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ABSTRACT
The distance of pollen movement is an important determinant of the neighborhood area of plant

populations. In earlier studies, we designed a method for estimating the distance of pollen dispersal, on
the basis of the analysis of the differentiation among the pollen clouds of a sample of females, spaced
across the landscape. The method was based solely on an estimate of the global level of differentiation
among the pollen clouds of the total array of sampled females. Here, we develop novel estimators, on
the basis of the divergence of pollen clouds for all pairs of females, assuming that an independent estimate
of adult population density is available. A simulation study shows that the estimators are all slightly biased,
but that most have enough precision to be useful, at least with adequate sample sizes. We show that one
of the novel pairwise methods provides estimates that are slightly better than the best global estimate,
especially when the markers used have low exclusion probability. The new method can also be generalized
to the case where there is no prior information on the density of reproductive adults. In that case, we
can jointly estimate the density itself and the pollen dispersal distance, given sufficient sample sizes. The
bias of this last estimator is larger and the precision is lower than for those estimates based on independent
estimates of density, but the estimate is of some interest, because a meaningful independent estimate of
the density of reproducing individuals is difficult to obtain in most cases.

BOTH evolutionary and conservation biologists are tracting an estimate of the average pollen dispersal dis-
tance on the basis of an estimate of �ft that is derivedinterested in the distance of pollen movement be-

cause of its role in the establishment of neighborhoods from the inferred pollen pool divergence among the
complete pairwise array of sampled females.and in connectivity among populations (for a review,

see Sork et al. 1999). We have elsewhere proposed that The TwoGener approach shares a great deal in com-
mon with the analysis of adult genetic diversity amongone should use measurable differentiation among the

inferred pollen clouds of widely spaced females as an populations. In fact, �ft is directly analogous to Wright’s
(1951) Fst. With the island model, it is sufficient to obtainassay of the distribution of pollination distances across

existing landscapes (Smouse et al. 2001), using a model a global estimate of Fst, from which we can extract an
estimate of Nem, assuming evolutionary equilibrium.we refer to as TwoGener. We propose this model as an

alternative to both the current practice of extracting However, for an “isolation by distance” model (Wright
1943, 1946; Malécot 1948, pp. 54–63; Kimura andan estimate indirectly from FST (assuming evolutionary

equilibrium) and more direct (but laborious) estimates Weiss 1964), the differentiation observed between two
populations, gauged by their pairwise Fst estimate, isfrom parentage analysis, both of which have limitations

(Sork et al. 1999). We have modeled the relationship expected to be an increasing function of the distance
between them (Slatkin 1991, 1993). Thus, it is possiblebetween the intraclass correlation of maternal pollen

pools, �ft, as a function of average pollen dispersal dis- to obtain an estimate of both the average and variance
of long-term (evolutionary time) dispersal rate, as atance (�), the spatial density (d) of reproductive adults,

and the average distance between females (z) (Auster- function of the distance between pairs of populations
litz and Smouse 2001a). We have also (Austerlitz (Rousset 1997) or individuals (Rousset 2000).
and Smouse 2001b) examined the impact of spatially Here, we develop a similar estimation procedure for
organized genetic structure among the adults on �ft. the estimation of contemporaneous pollen flow dis-
These two efforts have yielded the possibility of ex- tance. As we have shown in previous work, there is a

direct relation between �ft and the average physical
distance between pairs of females (z), and we can use

1Corresponding author: Laboratoire de Génétique et d’Amélioration the same theory to relate a �ft-estimate for any particular
des Arbres Forestiers, INRA-Domaine de l’Hermitage, Pierroton B. P.

pair of females to the physical distance between them.45, F-33611 Gazinet Cedex, France.
E-mail: austerli@pierroton.inra.fr In this article, we present several estimators that use
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either the global value of �ft, estimated over all sampled multinomial variables, converted to pairwise Euclidean
distance measures among pairs of gametes. Thosefemales in the population, or the pairwise �ft-estimates

to gauge the mean pollen dispersal distance. squared genetic distances are generally �2-like, but we
have no strong basis for precise distributional assump-We first develop estimates that assume that the adult

density is independently known in the population. tions about �ft. The estimates constructed here will nec-
essarily be a bit heuristic in their motivation. The rela-Then, we develop an additional method that allows joint

estimation of the density of reproducing adults and the tionship in (2) is quite adequate, provided that the
average distance between the sampled mothers is �5�dispersal distance. One might argue that since density

can be measured independently in the field, there is (Austerlitz and Smouse 2001a), where � is the average
distance of pollen dispersal, given byno necessity to estimate density from the genetic data,

but the real issue is whether we can reliably estimate
the true pollination density by direct field observation. � � ���

