowski et al. 1991;be expanded to many more C. elegans genes, either by

undertaking genetic screens for enhancers of mes steril- Paulsen et al. 1995; Garvin et al. 1998) and because
MES-3, MES-2, and MES-6 are assembled into and proba-ity or by testing many genes by RNAi. The RNAi ap-

proach could be extended to the whole-genome level bly function in a complex in embryos, we expected that
an enhancer of mes-3 would also enhance mes-2 andby systematically feeding mes/� worms bacteria that ex-

press dsRNA directed against nearly every C. elegans gene mes-6. This is not observed for SET-2. Instead, enhance-
ment of sterility by SET-2 depletion appears to corre-(Fraser et al. 2000) and screening for sterility among

the mes progeny. late with zygotic effects on transgene expression in the
germline: mes-3 and mes-4 M�Z� worms show transgeneSET-2 may function redundantly with zygotic MES-3

and MES-4: MES proteins have been considered as strict desilencing (Kelly and Fire 1998) and, when depleted
for set-2, are sterile, whereas mes-2 and mes-6 M�Z�maternal-effect factors. However, transgenic studies

have demonstrated that zygotically synthesized MES-3 worms rarely show transgene desilencing (Kelly and
Fire 1998) and, when depleted for set-2, are not sterile.and MES-4 participate in transgene repression in the C.

elegans germline (Kelly and Fire 1998). Furthermore, These results may be explained by different degrees of
perdurance of maternally supplied mes gene product.although M�Z� mes worms are fertile, they have re-

duced brood sizes (Capowski et al. 1991); in the case Persistence of mes-2 and mes-6 maternal products in mes-2
and mes-6 M�Z� worms may enable their germlinesof mes-3, �15% of M�Z� worms are sterile. Our findings

in this article strengthen the view that zygotic MES-3 and to develop relatively normally and maintain transgene
silencing, whereas more rapid disappearance of mes-3MES-4 play important roles in the germline. RNAi deple-

tion of set-2 causes the majority of mes-3 or mes-4 homozy- and mes-4 maternal product in mes-3 and mes-4 M�Z�
worms may compromise germline function, releasegous progeny from heterozygous mothers to be sterile,

whereas their heterozygous siblings remain fertile. transgenes from silencing, and render germline devel-
opment more sensitive to depletion of other requiredThus, depletion of SET-2 leads to sterility only when

MES-3 or MES-4 is not zygotically synthesized. factors, such as SET-2.
The two isoforms of SET-2, SET-2L and SET-2S, appearOne explanation for the sterility observed in set-2

(RNAi); mes-3 and set-2(RNAi); mes-4 hermaphrodites is to function redundantly in enhancing the mes-3 and
mes-4 mutant phentoype, since depletion of both SET-2Lthat SET-2 functions redundantly with zygotic MES-3

and MES-4. When zygotic MES-3 and MES-4 are present, and SET-2S by RNAi created a more severe enhancement
effect than did depletion of SET-2L alone. Both SET-2SET-2 is not necessary for development of a fertile germ-

line. Conversely, when SET-2 is present, zygotic MES-3 isoforms contain a SET domain, but only SET-2L con-
tains a putative RRM, which might be involved in RNAand MES-4 are not necessary for fertility. When a combi-

nation of SET-2 and either MES-3 or MES-4 is absent, processing of target genes. It would be interesting to
identify the downstream targets of SET-2L and SET-2S,then sterility ensues. As described in the accompanying

article (Xu et al. 2001b), analysis of the temperature- because they may be downstream targets of zygotic
MES-3 and MES-4 as well and may contribute to thesensitive period for mes-3 suggests that MES-3 function

is not required after embryogenesis; the presence of sterility in mes mutants.
SET-2L protein distribution: Immunostaining showedfunctional MES-3 in the maternal germline and during

embryogenesis is sufficient to ensure that those embryos that SET-2L is most prominently localized in the germ-
line and in embryos, where its distribution closely paral-develop into fertile adults. One scenario is that mater-

nally supplied MES-3 induces a special state of chromatin lels the distribution of MES-3 (see accompanying arti-
cle). Interestingly, the levels of both proteins dramaticallyin the germline blastomeres, which can be propagated

during larval development in the absence of MES-3. The drop in the early meiotic region of the adult hermaphro-
dite germline. In the case of MES-3, this drop appears toresults in this article suggest that SET-2 may be involved

in this epigenetic propagation. In the absence of SET-2, depend on GLD-1 regulation [see accompanying article
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