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ABSTRACT
In 1991, Barton and Turelli developed recursions to describe the evolution of multilocus systems

under arbitrary forms of selection. This article generalizes their approach to allow for arbitrary modes of
inheritance, including diploidy, polyploidy, sex linkage, cytoplasmic inheritance, and genomic imprinting.
The framework is also extended to allow for other deterministic evolutionary forces, including migration
and mutation. Exact recursions that fully describe the state of the population are presented; these are
implemented in a computer algebra package (available on the Web at http://helios.bto.ed.ac.uk/evolgen).
Despite the generality of our framework, it can describe evolutionary dynamics exactly by just two equations.
These recursions can be further simplified using a “quasi-linkage equilibrium” (QLE) approximation. We
illustrate the methods by finding the effect of natural selection, sexual selection, mutation, and migration
on the genetic composition of a population.

EVOLUTION involves simultaneous changes at 1. The infinitesimal model assumes that very many
genes influence the phenotype, such that each allelemany genetic loci. Modeling these changes is diffi-

cult because associations between alleles at different loci has an infinitesimal effect (Fisher 1918; Bulmer
1980; Turelli and Barton 1994). In this limit, the(“linkage disequilibria”) cause the effects of selection

acting on one locus to spill over onto other loci, generat- genetic variance contributed by allelic variation at
each locus is constant, and evolutionary change ising indirect selection (see Ewens 1979, p. 195). These

indirect effects influence the evolution of genes that are due solely to changes in associations among loci. This
is an accurate and general approximation for short-themselves under direct selection, altering the course of

adaptation (e.g., Hill and Robertson 1966; Barton term change under strong selection, but cannot de-
scribe changes in allele frequencies over the longer1983). Moreover, indirect selection determines the fate

of modifier genes that have important effects even if term.
2. The hypergeometric model (Kondrashov 1984;they themselves are free of direct selection. Examples

of such modifiers include female mating preference Barton 1992; Doebeli 1996) also assumes that loci
are unlinked and have equal effects, but allows thegenes (Fisher 1952), modifiers of recombination

(Otto and Michalakis 1998), and modifiers of the number of loci to be finite. However, the stability of
solutions to this model is limited to certain selectionmutation rate (Dawson 1999; Sniegowski et al. 2000).

The most obvious approach to modeling multilocus regimes (Shpak and Kondrashov 1999; Barton
and Shpak 2000), which do not include many scenar-systems is simply to follow the frequencies of all possible

genotypes. There are three basic drawbacks here. First, ios of evolutionary interest, such as stabilizing selec-
tion.the number of genotypes grows exponentially with the

3. Another method introduced by Fisher (1953) mod-number of loci, rapidly overwhelming both analytical
els a population by following the inheritance of “junc-and simulation approaches when there are even a mod-
tions” between chromosome regions with differentest number of genes. Second, the quantities that are
ancestries. This approach is well suited to describingoften of most interest, such as allele frequencies and
the ancestry of samples of neutral genomes (Hudsonmean phenotypes, are obscured by working with geno-
1990) and models of hybridization, in which selec-types. Third, approximations for the dynamic equations
tion can be approximated as acting on the propor-appear more naturally when we work with quantities
tions of genetic material derived from differentother than genotype frequencies.
source populations (Baird 1995). It is again intracta-Several approximate approaches have been developed
ble over long timescales, however, since the numberto deal with these problems.
of junctions increases geometrically.

4. Price (1970) gave an exact and completely general
equation, in which the average change in a trait is1 Corresponding author: Section of Integrative Biology C0930, Univer-

sity of Texas, Austin, Texas 78712. E-mail: kirkp@mail.utexas.edu precisely equal to its covariance with relative fitness
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plus the change due to transmission. This takes the proach is illustrated with examples in the following sec-
tion.classical approach of quantitative genetics, by follow-

The notation and recursions set out in this articleing only the phenotype and disregarding the (usually
have been implemented in a set of Mathematica packagesunknown) genetics that underlies it.
(Wolfram 1999) that are available on the Web at http://5. Several independent developments extend Price’s
helios.bto.ed.ac.uk/evolgen. These packages use theapproach by following the mean, variance, and
general notation, in essentially the same form as in thishigher moments of the phenotypic distribution (e.g.,
article, and apply this notation to define functions ap-Barton and Turelli 1987; Bürger 1991; Shapiro
propriate for selection and recombination in diploids.et al. 1994). Each moment depends on higher mo-
appendix d gives examples that show how the recursionsments, however, and so approximations are required
can be computed automatically to give algebraic expres-to give a closed set of dynamical equations. Such
sions for genetic changes in an arbitrary set of loci.approximations are accurate under restricted cir-

cumstances only. In contrast to thermodynamics,
where molecular motions can be averaged out over A GENERAL NOTATION FOR MULTILOCUS
macroscopic scales, genetic details do influence phe- EVOLUTION
notypic evolution.

Here we lay out a notation that is sufficiently flexible
to account for the different modes of inheritance andBarton and Turelli (1991, hereafter BT91) devel-
evolutionary forces that motivate the model. The sectionoped the quantitative genetic approach to provide a
starts by introducing the concepts on which the notationcomplete description of multilocus systems, with no re-
relies, shows how the notation can describe genotypesstrictions on the relation between genotype and pheno-
and populations, and then describes the relation be-type. This developed from work by Barton (1983,
tween phenotypes and genotypes.1986), Barton and Turelli (1987), and Turelli and

Contexts and Positions, Selection, and Transmission:Barton (1990); it was paralleled by independent work
It is useful to begin by defining the word “gene” toof Christiansen (1987) and Bürger (1991). Barton
mean a particular copy of a nonrecombining sequenceand Turelli’s (1991) approach contains three key ele-
at some locus in some individual. Thus two differentments. First, it gives a general representation of popula-
genes may or may not reside at the same locus, and iftions with multiple alleles and multiple loci. Second, it
they do they may or may not be in the same allelic state.derives exact recursions for the effects of selection and
A gene at a given locus can be found in any of a numberrecombination on allele frequencies and the associa-
of situations: It might be carried by a male or a female,tions between alleles at different loci. Third, it finds a
it might have been inherited from a mother or a father,“quasi-linkage equilibrium” approximation (QLE) that
or it might reside in one deme or another. We refer toallows the recursion equations to be greatly simplified
this collection of qualities as the gene’s context. Contextunder some conditions.
is a key concept in our notation and it is important inAlthough the notation and framework of the BT91
two ways. First, it determines how evolutionary forces

approach are general in many respects, the methods it
act on the gene. A selection coefficient, for example,

develops are restricted to certain forms of inheritance. may depend on whether the gene is carried by a male
Their notation can describe autosomal genes in ran- or a female. If there is genomic imprinting, then the
domly mating diploids and in nonrandomly mating hap- selection coefficient will also depend on the sex of the
loids. It cannot, however, accommodate such complica- individual from which the gene was inherited. Second,
tions as nonrandom mating in diploids, polyploidy, sex a gene’s context affects how it is transmitted. Consider
linkage, genome imprinting, and cytoplasmic inheri- two autosomal loci in a diploid individual. If there is
tance. The main aim of this article is to show how the no recombination between the loci during meiosis, the
BT91 approach can be generalized to include all forms resulting gamete will carry copies of the genes that both
of inheritance. We also show how migration and muta- descended from the individual’s mother or father; with
tion can be described in the same framework. recombination, the gamete will carry one gene from

This article begins by presenting a notation that is the individual’s mother and one from the father.
sufficiently flexible to accommodate a variety of evolu- The information we need to specify a gene’s context
tionary forces and modes of inheritance. Next, we derive varies between models. In a model of a spatially struc-
general recursion equations that describe how the ge- tured population, the context will include geographical
netic state of a population changes over the course of information. Likewise, in a life history model the context
a generation. The following section shows how the selec- specifies the life stage of the individual carrying it. The
tion and transmission coefficients that appear in the context will include the sex of the individual carrying
recursions are calculated for any particular situation. We a gene in a model with two sexes, but not in a model
then present the QLE approximation for the recursions, of a hermaphroditic population.

Loci are referred to by lowercase italic letters. Thewhich greatly simplifies the equations. The QLE ap-
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context is written in a series of subscripts whose elements transmission depend both on the gene’s context and
on the mode of inheritance obeyed by its locus (autoso-carry the relevant information. In this article we use the

convention that for diploid populations with two sexes, mal, Y-linked, cytoplasmic, etc.).
Describing genotypes and populations: The genotypethe first subscript of the context gives the sex of the

individual carrying the gene, which we call its “sex of of an individual at position i is represented by the indica-
tor variable Xi. With just two alleles per locus, Xi cancarrier.” The second subscript gives the sex of the parent

from which it was inherited, its “sex of origin.” Sexes take two values, which it is convenient to set at 0 or 1;
for this special case, the frequency of allele 1 at positionare denoted by “m” for male and “f” for female. For

example, genes at a diploid locus i that are carried by i is written pi and the frequency of allele 0 as qi � 1 �
pi. A fact that is useful later is that under these conven-females and that descended from a male (the female’s

father) are referred to as ifm. These are then four possi- tions, the expected value of Xi (averaging over all indi-
viduals in the population) is equal to pi. When thereble contexts for genes at this locus. Contexts in her-

maphrodites would not include the sex of carrier (since are more than two alleles, we can choose any distinct
values to distinguish the alleles. If we are consideringall individuals are the same sex), but would include the

sex of origin to denote whether the gene was transmitted alleles that have additive effects on a quantitative trait,
it is convenient to set the values equal to their effectsthrough an egg or a sperm. One would account for

more than two sexes (as when modeling a plant popula- so that the expectation of Xi equals the position’s contri-
bution to the mean value of the trait.tion with tristyly) by simply allowing the subscripts to

take more than two possible values. Subscripts can be These conventions can be generalized if the situation
demands it. When a position has pleiotropic effects onadded to denote other information, such as the deme

or the family in which a gene resides. a set of k traits, the variable Xi becomes a vector of
length k. In multiallelic models, vectors can also beWe use the term position to refer to a particular locus

in a particular context. An example of a position is the used as an alternative to the scalar-value convention
described in the last paragraph. We can define the indi-place in the genomes of females where genes inherited

from males (their fathers) at locus i reside. Positions, cator to be a vector of length equal to the number of
alleles, all entries of which are zero except for the onelike loci, are defined independently of the allelic states

of the genes that reside there. With n diploid loci in a corresponding to the allelic state. (This approach might
be used in a model of genes with additive effects if, fordioecious population, there are 4n positions that genes

occupy (n loci � two sexes of carrier � two sexes of example, alleles with the same effect mutate to other
alleles at different rates.) Other conventions are alsoorigin). Open-faced lowercase letters refer to single po-

sitions, for example i � ifm. Open-faced uppercase letters possible: For example, each position could be repre-
sented by a vector of length two, with the first givingrefer to sets of positions, e.g., A � {i, j}. A genome,

denoted G, is the set of all positions in an individual. the allelic effect and the second a label for the allele.
In general, an individual is represented by a vectorWith a single diploid locus i, for example, the genome

for a male is G � {imm, imf}, and for a female it is G � X containing the values of his/her indicator variables
for every position in the genome. It is useful below to{ifm, iff}. The notation is summarized in Table 1.