2
. (3)

Using computer simulation, we first perform a com-
parative study on those estimators that assume that adult

Equation 2 yields a first (very simple) global estimatordensity is independently known, which is designed to
for �:answer several questions. (i) What are the best estima-

tors in terms of bias, standard deviation, and mean
�̂g1 � � 1

4��ftd
. (4)squared error; (ii) what is the best strategy for the alloca-

tion of experimental effort, in terms of the numbers of
mothers and progeny per mother; and (iii) what is the However, if the average distance between mothers is
sensitivity of the estimates to the exclusion probability �5�, the relationship between global �ft and � requires
of the set of markers used? We then explore joint estima- refinement (Austerlitz and Smouse 2001a):
tion, using the same simulation approach. The main
question is whether (and how much) we gain by infer- �ft �

1 	 exp{	z 2/4�2}
8��2d 	 exp{	z 2/4�2}

. (5)
ring density from the genetic data.

Equation 5 can be transformed into

METHODS
�2 �

1
4�d �1 	 (1 	 �ft)exp{	z2/4�2}

2�ft
�, (6)

The estimators: Global estimators: Assume that we have
a sample of females from a given population and a

which yields a solution for � by numerical iteration.sample of offspring from each female, so that we can
We insert an initial value for � in the right-hand sideinfer the pollen cloud sampled by each female, using
(typically �̂g1) of (6) and obtain an updated value for �methods provided in Smouse et al. (2001). Our estima-
on the left-hand side of (6), which we insert into thetors assume that the pollen dispersal distribution is a
right-hand side of the equation. This procedure is re-bivariate (isotropic) normal distribution, that is, the
peated until convergence to a stable value for �, whichonly distribution for which one can obtain analytic solu-
is our second estimator, �̂g2.tions (Austerlitz and Smouse 2001a). The model links

Pairwise estimators: Equation 6 can also be used forthe estimated differentiation among pollen clouds (�ft),
�ft(z) between any pair of females, as a function ofthe average pairwise distance between females, and the
the distance (z) between them. Denote the pairwise �ftdispersal parameter (�). This bivariate normal distribu-
observed between the ith and jth females by φobs

ij , andtion is defined as
denote the physical distance between these females as
zij. Assume that we have sampled nm mother plants. A

p(x, y) �
1

2��2
exp�	 z2

2�2�, (1) simple average of (6) over the nm(nm 	 1)/2 pairs of
females yields our first pairwise estimator, denoted �̂p1,

where z 2 � (x 2 
 y 2) is the squared physical distance computed as the solution to the equation
from the index female, located at the origin, to the
pollinating male, in any direction. The isotropic model

�̂2
p1 �

1
2�dnm(nm 	 1)�

nm

i�j
�1 	 (1 	 φobs

ij )exp(	z2
ij/4�̂2

p1)
2φobs

ij
�,is radially symmetric.

The first estimator that can be designed uses the ap-
(7)proximate relation between the global �ft and �,

a solution for which can easily be found, using the same
�ft �

1
4��2d

(2) sort of iterative procedure we described above.
Now, �2 appears both on the left-hand side of this

equation and in the denominator of the exponent on(Austerlitz and Smouse 2001a), where d is the real
the right-hand side, and it is not entirely obviousdensity of reproductive adults in the population. The

genetic data used to estimate �ft are made up of discrete whether it would be better to estimate � or 1/�, so we
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have also evaluated a second pairwise estimator, defin-
ing � � 1/�, and then estimating �̂ as the solution of

�̂2 �
8�d

nm(nm 	 1)�
nm

i�j
� 2φobs

ij

1 	 (1 	 φobs
ij )exp(	z 2

ij �̂
2/4)�,

(8)

which yields

�̂p2 � �̂	1. (9)

Still another method consists of performing a nonlin-
ear regression to estimate the best fit for �, using a least-
squares criterion. Given any particular estimate of �, we
can predict each of the theoretically expected values

Figure 1.—Schematic representation of the sampling of theφij
th � �ft(zij) values from the equation

mothers. As indicated by the arrows, we sample the closest
mother to each gridpoint.