Two fundamental kinds of events that occur during extend this vector to include positions from more than
one individual.the course of a generation are selection and transmission.

“Selection” accounts for variation in the contribution The genetic state of a population can be completely
described by a set of statistical moments that we callof different genotypes to the next stage in the life cycle.

Fitnesses are assigned to either individuals or groups, associations. These include associations among genes
within a haploid genome, which are conventionally re-depending on the form of selection. The simplest case

is viability selection, in which case fitnesses are assigned ferred to as linkage disequilibria. We use the more general
term, however, since we are concerned with associationsto individuals. For sexual selection and assortative mat-

ing, we account for the relative contributions of mated among arbitrary sets of positions, which may or may not
be linked and may or may not be in a population that ispairs of male and female genotypes; here fitnesses are

assigned to all possible kinds of pairs (BT91). Thus at equilibrium. Indeed, we need to consider associations
between positions that are in different individuals. Theaccording to our use of the term, with nonrandom mat-

ing there can be selection even when all individual geno- relation between different measures of linkage disequi-
librium is summarized in the discussion.types have equal survival, mating success, and fecundity.

Group selection is described by assigning fitnesses to Our notation allows multilocus moments to be de-
fined in a variety of ways. The key quantities that deter-all possible combinations of genotypes that could com-

prise a group. mine the moments are a set of reference values. There is
one reference value for each position, and the referenceBy “transmission” we mean an event that changes the

context of a gene. A simple example is meiosis followed value for position i is denoted ℘i. (Note the distinction
between an italic pi, which denotes an allele frequency,by syngamy: A gene that was carried by a female becomes

a gene that was inherited from a female. The rules of and a curly ℘i, which denotes a reference value.) To
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TABLE 1

Summary of notation

Symbol Meaning

Loci, contexts, and positions
i, j Individual loci
A, B Sets of loci
m, f Male, female; used to specify contexts
i � imf The position corresponding to locus i in the context {mf}; that is, genes at locus i in males

inherited from females
U � {i, j, . . .} A set of positions
U \V The set U with the elements of the set V removed; defined only when V is a subset of U
G The set of all positions within an individual genome; repeated elements are included

if there are multiple alleles
W The set of all positions in the selection group

Summations
�i�U A sum over all positions i in the set U
�U�A A sum over all subsets U of the set A, including terms for the set A itself and the empty

set �
�*U�A A sum over all subsets U of the set A, including a term for the set A itself but not for

the empty set �
�U:U�A A sum over all sets U such that U � A, that is, such that U and A are equal when the

context information is removed
�*S�T�A A sum over all nonnull partitions of the set A; for example, with A � {i, j } there is one

term with S � i and T � j, and one term with S � j and T � i

Allele frequencies and associations
Xi The indicator variable that labels the allelic state of position i
X A vector of X’s that gives the genotype of an individual
f(X) The frequency of genotype X
℘i The reference value for position i
�i � Xi � ℘i The deviation of an individual at position i from the reference value
EX[g(X)] � �X f(X)g(X) The expectation of g(X) over allelic states, X
mi � E[Xi] The mean value of position i
pi The frequency of allele Xi � 1 at position i
pqi pi(1 � pi)
pqU � �i�U pqi The product of allele frequencies over the set of positions U
�U � �i�U �i The product of deviations over the set of positions U
DU � EX[�U] The association between the set of positions U

Phenotypes, fitness, and selection
Z The value of a phenotypic trait
Z The set of all positions influencing trait Z
W Fitness
W � EX[W] Mean fitness
aU The selection coefficient for the set of positions U, defined by Equation 7

Transmission
tA←B The proportion of genes at positions A that were transmitted from positions B

describe a population, we first make a change of vari- particularly simple meaning for biallelic models. De-
fined that way, if there are no differences in allele fre-ables, such that the allelic state of an individual gene

at position i is measured relative to the reference value quencies between positions at a locus (e.g., between
males and females), the reference value is equal to thefor that position, ℘i :
frequency of allele 1 at that locus (℘i � ℘i � pi). The

�i � Xi � ℘i. (1)
new indicator variable �i then takes the values 1 � pi

and �pi .Choice of the reference values is up to the investigator.
Typically it is useful to define ℘i as the expected value Next we define the product of all the �’s in the set

of positions A:of Xi among zygotes. The reference value then has a
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loci are measures of higher-order associations in the
population. Following the standard terminology for sta-
tistical moments, we say that the associations are “cen-
tered” when the reference values are set equal to the
current allele frequencies.

Equations 1–3 provide a recipe for translating geno-
typic frequencies into a set of reference values ℘ and
associations D that completely describe the genetic state
of a population. The reverse translation is of course
also possible. For example, with biallelic loci and the
reference values defined to be equal to the current allele
frequencies (℘i � pi), the frequency of genotype X is

f(X) � �i�G [Xipi � (1 � Xi)qi]

� �*U�G {DU(�1)(|U|��i�UXi)�i�G \ U [Xipi � (1 � Xi)qi]},Figure 1.—A model of a dioecious population with four
autosomal loci. Open circles are genes inherited from a fe- (4)
male; solid circles are genes from a male. Three of the associa-
tions between the 16 positions are shown. where |U| means the number of positions in set U, and

G \U stands for the positions in set U that are left after
those in set V are taken away. The first term in Equation
4, a product that includes one term for each position

�A � �i�A �i. (2)
in the genome, gives the genotype frequency that would

The symbol � indicates that the product includes one be found in the absence of any associations. The second
term for each element in the set A. If we choose an term accounts for the effects of the associations. G is a
individual at random from the population, then �A is a set of all positions in a genome whose sex of carrier is
random variable. The association between the alleles at the same as that of X. Expressions more general than
the positions in set A is defined as the expectation of Equation 4 that allow for multiple alleles and arbitrary
�A taken over the whole population, definitions for the reference values can be derived using

results that are developed below.
DA � EX[�A], (3) Summations of the kind seen in the second term of

Equation 4 make frequent appearances in this article.where EX[·] denotes an expectation over the distribution
The sum includes one term for each possible subset Uof genotype frequencies. The DA are therefore mo-
of positions in the set G, including G itself. When anments, that is, measures of statistical association. As an
asterisk appears, as in Equation 4, the sum does notexample of the notation, the association between alleles
include a term in which U equals the empty set, �.at loci i and j in a diploid male, one inherited from his
Thus, if G consists of the two positions i and j, the sumfemale parent (mother) and the other from his male
in Equation 4 will have three terms as U takes on theparent (father), is written Di mf j mm. Products over empty
values {i}, {j}, and {i, j}. When the summation symbol issets are defined to be 1, so that D� � 1. The D’s are
not followed by an asterisk, the sum does include a termthe same as BT91’s C ’s. Figure 1 illustrates the notation.
in which U � �.[We assume here and below that the indicators Xi have

The notation allows for more than two alleles perscalar values (0 or 1, say). If they are vectors, then the
locus. It does become more complicated in that event,pairwise D{i,j} are matrices, and nth-order associations
however, because the extra degrees of freedom requireare tensors of rank n.]
us to account for associations with repeated positions.The associations have particularly simple interpreta-
With three alleles, for example, the allele frequenciestions when the reference points are chosen to be the
at a position are described by the two variables Di andcurrent allele frequencies (℘i � pi). Moments for single
Dii. However, when there are only two alleles per locus,positions vanish: Di � 0. Associations between pairs of
associations containing repeated positions can be ex-positions are equal to the covariance in the allelic state
pressed in terms of associations with no repeated posi-of genes at those positions. Departures from Hardy-
tions. (This article focuses mainly on biallelic loci, whichWeinberg proportions are measured by D’s involving
is perhaps not a severe restriction as loci can be definedpairs of positions at the same locus that have the same
as single-nucleotide sites. Readers who are interested insex of carrier but different sexes of origin; for example,
loci with multiple alleles should consult BT91, or theDi mf i mm for locus i in males. When there are no sex
documentation with the Mathematica packages, for moredifferences in allele frequencies, Di mf j mf is equal to the
details about those models.)conventional measure of pairwise linkage disequilib-

Two basic equations for simplifying associations forrium (also called gametic phase disequilibrium) be-
tween loci i and j. Moments involving more than two biallelic loci are useful later. From Equations 1–3
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DUii � piqiDU � (1 � 2 pi)DUi, ter. Consequently, Equation 6 applies when the trait
under consideration is fitness. BT91 showed that this

�2
i � piqi � �i(1 � 2 pi) (5)

insight is useful because the b coefficients then take on
special significance: They can be used to calculate how(see BT91, Equation 5). Here and throughout, expres-

sions of the form AB stand for A � B, the union of the genetic state of the population changes.
We noted earlier that fitness (that is, relative repro-sets A and B; thus DUi � DU�i, etc.