φij
th �

1 	 exp(	z 2
ij/4�̂2)

8��̂2d 	 exp(	z 2
ij/4�̂2)

. (10)

were connected. By construction, density was d � 1.0.We construct the quadratic criterion Q(�), defined as
All individuals were assigned a genotype of nL indepen-
dently segregating loci. Each locus had nA equifrequentQ(�) � �

nm

i�j

(φobs
ij 	 φij

th)2, (11)
alleles. We can compute their multiple-locus exclusion
probability (E) as a measure of the information contentwhich is minimized for the choice of � in (10), providing
available from the genetic battery (Chakravarti andour third pairwise estimator, �̂p3.
Li 1983; Jamieson 1994). For a single locus with equi-Although the true value of �ft is nonnegative, φobs

ij is
frequent alleles, this probability isan estimate that can be negative. For �̂p2 and �̂p3, we set

all the negative estimates to zero. This cannot be done
E(single locus) �

(nA 	 1)(nA
3 	 nA

2 	 2nA 
 3)
nA

4for �̂p1 because the φobs
ij ’s appear in the denominator of

a fraction, so negative values have been removed from
(12)the summation for �̂p1. This is likely to create an upward

bias for this estimate because it ignores some of the (Jamieson and Taylor 1997) and thus for nL indepen-
pairs of mothers with the lowest differentiation in their dent loci
pollen cloud.

For all the methods above, we have to impose an E � 1 	 �1 	
(nA 	 1)(nA

3 	 nA
2 	 2nA 
 3)

nA
4 �

n L

.
external estimate of d that is obtained from field mea-
sures of the density of reproducing individuals. We can

(13)
also obtain such an estimate for d from the genetic data
themselves, by optimizing (11) simultaneously for � and The genotype of each individual was created by ran-

domly drawing its two alleles at each locus from thed, providing a final set of estimates, �̂d1 and d̂1. All nonlin-
ear regression estimates (�̂p3, �̂d1, and d̂1) are obtained population allele frequency array.

We drew the sample of nm mother plants on a squarevia the Levenberg-Marquardt method (Levenberg 1944;
Marquardt 1963), which is implemented in Mathemat- grid with spacing 1.0 between consecutive points. Thus
ica 4.0 (Wolfram 1999), and for which a C source code the grid was approximately of size Int(√nm) � Int(√nm)
is given in Press et al. (1988). Both a C program and plus the remaining individuals on a line below, where
a DOS-executable version that performs all the calcula- Int(x) denotes the integer part of a real number x. In
tions described above are available from F. Austerlitz, fact, the sampled mother was the closest individual to
on request. each grid point (Figure 1). We also drew, at random

Simulations: We assessed bias, standard deviation, and on the whole landscape, a complementary subset of n s

individuals, which we used, along with the mothers, tosquare root of mean-squared error (√MSE) for each of
the estimators above, by repeated simulation. We simu- provide an estimate of allelic frequencies in the popula-

tion (Smouse et al. 2001). From each of the nm mothers,lated a population according to the method described
in Smouse et al. (2001), constructing a population of we drew no offspring. The coordinates of the father for

each offspring were drawn at random from the pollen10,000 adult, monoecious, self-fertile individuals, dis-
tributed randomly across the landscape, using a bivari- dispersal distribution, and we then assigned the adult

nearest those coordinates as the father. The offspring’sate uniform distribution, a square of size 100 units �
100 units, folded into a torus; to avoid border effects, genotype was constructed by randomly drawing one al-

lele for each locus from the maternal genotype and oneleft (resp. top) and right (resp. bottom) extremities
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allele from the paternal genotype. Using the maternal
and offspring genotypes, we then estimated the φ values
and the various estimates of � (and also d1).

We used the bivariate normal pollen dispersal distri-
bution for simulations, and we tested the impact of
various design criteria, conducting 1000 simulation runs
for each parameter set and computing the mean, stan-
dard deviation, and square root of the mean-squared
error for all estimators. Our reference setting included
density d � 1, axial dispersal variance � � 1, number
of sampled mothers nm � 20, number of other adults
sampled to estimate allelic frequencies n s � 30, number
of offspring per mother no � 20. For the genetic mark-
ers, we chose a setting that would correspond to microsa-
tellite markers: number of loci studied nL � 5, number
of alleles per locus nA � 10. We then varied each parame-
ter separately, to assess its impact on the various estima-
tors.