The relation between phenotypes and genotypes: This ductive output) can depend on just the genotype of the
individual (as with viability selection), on the genotypenotation is sufficiently flexible to allow for any relation

between phenotypes and genotypes. Let Z be the value of a mated pair (as with any form of nonrandom mat-
ing), or on the genotypes of a larger group of individualsof a phenotypic character in an individual. This value

can be written in general as a function of the individual’s (as with kin or group selection). To describe the effects
of selection, we need to consider together the genomesgenotype,
of the selection group, by which we mean the set of individ-

Z(X) � Z � �A�GbA(�A � DA) � eZ, (6)
uals that interact to determine their mutual fitness. With
simple viability selection and random mating, the selec-where Z is the trait mean in the population and eZ is a

random environmental component that is independent tion group is a single individual. Often it is useful to
define the selection group to be a male and femaleof genotype and that has mean 0. The �A that appear

on the right-hand side are calculated from the genotype mated pair, which allows for nonrandom mating as well
as viability selection. The selection group can be ex-vector X on the left using Equations 1 and 2. (Note that

the term in the sum corresponding to the null set A � panded to more than two individuals to accommodate
group selection.� makes no contribution because �� � D� � 1.)

Equation 6 can describe any kind of genetic domi- We denote the set of all positions in a selection group
as W. For example, take a selection group consistingnance, epistasis, sex differences in expression, genomic

imprinting, etc. The relation between genotype and of a male and female in a mated pair. With a single
biallelic diploid locus i, the selection group is W � {imm,phenotype is determined by the choice of the coeffi-

cients bA. If there is gene-by-environment interaction, imf, ifm, iff}. With three alleles, the selection group is the
same, but with each element appearing twice.the b becomes a function of the state of the environ-

ment; it may be convenient to include that environmen- The absolute fitness of a selection group is defined
to be the ratio of its frequency after selection to itstal state as a component of the context. Equation 6 also

applies with multiple alleles, provided that the set G frequency before. When a selection group consists of
more than one individual, its “frequency” before selec-includes the appropriate number of repeated elements.

For example, suppose that there are three alleles at tion is equal to the product of the frequencies of the
genotypes of those individuals. Take, for example, alocus i and two alleles at locus j. For haploid genotypes,

the set G is then defined as {i, i, j}. The coefficients bi, selection group consisting of a mated pair of male and
female genotypes. The frequency before selection canbj, bii, bij, biij are then required to account for the 5 d.f.,

and the set A in the summation of Equation 6 ranges often be taken as the product of the frequencies of
the respective male and female genotypes, since theover all five distinct subsets of G.

The b coefficients can become quite numerous. For premating “groups” are equivalent to randomly chosen
pairs of males and females. The frequency of the selec-example, with just two biallelic loci each with four possi-
tion group after selection is the frequency with whichble contexts (say, two sexes of carrier and two sexes of
those genotypes are found together among all matedorigin), there are 28 � 1 � 255 possible b coefficients:
pairs (weighting the pairs by their relative fecundities,8 corresponding to single positions, 28 corresponding
if they differ). This representation of selection can ac-to pairs of positions, etc. The number of coefficients
count for viability selection within each sex as well asdrops dramatically, however, in many cases. With no
nonrandom mating and fecundity selection.epistasis, genotype-phenotype relations can be fully de-

The genotype of the selection group is described byscribed with only 8 distinct coefficients, while with a
the vector X, which includes the allelic state for everycompletely additive model (no dominance and no epis-
position in every individual in the group. Denoting thetasis), only 4 distinct coefficients are needed.
frequencies of the group’s genotype before and after
selection as f(X) and f �(X), the group’s absolute fitness

EVOLUTION BY SELECTION AND TRANSMISSION as W(X), and the population’s mean fitness as W, we
see from Equation 6 that we can always write the ex-Here we use the notation proposed above and results
pected relative fitness of the genotype of a selectionfrom BT91 to find how the genetic composition of a
group in the formpopulation changes over the course of a generation.

We first show how selection and transmission change a
w(X) �

W(X)
W

�
f �(X)
f(X)

� 1 � �U�WaU(�U � DU) (7)population and then end with some statistical book-
keeping.

Selection: Fitness is just another phenotypic charac- (see BT91, Equation 6).
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The coefficients aA defined by Equation 7 are called definitions of the selection group will produce the same
results so long as the definition that is chosen is usedselection coefficients. The coefficient aA represents the

force of selection acting on the position in set A. These consistently throughout the calculations.
Given any set of assumptions about how genotypescoefficients can account for any form of selection within

individuals (including dominance, epistasis, and geno- (or phenotypes) affect lifetime fitness, Equation 7 can
be used to calculate the corresponding selection coeffi-mic imprinting) and any form of nonrandom mating.

Note that selection coefficients defined this way typically cients. appendix a presents a simple example of two
loci under epistatic viability selection. When several se-depend on allele frequencies, associations, and refer-

ence values, even if the fitnesses of genotypes are con- lection events occur over the course of a generation,
the job is made easier by calculating coefficients forstant (BT91). If phenotypes include environmental

(nongenetic) components, then the frequencies f( ) each event in isolation and then combining them. For
example, suppose that fitness is the product of viabilityand f �( ) represent expectations averaging over those

components (see applications). Note that the selec- through two stages of the life cycle, each represented
by Equation 7 but with coefficients bU and cU. For bialleliction coefficients defined by (7) differ from those de-

fined in BT91. Although similar in form, the fitness loci, the overall selection coefficient is
functions are not the same, and so selection coefficients

aU � �V�UbVcU \V. (8)from our system and that of BT91 cannot be inter-
changed. [To prove Equation 8, write wa(X) � wb(X) wc(X), expand

Selection coefficients have simple interpretations. each of the w’s using Equation 7, use Equations 5 to
With biallelic loci, the coefficient ai measures the force eliminate products of �’s, and finally match the corre-
of direct selection acting on position i to increase the sponding coefficients of the �’s on the right and left
frequency of allele 1. Selection coefficients with multi- sides.] In the event of weak selection, the situation can
ple subscripts indicate that those positions have nonad- be simplified further by approximation: If the selection
ditive effects on fitness. For example, dominance at a coefficients b and c are of order s, then aU � bU � cU to
locus i in diploid males is measured by a imf i mm. This leading order in s.
coefficient measures the force of selection favoring al- Given the selection coefficients, we can determine
lele 1 at locus i when it appears in two copies, one the state of a population following the selection event.
inherited from a female (the individual’s mother) and BT91 showed how the new allele frequencies and associ-
the other from a male (the father). Nonadditive fitness ations are given by
interactions between loci are represented by selection

D�A � DA � �U�WaU(DAU � DUDA). (9)coefficients that have multiple positions with the same
sex of carrier. The selection coefficient ai ff j ff, for exam- This is our main result for the effects of selection. We
ple, measures the departure from additivity for the al- see that the change in the associations for positions in
leles at loci i and j that are carried by females and set A, represented here by the second term on the right,
were inherited from females. The effects of nonrandom is equal to a sum of all the selection coefficients acting
mating appear in selection coefficients that include on sets of positions in the population, weighted by the
both male and female sexes of carrier. When there are association between those positions and the ones in set A.
more than two alleles per locus, there are selection Equation 9, which gives the new moments in terms
coefficients that have the same position repeated. [The of the old reference values, can be used to calculate
notation can accommodate a continuum-of-alleles model changes in allele frequencies caused by selection. If we
where there are an infinite number of alleles per locus, choose the reference values to be the allele frequencies
provided that fitness can be approximated by a polyno- before selection (℘i � pi), then the change in allele
mial function (see BT91). It may not be possible, how- frequency at position i is equal to D�i . With two alleles
ever, to obtain a good approximation to a continuum- per locus, Equation 9 gives
of-alleles model using a finite set of moments.]

�pi � D�i � �U�WaUDUi � aipqi � �U�W
U�i

,aUDUi, (10)Two points about Equation 7 are worth keeping in
mind. If the phenotype contains an environmental com-

whereponent, the relative fitness w(X) is understood to mean
the relative fitness averaged over that environmental pqU � �i�Upiqi. (11)
variation. Second, the selection coefficients depend on
how the selection group is defined. For example, with On the right side of Equation 10, the first term repre-

sents selection acting directly on alleles at position i.random mating the selection group can be defined as
a single individual, and no selection coefficients that The second term represents the effects of indirect selec-

tion: the force of selection acting on other positionsinclude both sexes of carrier appear. But if the selection
group is defined as a mated pair, the fitness function that is transmitted to position i through the associations.

Equation 10 gives an exact expression for the changeof Equation 7 generates selection coefficients with both
sexes of carrier even under random mating. This dis- in allele frequency at position i caused by selection. If

all positions at locus i are equivalent, then this is equalcrepancy is not a problem, though, since the alternative
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TABLE 2to the change in allele frequency at that locus. If not,
the overall change at locus i is found by averaging �pi Examples of transmission coefficients under meiosis
over all the positions at that locus. (Note, however, that and syngamy
the average allele frequency is not sufficient to fully
describe the population.) Haploid autosomes

ti f ←im � 1⁄2Transmission: “Transmission” refers to an event that
ti f jf ←i m jf � rij/2changes the contexts of genes. Obvious examples are

meiosis, where a gene carried by a diploid individual Diploid autosomes
becomes a gene in a haploid individual (the gamete), ti fm←imm

� 1⁄2
and fertilization, where the reverse transition happens. ti fmj fm←imf jmm

� r m
ij /2

Migration can also be considered as a form of transmis- tAmf ←Afm
� (1 � r f

A)/2
sion, since genes change their context as they move from

Sex linkage in diploids: loci i and j X-linked, k autosomalone location to another. The effects of transmission
tim←im � 0on the state of the population are determined by the

ti fm jfm←imf jmf
� 1transmission coefficients. The transmission coefficient tA←B

ti ff jff ←ifm jfm � (1 � r f
ij)/2is defined simply as the probability that the positions

ti fmk fm←imf kmf
� 1⁄2in set A were inherited from positions in set B. (Note

that this is generally not the same as the probability that
the positions in set B are transmitted to set A.)

To clarify the meaning of these coefficients, consider
autosomal loci in a haploid population with two sexes. and associations) that describe a population is simple.
The transmission coefficient ti m←i f is the probability that Equation 3 implies that the moments after transmission,
a gene at locus i in a male was inherited from a gene at D″A, are then just a linear combination of the moments
locus i in a female and is therefore 1⁄2. The transmission before, D �A. When the reference values are chosen to
coefficient t{i m,j m}←{i f,j f} is the probability that the genes at be equal for positions at each locus, the effect of trans-
loci i and j in a male were both inherited from a female mission is particularly simple:
(the mother), which is (1 � rij)/2, where rij is the recom-

D″A � �U: U�AtA←UD �U. (12)bination rate between loci i and j.
There are three constraints on transmission coeffi- This is our main result for the effects of transmission.

cients. First, transmission coefficients are zero unless The summation is over all sets of positions U that could
each position in set A has a corresponding position in become set A following transmission. The notation “U:
set B from which it descended. This implies that sets U � A” means that U and A must be equal when the
A and B must be equal when the context information context information is stripped from them, that is, when
is stripped from all of their positions; that is, tA←B � 0 U � A. (Taking the example of dioecious diploids, with
if A � B. (For example, ti ff←j fm � 0 because i � j ; a gene A � ifm, the sum in Equation 12 has four terms at U
at locus i cannot be descended from a gene at locus j.) takes the values iff, ifm, imf, and imm.) This requirement
Second, the coefficients representing transmission to follows from the first constraint on transmission de-
any given set A must sum to 1. (In the notation intro- scribed above. Equation 12 needs modification if differ-
duced below, �B: B�A tA←B � 1.) A third constraint on ent positions at the same locus have different reference
the coefficients applies when transmission represents values, as discussed in Changing reference values below.
recombination, segregation, and/or syngamy. Then the The two-locus example presented in appendix a shows
sex of origin for each position in set A must equal the how transmission coefficients are used in calculating
sex of carrier for the corresponding position in set B, changes in allele frequencies.
since that is the sex of the parent from which a gene Equation 12 can be easily generalized to allow differ-
in set A descended. ent genotypes to follow different transmission rules. Ex-

Transmission coefficients often involve recombina- amples include cases where there is meiotic drive or
tion between groups of more than two loci. We use rA genetic variation in recombination rates. As in Equation
to denote the probability that recombination occurs 6, we write the transmission coefficients as a polynomial
somewhere in the set of loci A; that is, the alleles at function of genotype,
those loci passed to a gamete are a mixture of those

tA←U(X) � tA←U � �V�T	tA←U|V(�V � D �V), (13)inherited from the individual’s mother and father. Ta-
ble 2 gives the transmission coefficients for several cases
of interest, including autosomes, X-linked loci, and cyto- where T is the set of all positions that influence trans-

mission. The transmission coefficient tA←U is the meanplasmic factors.
Many models assume that there is no genetic variation probability that genes at positions A were inherited

from positions U, averaged over all genotypes. The coef-for the rules of transmission. In that case, the effect of
transmission on the moments (the allele frequencies ficient 	tA←U|V represents the effect of the set of positions
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V on the transmission coefficient tA←U, in the same way last expression is the main result for changing reference
values.that the selection coefficient aV represents the effects

The previous section notes that the transmissionof the set V on fitness. To find the effects of transmission
equation (12) does not hold when different positionson the associations, substitute (13) into (12) and then
at the same locus have different reference values (thataverage over all genotypes:
is, ℘i � ℘j for some i � j). In that case, the associations

D″A � EX[�U:U�AtA←U(X)�U] between positions before transmission must be adjusted
to the reference values for the positions that those genes� �U:U�AtA←UD �U � �U:U�A�V�T	tA←U|V(D �UV � D �UD �V)
will occupy after transmission,(14)

D″A � �U:U�A tA←U�U�A[D �A\U �
i�U

(℘i � ℘i*)], (16)(cf. Barton 1995, Equation 3). This equation can be
used to study the evolution of alleles that modify the

where ℘i* is the reference value for the position in settransmission system, for example, by altering recombi-
A that corresponds to i in set U.nation rates or the breeding system. In fact, Equation

With the exception of random drift, all of genetic14 is similar to Equation 9, which describes the effect
evolution can be concisely represented by two equa-of selection. One can think of selection as a special
tions: Equation 9 for the effects of selection and otherform of genotype-dependent transmission, where the
deterministic forces and Equation 12 or 16 for the ef-transmission is between corresponding positions at con-
fects of transmission. These can be supplemented bysecutive stages in the life cycle and where the transmis-
Equation 15, which does the bookkeeping needed tosion coefficients are just the relative fitnesses.
ensure that the associations have a simple interpreta-Changing reference values: As described earlier, our
tion. Other deterministic forces, like mutation andsystem of describing a population is defined relative to
migration, can also be described by these equations.a set of reference values. The investigator is free to leave
Mutation can be represented as a form of frequency-these fixed or to change them as often as desired. It
dependent selection and migration as a form of trans-is often convenient, however, to change the reference
mission (since genes change their contexts when theyvalues once per generation. By updating the reference
move). It is easier to find the effects of mutation directly,values to the current allele frequencies, the associations
however, which we do below. Before doing that, how-have simple interpretations, and we can calculate the
ever, we develop an approximation that greatly simpli-per-generation changes in allele frequencies. Moreover,
fies the equations for selection and transmission.updating only once per generation avoids a prolifera-

tion of alegebra, involving reference values at intermedi-
ate stages that eventually cancel. Sometimes it is conve- THE QLE APPROXIMATION
nient to update the reference values at the zygote stage.

The recursions derived above can be used to calculateAlternatively, it may be easiest to update them before
the exact dynamics for a wide range of multilocus popu-transmission, since under normal meiosis (no meiotic
lation genetic models. Although this approach may givedrive, etc.) allele frequencies are unchanged and the
more insight than directly following genotype frequen-change in associations caused by transmission often
cies, it will not necessarily be any more tractable. Thattakes a simple form when the associations have already
is because exact results require following the dynamicsbeen centered. If we are interested only in finding the
of the same number of variables, regardless of whetherevolutionary equilibrium, changing reference values
they are genotype frequencies or moments (that is, al-from one generation to the next is not an issue.
lele frequencies and associations). One of the greatChanging the reference values changes the associa-
appeals of the moment-based approach introduced bytions D, because the latter are defined in terms of the
BT91 is that in some situations expressions for the associ-former. Denote the associations before and after the
ations can be greatly simplified by approximation. Inchange as D″A and D�A, respectively, and the reference
this section, we derive approximate expressions for thevalues before and after as ℘″i and ℘�i . (If the reference
associations and changes in allele frequencies when thevalues have not been changed since the start of the
population is in a state of QLE. The concept was intro-generation, then ℘″i � ℘i.) The associations after the
duced by Kimura (1965) and greatly generalized byreference values change are found using Equations 1–3:
Nagylaki (1993) and Nagylaki et al. (1999); a concise

D�A � EX[�i�A(Xi � ℘�i )] � EX[�i�A(Xi � ℘″i ) � (℘″i � ℘�i )] summary of those results is given in Bürger (2000, p. 82).
The first fundamental assumption we must make is

� �U�A�i�U(℘″i � ℘�i )EX[�j�A \U(Xj � ℘″j )] that all the associations D are of order a, by which we
mean that they are not larger than a constant factor� �U�A[D″A \U�i�U(℘″i � ℘�i )]. (15)
times the largest of the a’s. BT91 shows that this condi-

Because the sum in (15) is not asterisked, it includes tion is met when the forces that generate associations
within a sex (epistasis, migration, etc.) are weak relativethe term corresponding to U � �, which is D″A. This
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to recombination and when nonrandom mating is not D �A � DA � �*U�WaUDUA � O(a 2)
strong. An intuitive justification is that the associations

� DA � aA pqA � O(a2), (17)
are produced by evolutionary forces that are of order
a (see Equation 9) and will not accumulate to values where A is a set of distinct positions and pqA is defined
that are much larger than that if the forces breaking by Equation 11. The asterisked �* indicates that the
them down (recombination, segregation, and muta- sum does not include the term with U � �; it has been
tion) are sufficiently strong. The second assumption separated out to give the first term, DA.
needed for the QLE approximation is that all the selec- The first step of Equation 17 follows from Equation
tion coefficients a are 
1. BT91 shows that when these 9 because the D are of order a and therefore the term
two conditions hold, a population rapidly settles into a aUDUDA in Equation 9 is of order a3 and so can be
state where the allele frequencies are changing slowly, neglected. The second step follows because the term
and the associations are close to the equilibrium values aUDUA in the first line is of order a2 except when U �
they would reach if the allele frequencies were in fact A, in which event the reduction formula Equation 5
stationary (see also Nagylaki 1993). We can then ne- gives us DUA � DAA � pqA � O(a).
glect terms involving higher powers of the a’s and also The effect of changing reference values can also be
higher powers of the D’s (because they are of order a). simplified. Equation 10 shows that the change in the
Furthermore, the effects of a series of events of selec- allele frequencies is of order a. If we define the refer-
tion, migration, and mutation can be added together, ence values to be the allele frequencies, then the quanti-
provided they are each of order a (Kirkpatrick and ties (℘″i � ℘�i ) that appear in the product in Equation
Servedio 1999). 15 are of order a. That equation therefore reduces sim-

Approximations for the associations: We assume that ply to D�A � D″A � O(a2), meaning that the effect of
there are two alleles at each locus, which simplifies the updating the reference values can be neglected. Assume
analysis. The approach can be extended to multiple that differences between positions at the same locus are
alleles following the leads of BT91. The main results O(a), which holds under normal sexual inheritance.
developed below are illustrated with a simple two-locus With help from Equations 12 and 17 we then get the full
example in appendix a. recursion for the associations over an entire generation:

Consider a life cycle in which we define the reference
values to be the allele frequencies at the zygote stage. D�A � �U:U�AtA←U(DU � a Upq U). (18)
A series of selection events occur during the course of
the generation. The generation ends with transmission, On setting D�A � DA � D̃, we get a QLE approximation
creating the zygotes for the next generation. We seek for the associations that is accurate to order O(a):
to derive an approximation for the dynamics of allele