RESULTS

Best estimators: A plot of the pairwise �ft’s against
the distance between the sampled mothers shows clearly
that these pairwise values are dispersed around the theo-
retical curve as expected and that this dispersion de-
creases when more offspring per mother are sampled
(Figure 2). Table 1 shows two of the estimators that are
strongly biased, the global estimator (�̂g1), which does
not take into account the average distance between
mothers, and (�̂p1), the pairwise estimate based on (7).
Recall that for the latter, we were forced to ignore nega-
tive estimates, which could only bias the estimate up-
ward. Among the methods that treat density as external
information, these two estimates also show the greatest
variance. The combination of large bias and large vari-
ance yields a very large mean-squared error. We hence-
forth dispense with �̂g1 and �̂p1, since their behavior is
always inferior.

Number of mothers vs. number of progeny: The bet-
ter global estimator (�̂g2), which allows for the average
distance between females, and the best pairwise estima-
tors (�̂p2 and �̂p3), which allow for the variation among
those pairwise distances, provide very similar results. Figure 2.—Pairwise �ft’s obtained in a simulation. The theo-
They all show very small bias, which is positive for �̂g2 retical curve is also given (solid line). (A) Density d � 1, axial

dispersal variance � � 1, number of sampled mothers n m �and negative for �̂p2 and �̂p3. The variance for �̂p2 is less
20, number of offspring sampled per mother no � 20, numberthan that for �̂p3, but the bias is a bit larger; on balance,
of other adults sampled to estimate allelic frequencies n S �

�̂p3 has a lower MSE than �̂p2, which is itself better than 30, number of loci studied n L � 5, number of alleles per locus
�̂g2, at least for low sampling effort. This remains true nA � 10 (denoted in text as reference situation); (B) higher
when the number of mothers is increased, but when the numbers of offspring (no � 80); (C) higher number of mothers

(n m � 80), all other parameters being equal.number of offspring is increased, �̂p2 becomes slightly
better.

Increasing the number of sampled mothers (nm) has
a stronger impact on the estimators than increasing better to increase the number of mothers, rather than

the number of offspring per mother. Smouse et al.the number of offspring per mother, yielding a greater
increase of precision and a greater reduction of bias (2001) showed that for any fixed number of mothers,

nm, the optimal value of no is 1/�, suggesting a strategy(Table 2). Since the product N � nmno is the size of the
experimental effort invested in the study, it is generally of setting no 	 1/�ft and increasing the number of
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mothers, nm, as much as possible. Under these condi-
tions, �̂p3 is a slightly better estimator than is either �̂g2

or �̂p2.
Number of loci vs. number of alleles: The best alloca-

tion of laboratory effort is a matter of some concern,
given the substantial cost of lab assay. One cannot design
the loci to order, of course, but some loci are more
polymorphic than others, and one can choose among
those available. The MSE decreases with an increase
in the exclusion probability (E). As we pointed out in
Smouse et al. (2001), one needs enough exclusion prob-
ability from the assay battery to make the enterprise
profitable, but beyond a certain level of exclusionary
information (E � 0.99), greater genomic sampling is
not very helpful: An asymptotic value is reached for
MSE when E becomes very high (see Table 3). Given
the cost realities of laboratory assay, the best strategy
would seem to be five loci with 10–20 alleles each. The
pairwise estimates are considerably better than the
global estimate for genetic batteries with low exclusion
probability (for which case, the global estimate �ft can
be negative, which precludes estimation of �̂g1 and �̂g2).
The difference becomes minimal for higher exclusion
probabilities. In almost all cases, �̂p3 remains slightly
better than �̂p2, but the gap decreases with increasing
genetic resolution.

Joint estimation of � and d: The estimate �̂d1 shows
much more variance than any estimate obtained when
only � is estimated with an extraneously imposed density
(d), which is assumed to be correct (Table 4). The
estimator of density d̂1 shows some bias and considerable
variance, even when many offspring are sampled. The
primary value of joint estimation is that it frees us from
the assumption that raw stem count is a reasonable
estimator of reproductive density. Again, it is better to
increase the number of mothers, rather than the num-
ber of offspring, and combinations of 80 or 160 mothers
and 20 offspring per mother seem to produce results on
the joint estimation that can be trusted with reasonable
confidence. Everything else being equal, greater replica-
tion is required for joint estimation than for estimation
of � alone. MSE also decreases faster with increasing
exclusion probability than was true for the density-speci-
fied estimates. For instance, for �̂d1, √MSE is 0.355 for
5 loci and 0.208 for 20 loci (Table 5). For joint estima-
tion, both precision and accuracy improve with increas-
ing exclusion probability, and √MSE continues to de-
crease with increasing E, even when it becomes very
close to one.