D̂A � �U:U�A tA←UD̃ U � �U:U�A tA←Ua Upq U. (19)frequencies that is accurate up to (and including) terms
of order a2, which we denote O(a2). From Equation 10,

The first sum on the right is zero if the positions in Awe see that approximation requires in turn that we find
include more than one sex of origin. That is because ifan approximation for the associations D that is accurate
A includes more than one sex of origin, then U in theto order a. To do that we find the values that give an
first sum would have to include more than one sex ofequilibrium for the recursion equations for the D that
carrier. But DU is of order a2 if the positions in U includeare accurate to order a; those solutions are our QLE
both sexes of carrier, since it represents associationsapproximations for the associations. The results apply
between alleles in two randomly chosen zygotes.not just to selection but to other deterministic forces

Equation 19 is the main result of this section. It givesthat generate associations (such as migration) so long
the solutions for the associations implicitly: The QLEas they are weak relative to recombination and segrega-
value D̃A on the left side depends on the QLE valuestion. To simplify the derivations, we assume that there
for the other associations, which appear as D̃U on theis no genetic variation in the transmission coefficients,
right side. The relationship is linear (because of thean assumption that could be relaxed (see Barton
linear form of the transmission Equation 12), and so1995). However, we must assume that the transmission
the solution can always be found using standard matrixcoefficients are sufficiently large that forces of order a
algebra. Thus the D̃ can be calculated directly, usingdo not eventually generate strong associations. (This
standard matrix methods, given a set of transmissionrequires that the largest of absolute values of the selec-
rules that specify the t’s, a set of allele frequencies fromtion coefficients a is much smaller than the smallest of
which we can calculate pqU, and a set of selection coeffi-the absolute values of the eigenvalues of the matrix of
cients a. We have implicitly assumed here that the selec-transmission coefficients tA ← U.)
tion coefficients are constant in time, but the approachTo begin deriving an approximate recursion for the
can be generalized to changing environments (see BT91,D, Equation 9 gives the cumulative effect of selection
Appendix B; Barton 1995, Appendix 4). Briefly, theand other deterministic forces on the associations be-

tween positions in set A, associations are determined by a time average of the
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selection coefficients that are discounted by terms like allele’s sex of origin does not affect its expression). The
approach outlined here can be directly extended toexp(�rAt). If, however, the environment changes on

a time scale that is slow relative to the rate at which allow for more than two sexes, as might be appropriate
to describe a population with partial selfing.associations are changed by transmission, then the re-

sults given above apply. Careful consideration of Equation 19 shows that the
associations fall into three cases. Case 1 are associationsThe next two sections illustrate how to do this by

carrying out the calculations for autosomal genes in among a set of positions A that include both sexes of
carrier. The QLE approximation for these associationsdioecious haploids and for autosomal, sex-linked, and

cytoplasmic genes in diploids. is simply D̃A � 0. That is because these represent associa-
tions between genes in two or more randomly chosenAutosomal genes in haploids: The QLE approximation

for autosomal inheritance in a haploid population with zygotes.
Case 2 are the associations between a set of positionstwo sexes was found by BT91. This section rederives

their result to illustrate the new notation and how to that all have the same sex of carrier, but some have a
male and others a female sex of origin. This kind ofuse Equation 19 to find a QLE approximation.

The context for each gene now contains only its sex association exists for some sets of positions (for exam-
ple, autosomal), but not others (for example, sets withof carrier. That is because an individual carries only one

gene at each locus, rather than the two that must be only cytoplasmic loci). If they do exist, Equation 19 gives
the QLE approximationdistinguished in the case of diploids. The comments

following Equation 19 imply that for this case the first
D̃A � �U:U�A tA←UaUpqU. (21)sum on its right side reduces to (tA←Af D̃Af � tA←AmD̃Am),

where Af stands for set A with the sexes of carrier for These associations come from nonrandom mating in
all its positions converted to f and similarly for Am. The the previous generation: Associations between genes
associations among a set of autosomal loci are equal in with different sexes of origin within an individual appear
male and female zygotes, so D̃Af � D̃Am, and further when there are correlations between the genotypes of
those quantities must be equal to D̃A on the left side of mating males and females in the previous generation.
Equation 19 because all the positions in A must have These associations, which include Hardy-Weinberg dis-
the same sex of carrier. With no sex differences in re- equilibria (an excess or deficit of heterozygotes), are
combination we have tA←Af � tA←Am � (1 � rA)/2, zero under random mating because then the selection
where (1 � rA) is the probability that the loci in set A coefficients for positions with both sexes of carrier are
are not broken apart by recombination, and the factor of order a2. The transmission coefficient tA←U can be
of 1⁄2 accounts for the probability that genes in set A translated into recombination rates according to the
were inherited from a given parent. way that the genes in set A are inherited, as discussed

Putting those facts together gives the QLE approxima- above in the section on transmission.
tion Case 3, the last category of association, is when all

positions in A have the same sex of carrier and all
D̃A �

1
rA

�U:U�A tA←UaUpqU � O(a2). (20) have the same sex of origin. Here DA represents an
association among genes within a single individual that
were inherited from the same parent. The QLE approxi-This is equivalent to BT91’s Equation 25. Some superfi-
mations for this case depend on how the genes in setcial differences are caused by three changes in notation.
A are inherited. They can be calculated by first writingTheir result is expressed in terms of recombination rates
out Equation 19 for the associations that do exist, givenrather than transmission rates. Second, BT91 separately
the mode of inheritance, out of the four possible casesdefined within-male, within-female, and between-sex
D̃Aff, D̃Afm, D̃Amf, and D̃Amm, where, for example, Afm means(nonrandom mating) selection coefficients; all of these
that all positions in set A have a female sex of carrierare included in the sum on the right side of Equation
and a male sex of origin. Inspection of the transmission20. Last, they counted separately selection coefficients
coefficients reveals that these expressions do not de-with different permutations of the same set of positions,
pend on any associations that do not exist (e.g., D̃Afmwhich generates the combinatorial terms in their ex-
does not depend on D̃Amm when all genes in set A arepression.

Autosomal, sex-linked, and cytoplasmic genes in diploids: X-linked, because tAfm←Amm � 0). Last, solve the resulting
equations. That procedure leads to the following resultsNow consider autosomal genes in a diploid population

with two sexes. The context for a gene now includes for autosomal, X-linked, Y-linked, and cytoplasmic
genes. The transmission coefficients used in the calcula-both its sex of carrier and sex of origin. We allow for

nonrandom mating and sex differences in selection and tions are shown in Table 3.
When all the genes in set A are autosomal, all fourrecombination. To simplify the calculation, however,

we assume that there is no genetic variation in recombi- of the possible case 3 associations exist. Solving Equation
19 then givesnation rates and no genomic imprinting (that is, an



1738 M. Kirkpatrick, T. Johnson and N. Barton

TABLE 3 D̃Afm
�

pqA

r f
A(2 � r m

A ) � rm
ATransmission coefficients for case 3 associations at QLE

� {2[aAf
� F(Aff)](1 � r m

A ) � [aAm
� F(Afm)](1 � r f

A)}.
All four contexts exist (Equation 22) (24)

tAmm←Amm
� tAmm←Amf

� tAfm←Amm
� tAfm←Amf

� (1 � r m
A )/2

tAmf ←Afm
� tAmf ←Aff

� tAff ←Afm
� tAff←Aff

� (1 � r f
A)/2 When A is a mixture of cytoplasmic and nuclear genes

or only a set of cytoplasmic genes, then D̃Afm and
Amm does not exist (Equation 24) D̃Amm do not exist. Using the transmission coefficients

tAfm←Amm
� 0 given in Table 3, we find the remaining two kinds of

tAfm←Amf
� (1 � r m

A ) case 3 associations are
tAmf ←Afm

� tAmf ←Aff
� tAff ←Afm

� tAff ←Aff
� (1 � r f

A)/2

D̃Aff
� D̃Amf

�
pqA

r f
A

[aAf
� F(Aff)]. (25)

Only Amf and Aff exist (Equation 25)
tAmf ←Afm

� tAff ←Afm
� 0

If A has only cytoplasmically inherited genes, thentAmf ←Aff
� tAff ←Aff

� 1 � r f
A

r f
A � 0 and that expression becomes undefined. In this

situation, there is no recombination to break down asso-Only Amm exists (Equation 26)
ciations generated by selection, so they become largetAmm←Amm

� (1 � r m
A )

and the QLE approximation fails.tAmm←Amf
� 0

A similar situation occurs with Y-linkage. When A is
These coefficients, which apply to diploids, are used to a set of Y-linked genes or a mixture of Y-linked and

derive Equations 22–26. See the text for further details. autosomal genes, the only kind of case 3 association
that exists is

D̃Afx
� D̃Amx

D̃Amm
�

pqA

rm
A

[aAm
� F(Amm)]. (26)

� � pqA

r f
A � r m

A
�{[aAx

� F(Axx)](1 � r �x
A ) � [aA�x

� F(Ax�x)](1 � r x
A)},

If A includes only Y-linked loci, then rm
A � 0 and again

(22) there is no QLE approximation for D̃Amm.
We stop our inventory of the case 3 associations at thiswhere

point. There are modes of transmission not discussed
F(Axy) � �*S�T�A tAxy← {Sy fTym}aS fTm

. (23) above, as, for example, when male, female, and her-
maphroditic individuals occur in the population. Associ-Here rx

A is the recombination rate for set A in sex x,
ations for those cases can be calculated, however, fromwhere x can take the values m and f, and �x stands for
Equation 19 using the same method.the opposite sex of x (for example, if x � f then �x �

Changes in allele frequencies at QLE: When a popula-m). The term F(·) results from nonrandom mating,
tion is in quasi-linkage equilibrium, changes in allelewhich creates associations between alleles inherited
frequencies can be approximated by simple expressions.from different parents in the next generation. These
The exact expression for allele frequency change isalleles are brought together in single gametes by recom-
given by Equation 10. The QLE approximation for �pibination, producing associations within the same ga-
is found by substituting into that equation the QLEmetic genome (i.e., linkage disequilibria) two genera-
approximations for the associations. We saw in the previ-tions later. The summation in (23) is over all the
ous section that the approximations for the D depend ondifferent ways that the set of loci A can be partitioned
the specifics of the genetic system that is being modeled.into nonnull sets. With A � {i, j, k}, for example, the
When the model consists of diploid autosomal loci,sum includes six terms: S � {i } and T � { j, k}, S � { j, k}
for example, the associations are given by Equations 21and T � {i }, S � { j } and T � {i, k}, etc. F(·), which appears
and 22.in results below, vanishes under random mating. The

selection coefficients aAf and aAm reflect epistatic selec-
tion within each sex and vanish when there is no epis-

MUTATION AND MIGRATIONtasis.
When A is a set of either all X-linked genes or a Mutation and migration are two other deterministic

mixture of X-linked and autosomal genes, D̃Amm does forces that change the genetic composition of a popula-
not exist. Solving Equation 19 for the remaining three tion. This section shows how they change allele frequen-
kinds of associations in case 3 gives cies and the associations between loci.

Mutation: While the effects of mutation on allele fre-
D̃Aff

� D̃Amf
�

pqA

r f
A(2 � r m

A ) � r m
A

quencies have been understood since Haldane (1927),
its effects on associations among loci have not been fully

� {2[aAf
� F(Aff)] � [aAm

� F(Afm)](1 � r f
A)}, worked out. Indeed, it seems to us that the general case,
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in which there is an arbitrary matrix of mutation rates the migrant population and the DR
A are the centered

between alternative alleles and an arbitrary representa- associations among the residents before migration.
tion of allelic state, does not lead to simple expressions. (That is, the reference values for DM

A are the allele fre-
Bürger (2000, p. 190) gives expressions for the effects quencies among the migrants, and the reference values
of “random walk” mutation, in which the change in for DR

A are the allele frequencies in the residents before
allelic effect Xi has a distribution independent of its migration.) The first term in Equation 30 is produced
current value, and for “house of cards” mutation, in when U � � and V � A, giving (1 � m)DR

A � mdA.
which the absolute value of the new mutation has a We illustrate the use of this result with two special
constant distribution. With multiple alleles, it is natural cases that may be of general interest. The first is the
to represent the allelic state by a vector of length equal association between pairs of positions generated by mi-
to the number of alleles (e.g., Xi � {0, 0, 1, 0} represents gration. The association between positions i and j after
a position i carrying the third of four alleles). Then, migration is in general
the change in moments due to mutation at position i

D″ij � (1 � m)DR
ij � mDM

ij � m(1 � m)(pM
i � pR

i )(pM
j � pR

j ).is just given by multiplying the moments by the matrix
(32)of mutation rates. Baake (2001) uses this representation

to derive an explicit expression for the change in The associations following migration are a weighted
multilocus associations due to mutation and weak re- average of the associations in the contributing popula-
combination. tions (the first two terms) and a component caused by

Here, we give the general result for two alleles at each
differences in allele frequencies in the two populations

locus, with allelic state taking the values 0 and 1; see
(the third term).

appendix b for details. Denote the mutation rate at
A second situation that may also be of general interest

position i from allele 0 to allele 1 as ui and the reverse
is when the associations among the residents and mi-mutation rate from 1 to 0 as v i. The change in frequency
grants are initially zero. Then Equation 30 givesof allele 1 at position i caused by mutation is

D″A � dA{(�m)|A|(1 � m) � m(1 � m)|A|}. (33)�pi � viqi � uipi (27)

Thus the associations generated in this case are simply(Haldane 1927). The associations after mutation are
proportional to the differences in allele frequencies be-

D″A � DA�i�A(1 � ui � vi), (28) tween the contributing populations. More generally,
Equation 30 shows that if a pair of demes is initially atwhere the reference values are equal to the current
linkage equilibrium, associations will evolve such that DA(postmutation) allele frequencies. This result shows that
remains proportional to the product of allele frequencymutation erodes the associations. A striking fact is that
differences at the loci involved, dA (Barton 2000).the rate at which they decline depends only on the

The exact results can be used to find simple approxi-mutation rates at the positions involved and not on the
mations for the effects of migration on the associations.allele frequencies or other properties of the genetic
Equation 30 shows that the change caused by migrationstate of the population.
isMigration: The effects of migration on single loci

were found by Wright (1931), and later workers have
�mDA � mdA � O(mD, m 2). (34)understood that migration can generate associations

between loci. General results for the effects of migration To find an approximation for DA at a migration-recom-
on associations, however, have apparently not been bination equilibrium, we need the change caused by
worked out previously. transmission. Taking the example of a set of autosomal

The change in the frequency of allele 1 at position i positions with the same sex of origin in a random mating
caused by migration is population, that change is �tDA � �rA � O(D2). Setting

the net change to zero gives a leading-order approxima-�pi � m(pM
i � pR

i ), (29)
tion for the associations at a migration-recombination

where pM
i and pR

i are the allele frequency among the balance:
migrants and residents, respectively (Wright 1931).
The exact values for the centered associations after mi-

D̂A �
mdA

rA
� O(mD, m2, D2). (35)gration are derived in appendix c as

D″A � �U�A(�m)|U|dU{(1 � m)DR
A\U � m�V�A\UdVDM

(A\U)\V}, That result was derived by Kirkpatrick and Servedio
(30) (1999) by treating migration as a form of frequency-

dependent selection. Our new approach extends thatwhere
earlier result in two ways. It can be applied to genes

dU � �i�U(pM
i � pR

i ) (31) other than autosomes by using the appropriate transmis-
sion probabilities. Further, the approximation can beand d� � 1. The DM

A are the centered associations in
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expanded to include higher-order terms, for example,
W(Z) � 1 �

Z 2

2�2
, (37)those involving m2 and mD.

where �2 is the width of the fitness function and is
inversely related to the strength of stabilizing selection.APPLICATIONS
The trait has been scaled so that the fitness optimum

This section uses the machinery described above to is at Z � 0. Clearly, selection must be weak enough that
develop results for the effects of natural and sexual fitness remains positive [Var(Z) 
 �2]. This quadratic
selection. The aim is both to illustrate how these meth- model is a weak-selection approximation to other forms
ods work and to develop some results that are biologi- of stabilizing selection, such as the Gaussian W(Z) 

cally interesting in their own right. exp(�Z 2/2�2) (see BT91).

In the first application, we find the selection coeffi- Substituting Equation 36 into Equation 37 and averag-
cients generated by natural selection acting on an addi- ing over the environmental variation gives
tive polygenic trait and use those results to study how
it evolves under autosomal inheritance. Next, we find Ee[W(X)] � 1 �

Ve

2�2
�

1
2�2

(�ib i�i � Z)2

approximations for the genetic correlation between a
female mating preference and a male display trait pro-

� 1 �
Ve

2�2
�

Z 2

2�2
�

Z
�2

�i�Wb i�i �
1

2�2
�i,j�Wb ib j�i�j,duced by sexual selection. Then, we see how the mode

of inheritance affects this correlation by deriving results
(38)

for haploid autosomal, diploid autosomal, and diploid
X-linked genes. where Ee is the expectation over the distribution of eZ.

Quadratic stabilizing selection on an additive poly- To find the selection coefficients aU, the fitness function
genic trait: Many problems in evolutionary biology in- must be put in the form of Equation 7. We do that by
volve evolution of traits controlled by multiple genes of rewriting the last sum in Equation 38 to separate out the
approximately additive effect. In this section we derive terms with repeated positions and then using Equation 5
exact expressions for the selection coefficients on single to reduce those terms:
positions and sets of positions that result from quadratic
stabilizing selection. These can be used to calculate the Ee[W(X] � 1 �

Ve

2�2
�

Z 2

2�2
�

Z
�2

�i�Wb i�i

evolutionary changes in the mean, variance, and higher
moments of the trait. The same methods can be used

�
1

2�2
�i�Wb 2

i[pq i � �i(p i � q i)] �
1
�2

�i�jb ib j�i�j.to calculate selection coefficients more generally, for
an arbitrary form of selection acting on any number of (39)
additive genes.

The selection coefficients are found from Equation 39Consider a trait controlled by a set of genes with
by dividing through by the mean fitness W and identi-additive effects under stabilizing selection. The cal-
fying the coefficients of �i and �i�j. All coefficients aUculations illustrate a general strategy for calculating se-
involving more than two positions (|U| � 2) are zero.lection coefficients: Write an explicit model for the phe-
The selection acting on the single position i isnotype, write the fitness function as a polynomial,

substitute the expression for the phenotype into that
fitness function, equate the result with Equation 7, and ai � �b i

Z
W�2

� b 2
i

1
2W�2

(p i � qi). (40)
finally pick out the coefficients of the fitness function
that correspond to the a’s. This example is very similar The first term represents the effect of directional selec-
to one in BT91 (p. 244). It introduces readers who are tion, which pushes the mean of the trait toward the
not familiar with that article to the approach and shows optimum at Z � 0. It is proportional to bi, which is the
those who are how the new notation works. effect that allele 1 at position i has on the phenotype.

The model for the phenotype of an individual comes The second term represents the effect of stabilizing
from Equation 6, which simplifies under our assumption selection, which favors fixation by driving the allele fre-
that genes have additive effects, quency toward 0 if pi � 1⁄2 and toward 1 if pi � 1⁄2 (Wright

1935). This effect will be weak when the effect of theZ � Z � �i�Wb i�i � eZ , (36)
locus on the phenotype is small relative to the width
of the fitness function (b i 
 �). [Note that if allelewhere eZ , the random environmental component, has

variance Ve. The sum is over all positions i that affect frequencies differ in males and females (pimx � pifx) or
in genes inherited from males and females (pixm � pixf),expression of the trait and hence fitness; for example,

with autosomal genes in a diploid male, the set W then the different positions at a single locus can have
different selection coefficients (e.g., aixm � aix f) even ifincludes positions inherited from both males and fe-

males: {imm, imf . . . }. selection acts identically on males and females.]
The selection coefficient acting jointly on positions iOur model for fitness is the quadratic function
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and j is given by the coefficient of �i�j in the fitness acting on the genetic variance. That form of selection
also changes allele frequencies, and hence the traitfunction Equation 39:
mean, if the trait distribution is skewed: The second
sum is just the skew of the distribution of breedingaij � �

1
W�2

b ib j for i � j. (41)
values of Z (Bürger 1991; Turelli and Barton 1994).