Any estimate of � that is based on an extraneous
estimate of density, d, will be biased by error in that
estimate of d. For instance, if parametric d and � are
both 1.0, a biased field estimate of d, say d̂f � 0.8, will
yield an estimate of � that has expectation (0.8)	1/2 �
1.118, producing a bias of 
0.118. If d̂f is 0.5, this bias
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will be of 0.414, much higher than the bias of �̂d1. Thus,
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TABLE 2

Impact of sampling effort

Sampling effort �̂g2
a �̂p2

b �̂p3
c

nm no Bias SD √MSE Bias SD √MSE Bias SD √MSE

20 20 0.035 0.087 0.093 	0.085 0.065 0.107 	0.017 0.089 0.090
40 20 0.045 0.074 0.086 	0.065 0.054 0.085 	0.019 0.068 0.071
80 20 0.027 0.060 0.066 	0.052 0.044 0.068 	0.021 0.052 0.056

160 20 0.006 0.042 0.042 	0.042 0.033 0.054 	0.021 0.038 0.044
20 40 0.028 0.074 0.079 	0.038 0.071 0.081 	0.025 0.076 0.080
20 80 0.031 0.064 0.071 	0.030 0.061 0.068 	0.022 0.068 0.071
20 160 0.027 0.064 0.069 	0.031 0.062 0.069 	0.026 0.068 0.072
40 80 0.043 0.060 0.073 	0.029 0.051 0.059 	0.021 0.055 0.059
80 40 0.028 0.052 0.059 	0.031 0.041 0.052 	0.021 0.045 0.049

Mean and standard deviation of the best global and pairwise estimators that use density as an independently
known value for various sampling efforts, i.e., combinations of number of mothers (nm) and number of offspring
(no). All other parameters are set at the reference values density d � 1, axial dispersal variance � � 1, number
of other adults sampled to estimate allelic frequencies nS � 30, number of loci studied nL � 5, number of
alleles per locus nA � 10.

a Global estimate of �, allowing for the average distance between mothers (z), using (6).
b Pairwise estimate of �, using (8) and (9).
c Pairwise estimate of �, from nonlinear regression, (10) and (11), and assuming that density (d) is known

independently.

deciding whether to use �̂d1 or �̂p3 involves a tradeoff is indeed the case, especially for lower values of E,
for which pairwise estimates yield an appreciable reduc-between one’s trust in the field estimate of density (d̂f)

and that quantity of genetic information available. tion in MSE; for very high values of E, the reduction is
minimal. The failure to achieve greater gains may be
traceable to a feature that is common to all pairwise

DISCUSSION
analyses. The availability of multiple measures provides
the impression that they should increase resolution, butWe describe an effective means for estimating the

pollen distribution function, assuming a bivariate nor- each of those measures is extracted from a much smal-
ler sample. Moreover, the collection of all pairwisemal distribution. Provided that density is known inde-

pendently, this study shows that it is possible to design φij -values is far from being an independent set of esti-
mates (φjk is not independent of φij and φik). In practice,estimators that are minimally biased and that have

enough precision to provide a trustworthy estimator of the collection of pairwise information provides a modest
improvement on a single global average, which—whilethe average distance of pollen dispersal. Concerning

global estimates, we have shown that it is important to it ignores the detail—has the virtue of being based on
a substantially larger sample size; the pairwise strategytake into account the average pairwise distance between

mothers, as a way of removing the potential bias that is better, but only mildly so. Since an iterative pairwise
estimate is neither time- nor labor-intensive to obtain,occurs when the mothers are sampled at distances that

are too close. Among the pairwise estimates, the one particularly in view of the field and laboratory scope of
such studies, it would always seem preferable to com-that exhibits the lowest MSE is the nonlinear regression.

The behavior of both global and pairwise estimates is pute one.
In practice, estimating adult reproductive density is asatisfactory even with 20 mothers and 20 offspring per

mother, but the best way to decrease mean-squared er- serious problem. For example, not all adults reproduce
during a given year, and phenology is variable evenror is to increase the number of sampled mothers, rather

than the number of offspring per mother. Increasing within a year, so that not all parents can mate at the
same time. There is also variation in male fecundityexclusion probability (E), by increasing either the num-

ber of loci or choosing more polymorphic loci, also within a population, as a function of age and size differ-
ences, genetic differences, and microenvironmental fac-decreases MSE, but there is nothing much to be gained

by increasing this exclusion probability above 0.99, and tors. All of these factors contribute to a reduction in
the effective density of reproducing individuals. In somefor many purposes, a genetic battery that yields E �

0.90 is quite adequate to the task. cases, it can be nearly impossible to count all adult
plants belonging to a given species, in particular inThis study was motivated by the idea that pairwise

analysis could be used to extract better information tropical forests. Finally, and especially in the case of
forest trees, populations can cover very wide areas, andfrom the genetic data. The results suggest that this
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TABLE 4

Joint pairwise estimates of d and � for various sampling efforts

Sampling effort d̂1 �̂d1

nm no Bias SD √MSE Bias SD √MSE

20 20 0.151 0.726 0.742 0.016 0.266 0.267
40 20 	0.097 0.325 0.340 0.061 0.165 0.176
80 20 	0.116 0.201 0.232 0.051 0.105 0.117

160 20 	0.120 0.133 0.179 0.048 0.076 0.089
20 40 	0.052 0.419 0.422 0.043 0.183 0.188
20 80 	0.068 0.385 0.390 0.045 0.161 0.167
20 160 	0.079 0.348 0.357 0.038 0.134 0.140

All other parameters are set at the reference values density d � 1, axial dispersal variance � � 1, number
of other adults sampled to estimate allelic frequencies nS � 30, number of loci studied nL � 5, number of
alleles per locus nA � 10. d̂1 and �̂d1 are obtained from nonlinear regression using (10) and (11).

density can be nonhomogeneous across the landscape, can establish at least a numerical relation between �ft

and dispersal distance for any dispersal function (Aust-making any estimation of the effective density approxi-
mate and subject to uncertainty. Simply using the num- erlitz and Smouse 2001a) suggests that this estimation

procedure can be extended to a wider array of dispersalber of individuals above a given size class can yield a
serious overestimate of d and a serious underestimate functions. Since we can also account for genetic struc-

ture among adults in the population (Austerlitz andof �. The estimator d̂1 can be contrasted with the more
usual stem count; any discrepancy becomes an indicator Smouse 2001b), we will also be able to design estimates

that take that information into account. All such exten-of the extent to which various forms of heterogeneity
have impacted on “effective male reproductive density,” sions will also require extensive testing. These are mat-

ters that we will leave for future work.de, which is likely to be less than the actual stem count.
We must keep in mind, however, that very large data This approach is essential since a good estimation of

contemporary gene flow is essential to understand thesets are going to be required for reliable joint estima-
tion: large numbers of adults and offspring per adult, evolutionary processes that occur at the scale of a land-

scape (Sork et al. 1999). It is the only way to inferalong with a high-resolution (exclusion probability) ge-
netic battery. The increasing availability of numerous the consequence of various processes, which are often

recent and man induced: fragmentation, loss of pollina-highly polymorphic loci at reasonable cost, however,
provides some hope that we can apply the method effec- tors, and extinction of local populations. Thus, only

reliable inference of this instantaneous gene flow willtively in real situations.
This study shows that, at least for bivariate normal yield the possibility of predicting future changes for

many species. TwoGener estimation should be usefulpollen dispersion, the relationship between pollen dis-
persal distance and �ft can be used to extract a useful in that context, because it allows us to gauge pollen

flow, without typing all potential fathers in the popula-estimate of the decay parameter, �. The fact that we

TABLE 5

Joint pairwise estimates (d̂1, �̂d1) of d and � from nonlinear regression, (10) and (11), for various numbers of
loci (nL), and number of alleles (nA)

Loci and alleles Exclusion probability d̂1 �̂d1

nL nA E 	Log(1 	 E) Bias SD √MSE Bias SD √MSE

5 5 0.989 4.52 0.214 1.154 1.174 0.072 0.348 0.355
5 10 0.9996 7.92 0.151 0.726 0.742 0.016 0.266 0.267
5 15 0.999953 9.96 	0.052 0.557 0.559 0.080 0.247 0.260
5 20 0.999989 11.42 	0.098 0.463 0.473 0.083 0.226 0.241

10 10 0.99999987 15.83 	0.058 0.490 0.493 0.075 0.243 0.255
20 10 0.99999999 31.67 	0.058 0.435 0.439 0.057 0.200 0.208

All other parameters are set at the reference values density d � 1, axial dispersal variance � � 1, number
of sampled mothers nm � 20, number of offspring sampled per mother np � 20, number of other adults
sampled to estimate allelic frequencies nS � 30.
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