Now consider the change in the association Dij. UsingTo see the meaning of this coefficient, adopt the conven-
Equations 5 and 9, we find that the (uncentered) valuetion of naming the alleles such that allele 1 produces
after selection isa larger phenotype than allele 0 at each locus; then

b i and b j are positive. With stabilizing selection, aij is D �ij � �U�WaU(DijU � DijDU)
negative, indicating that selection favors the combina-

� Dij � (aiDiij � ajDijj) � �k�i,jakDijktion of allele 0 at one locus with allele 1 at the other. This
is simply the well-known fact that stabilizing selection � aij(Dijij � D 2

ij) � �k�i,jaik(Diijk � DijDik)
produces negative associations. Disruptive selection can

� �k�i,jajk(Dijjk � DijDjk) � �k�l,
k,l�i,j

akl(Dijkl � DijDkl),be modeled by taking �2 as negative. In that event, aij

is positive: Selection favors positive associations between (44)
alleles that increase the trait and also associations be-

where again, the various special cases have been sepa-tween alleles that decrease the trait.
rated out. The expression can be further simplified us-To complete the analysis of this model we find how
ing Equation 5 to reduce associations with repeatedthe population evolves. To determine the state of the
indices, as above. It is convenient to change the refer-population in the following generation, we need to
ence values at this point from the old allele frequenciesmake some assumptions about inheritance, that is, the
to the new. Using Equation 15,rules of transmission. To keep things simple, we assume

that i and j are autosomally inherited diploid genes, D″ij � D �ij � �pi�pj � �pi�pj � �pi�pj � D �ij � �pi�pj.
that mating is random, and that there is no meiotic (45)
drive. We define the reference values for each position

Finally, the association at the start of the next generationto be the frequency of allele 1 there.
is given by D�ij � (1 � rij)D″ij for positions i, j inheritedThe change in allele frequencies caused by selection
from the same parent and 0 for positions inheritedis found using Equation 10 with some help from Equa-
from different parents. Just as for the trait mean, thistion 5,
procedure again leads to a relatively simple expression
for the genetic variance at the start of the next genera-�pi � �U�WaUDiU

tion (cf. Equations 53 and 54 of BT91). However, this
� aipiqi � �j�iajDij � �j�iaijDiij � �j,k�i

j�k
ajkDijk expression involves third- and fourth-order associations,

and so approximations are required to obtain a closed
� aipqi � �j�i[aj � aij(pi � qi)]Dij � �j,k�i

j�k
ajkDijk ,

set of equations.
(42) Sexual selection by female choice: We mentioned

earlier that the multilocus machinery developed here
where the special cases such as i � j have been separated can be used to study the genetic consequences of non-
out. Note that the sums are over all positions and so random mating. This section shows how to calculate
include contributions from genes on both maternal and a QLE approximation for the genetic correlation (or
paternal genomes. covariance) between a female mating preference and

Since transmission does not change allele frequen- male display trait that is generated by sexual selection.
cies, the overall change in the mean of the trait from This quantity is important to many theories about sexual
the start of one generation to the next can be found selection (Kirkpatrick and Ryan 1991). Previous work
by summing �pi and substituting for the ai, aij from has calculated the covariance expected under autoso-
Equations 40 and 41. This leads to the simple expression mal inheritance in diploids (Lande 1981; Barton and

Turelli 1991) and haploids (Kirkpatrick 1982; Kirk-
�Z � �ib i�pi � �

Z
W�2

�i�jb ib jDij �
1

2W�2
�j,k�i,

j�k
bibjbkDijk. patrick and Barton 1997). Here we extend the earlier

results by finding the covariance when some genes are(43)
sex linked. In addition to the biological interest in the

The result is a sum of two terms. The first is the standard result, the derivations illustrate how nonrandom mating
equation for the selection response of a quantitative and nonautosomal inheritance are modeled in our
trait under directional selection: It is the product of the framework.
directional selection gradient, which in this case is Consider a pair of characters, one expressed in fe-
�Z/�2, and the additive genetic variance for the trait, males and the other in males, that together affect the
which appears as the first summation on the right side. probability that a male and a female will mate. We refer

to the first as a “preference” and the second as the “maleThe second term is the result of stabilizing selection
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trait.” In fact, the preference need not be a behavioral
phenotype: It can be any character that affects mating � 1 � �PT

(P � P)(T � T)
�P �T

. (47)
probabilities. The value of a female’s preference pheno-
type is denoted P and that of the male trait is T. A set The last step, which is not required for the QLE approxi-
of genes P affects the preference and a set T affects mation, linearizes the fitness function in �PT. The result
the male trait. We assume that these sets are disjoint is quite accurate for �PT � 0.4.
(that is, no loci have pleiotropic effects on the prefer- Now substitute the expressions for P and T written in
ence and male trait) and that both sets act additively, the form of Equation 36 into Equation 47. The selection
so that the preference and male trait phenotype of an coefficient for a set of loci A is then again given by the
individual can be written in the form of Equation 36. coefficient of �A in the fitness function. We find that
We further assume that the parent from which a gene the selection coefficient for a preference position i in
was inherited (its sex of origin) does not affect the a female and a trait position j in a male is
gene’s expression. Carrying allele 1 at position i rather
than allele 0 increases the preference phenotype by ai f jm � �PT

b P
if bT

jm

�P �T

. (48)
bP

i ; the corresponding effect of allele 1 at position j on
the male trait is bT

j .
The context for each locus has only the sex of carrierWe begin by calculating the selection coefficients,
(female for the preference locus i, male for the traitwhich are independent of the inheritance rules. We
locus j). That is because of our assumption that thethen use them to find QLE approximations for the
parent from which a gene was inherited (its sex of ori-preference-trait covariance under three types of inheri-
gin) does not affect its expression.tance: haploid autosomal, diploid autosomal, and dip-

This result shows that the force of sexual selectionloid X-linked.
that unites a female preference gene with a male traitSelection coefficients: Derivation of the selection co-
gene is simply proportional to �PT, the phenotypic corre-efficients follows Kirkpatrick and Barton (1997). The
lation between the preference and trait among matedphenotypic distribution of the preference among fe-
pairs. It is also proportional to the size of each gene’smales at birth, fP(·), has mean P and variance �2

P; the
effect on the phenotype relative to the character’s phe-corresponding distribution fT(·) for the trait among
notypic standard deviation. Selection coefficients for allmales at birth has mean T and variance �2

T. The fre-
other sets of positions are 0.quency of matings between a female with preference

These selection coefficients are valid regardless ofphenotype P and a male with trait phenotype T, denoted
how the genes affecting the preference and the maleM(P, T), has means P* and T*, variances �*2

P and �*2
T ,

trait are inherited. In the following two sections weand correlation �PT. We define the selection group as a
find the genetic correlation generated by this type ofmated pair of individuals. The relative fitness of a selec-
selection when the loci are haploid autosomal, diploidtion group is defined as its frequency after selection
autosomal, and diploid X-linked. The examples showdivided by its frequency before. The frequency after
how the QLE approximation accommodates differentselection is given by M, while the “frequency” of a mated
modes of inheritance.pair before pairing occurs is simply the frequency with

Haploid autosomal inheritance: We begin by calculat-which it would occur under random mating.
ing the genetic correlation in males between the femaleWe now make two kinds of approximations. Assume
preference and male trait. The definition of the additivethat the preference and trait are not evolving rapidly,
genetic correlation in zygotes isso that P* � P, T* � T, �*2

P � �2
P, and �*2

T � �2
T. Next,

approximate fP, fT, and M with Gaussian densities. The
rPT �

G PT

√GP GT

, (49)relative fitness of a mated pair in which the female has
preference P and the male has trait T is

where GPT is the genetic covariance between the prefer-
w(P, T ) �

M(P, T )
fP(P)fT(T ) ence and male trait, GP is the additive genetic variance

of the preference in females, and GT the genetic variance
� 1

√1 � �2
exp{[��((P � P )2�2

T �PT � 2(P � P )(T � T )�P�T of the trait in males. The genetic variances are

GP � �i,j �Pb P
i b P

j Dij � �i �P(bP
i )2pqi � O(a)� (T � T )2�2

P �PT)]/(2(1 � �PT
2)�2

P �2
T)}.

(46) GT � �i,j �TbT
i bT

j Dij � �i�T(bT
i )2pqi � O(a). (50)

To calculate the selection coefficients, the fitness func- In haploids, a context needs to keep track of a gene’s
tion must be expressed as a polynomial. Taking the first- sex of carrier only, so the covariance is
order Taylor series of w(P, T) around P and T gives

GPT � �i�P�j�Tb P
ifb

T
jmDim jm. (51)

w(P, T) � 1

√1 � �PT
2

�
�PT (P � P)(T � T)

(1 � �PT
2)3/2�P �T When the preference and trait loci are autosomal, the
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covariance is the same in male and female zygotes. Now genetic correlation is independent of the recombina-
tion rates, even when they differ between the sexes.substitute the selection coefficients we just calculated

(Equation 48) into the expression for the associations X-linked inheritance: To illustrate how our methods
extend to other forms of inheritance, consider nextat QLE (Equation 20), which gives
a case in which genetic variation in a female mating
preference is X-linked while variation in the male traitD̃im,jm � �tim jm ← i f jm

rij
�ai f jm pqij �

1
2

�PT

bi f
bjm

�P �T

pqij . (52)
is autosomal. We see that the genetic covariance and
correlation in males are different than when both char-Assembling these results shows that the genetic covari-
acters are autosomally inherited.ance and genetic correlation between a female mating

The preference-trait covariance in males ispreference and a male display trait in haploids,
Gm

PT � �i �P�j �Tb P
i f
bT

jm(Dimf jmf
� Dimf jmm

). (57)
GPT � 1

2
�PT hP hT √GPGT , rPT � 1

2
�PT hp hT, (53)

Because males do not inherit an X chromosome from
their mothers, the terms Dimmjmf and Dimmjmm that appear

where hP and hT are the square roots of the heritabilities in the diploid case (see Equation 54) do not exist. The
of the preference in females and the trait in males. This genetic variance for the trait is given by twice the expres-
result agrees with Kirkpatrick and Barton (1997), sions in Equation 50 for haploids, because those loci
who used the BT91 framework for their calculation. are diploid and autosomal, while the variance for the

Diploid autosomal inheritance: In diploids, there are male trait is given by (50), because males have only one
two positions at the preference locus and two at the trait haploid genome for X-linked loci.
locus, corresponding to copies of those genes inherited The associations that appear in Equation 57 are given
from mothers and fathers. The genetic covariance be- by Equations 21 and 24. The values for the function
tween preference and trait in males is therefore F(·) that appears in (24) are now
Gm

PT � �i �P�j�Tb P
i f
bT

jm(Dimf jmf
� Di mf jmm

� Dimm jmf
� Dimm jmm

).
F(ijff) � F(ijmf) � ti ff jff ←iff jfmai f jm �

1
4

aif jm,(54)

The genetic variances are twice the values given by Equa-
F(ijfm) � ti fm j fm← imf jmm

ai f jm �
1
2

ai f jm,tion 50 because diploid zygotes carry two haploid ge-
nomes. The covariance in female zygotes has the same

F(ijmm) � timm jmm ← imf jmm
ai f jm � 0. (58)value because the loci are autosomal.

To find those associations, we use Equations 21 and
The QLE approximations for the associations in males22. The function F(·) that appears there is calculated
are thereforeusing (23):

D̃imf, jmf
�

3
5

ai f jm pqij �
3
5

�PT

b P
i f
bT

jf

�P �T

pqij ,F(ijff) � F(ijmf) � ti ff jff ←i ff j fm
ai f jm �

1
2

r f
ij ai f jm ,

F(ijfm) � F(ijmm)� ti fm jfm ←imf jmm
ai f jm �

1
2

r m
ij ai f jm . D̃imf, jmm

� ai f jm pqij � �PT

b P
i f
bT

jm

�P �T

pqij . (59)
(55)

The QLE approximations for the associations are found Putting these facts together shows that in male zygotes
by substituting the selection coefficient from Equation the genetic covariance and correlation between the mat-
48 into those expressions and then those results into ing preference and male trait are
(21) and (22), giving

Gm
PT � 4

5
�PThPhT √GPGT , rm

PT � 4
5

�PThPhT. (60)
D̃imf jmf

� D̃imm jmm
�

1
2

�PT

b P
i f
bT

jm

�P �T

pqij ,
An interesting conclusion is that the genetic covariance
and correlation are 60% larger here than they are when

D̃imf jmm
� �PT

b P
i f
bT

jm

�P �T

pqij , D̃imm jmf
� 0. (56) the preference and male trait are both autosomally in-

herited (given by Equation 53). Thus the impact of
indirect selection on a female mating preference de-Substituting these into (54) shows that the genetic covar-
pends on how the preference and trait are inherited.iance and genetic correlation are the same as those we

found for the haploid case, Equations 53. This is a useful
result, as it shows that several basic conclusions based

DISCUSSION
on haploid models regarding the evolution of mating
preferences (Kirkpatrick and Barton 1997) and rein- We have set out a general notation that describes

arbitrary modes of selection and genetic transmission.forcement (Kirkpatrick and Servedio 1999) carry
over to diploids. An interesting conclusion is that the The key components are the representation of genotype
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frequencies in terms of means and higher moments
of the distribution of allelic states, of selection as a
polynomial function of genotype, and of genetic trans-
mission as the movement of genes between different
contexts. The first two components are already well de-
veloped, particularly in models of additive quantitative
traits. The main contribution of this article is to combine
them with a generalized representation of transmission.
The calculations can be automated, as described in ap-
pendix d.

How does a general multilocus notation help us to
better understand evolution? A set of equations for
changes in genotype frequencies can be derived auto-
matically for arbitrary models, but will in all but the
simplest cases be impenetrably complicated. The value
of an algebraic expression written in terms of multilocus
moments or cumulants is that it allows one to identify
and interpret the key processes responsible for evolu-
tionary change. For example, Equations 30–35 show
that migration builds up associations among loci in pro-
portion to the product of the allele frequency differ-
ences. A second example comes from the analysis of
sexual selection. The analysis shows that the genetic
correlation between a female preference and a male
trait is directly proportional to the phenotypic correla-
tion between the preference and trait in mating pairs.
Further, the genetic correlation depends on the way
in which the preference and trait genes are inherited
(Equations 53 and 60).

Defining a model in a standard notation can reveal
similarities among apparently different mechanisms.
For example, if the indirect selection on a modifier of
recombination is expressed in terms of selection coeffi-
cients (aU), it can be shown to depend on the effects of
recombination on the mean and variance of log(fit-
ness), regardless of the causes of fitness variation (Bar-
ton 1995). An unambiguous notation may also clarify
conceptual issues. We believe that models of group se-
lection using our notation may clarify definitions of
fitness and of “levels of selection.”

Models of multiple loci are most fruitful when com-
bined with appropriate approximations. The best devel-
oped is the QLE approximation, which assumes that
processes such as epistasis and migration that generate
associations among loci are weak, relative to those that
break them down, such as recombination, segregation,
and mutation. This leads to simple expressions for asso-
ciations of all orders and is likely to be accurate for
most sexually reproducing populations. Several workers
have explored this approach, using different measures
of association (linkage disequilibrium). Table 4 summa-
rizes these measures and their corresponding versions
of the QLE approximation. (For a more detailed treat-
ment, see Bürger 2000, pp. 82 and 183–190.)

The different measures can be divided into two
classes. Most measures are defined for each genotype,
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usually as a difference between its actual frequency and
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the frequency expected at linkage equilibrium. In con- each allele is included in the association; for example,
trast, we define associations as moments of the distribu- with positions {i, j, k}, Bürger’s c{1, 0, 2} corresponds
tion of allelic states; these moments are defined for to our Dikk. (Note that Christiansen’s 1999 notation
each set of positions (Di, Dijk, etc.), and correspond in a is restricted to two alleles per locus, whereas Bür-
natural way to a polynomial representation of selection. ger’s 2000 and ours allow multiple alleles.) The term
Moreover, they lead to a simple representation of trans- h̃m,LE(C, t) is a composite measure of epistasis and allele
mission (Equation 12). When selection acts on an addi- frequencies. It is equal to the change due to selection
tive quantitative trait, the effects of selection are more at linkage equilibrium, which is aMpqM in our notation.
elegantly represented in terms of the cumulants of the Because the corresponding cumulants and moments
distribution of allelic effects, rather than the moments are equal to leading order when QLE applies, Equations
(Bürger 1991, 2000; Turelli and Barton 1994). (This 62 and 63 agree. Thus Bürger’s and our approaches are
is because the cumulants of the trait distribution are consistent.
then simply sums over multilocus cumulants of the same Although the QLE results developed in this article
order.) Since we do not deal only with additive traits in are consistent internally and with independent deriva-
this article, we have used moments throughout. Mo- tions, we have not rigorously shown that this quasi-equi-
ments and cumulants are equivalent to leading order librium is unique or that the population will always
when the moments are small, which holds under QLE. converge to it when the assumptions are met. Nagylaki
In any event, it is simple to transform between the two (1993; see also Nagylaki et al. 1999) showed that au-
representations as necessary (e.g., using the Mathematica tosomal loci in a random mating diploid population
packages). under weak selection converge to a QLE. In this article

The multilocus notations used by Christiansen we have relaxed his assumptions to allow for nonrandom
(1999) and Bürger (2000) are closest to that used here. mating, other forms of inheritance, and other evolution-
The main difference is that we deal with sets of genes in ary forces (migration and mutation). Since the effects
context, or positions, which allows us to avoid restrictive of migration and mutation are equivalent to forms
assumptions such as autosomal diploid inheritance, ran- of frequency-dependent selection, Nagylaki’s results
dom mating, and equal transmission rates in males and should also apply when they act so long as the effective
females. The relation between the notations can be illus- selection coefficients that they generate are small. The
trated by comparing expressions for associations among consequences of nonrandom mating and variations in
loci at QLE. Christiansen’s (1999) Equation 7.19 for inheritance are more difficult to account for. We expect
the associations among a set of loci M in a gamete is convergence to our QLE values whenever all the a’s are

sufficiently small and all eigenvalues of the matrix of
D̃M � [εĈM][�̂R

M(�) �̂R
M(M)]

1 � 2RM (0)
. (61) transmission coefficients tA←U are of order 1, but that

conjecture remains to be proven.
Here, [εĈM] is a measure of epistasis among the loci in The QLE approximation developed here can be used
set M; under his assumption of no sex differences in to study a variety of interesting models. Selection on
selection, it is equivalent to our selection coefficients the genetic system (recombination, selfing, and muta-
aMff, aMfm, aMmf, and aMmm. The quantity [�̂R

M(�) �̂R
M(M)] tion rate, for example) can be studied by assuming a

is the frequency of M gametes at linkage equilibrium, modifier allele of small effect. Even if the system as a
which is equal to our product of allele frequencies pqM. whole is under strong selection, associations involving
Last, RM(�) is the chance that at meiosis, a gamete the modifier will be weak and can therefore be modeled
derives all the genes in the set M from the maternal by a set of linear equations (Barton 1995). The infini-
genome, which is (1 � rM)/2 in our notation. Under tesimal model is based on a different kind of approxima-
Christiansen’s assumptions of autosomal inheritance, tion, in which the limit of a large number of loci, each
random mating, equal selection in males and females, with infinitesimal effect, is taken. Turelli and Barton
and equal recombination rates in males and females, (1994) give a heuristic argument that extends this model
our Equation 22 gives to allow for linkage and epistasis. However, as Bürger

(2000, p. 189) points out, this extension remains to be
D̃Mfx

� D̃Mmx
�

aMxy
pqM

rM

. (62) proven rigorously.
The biggest lacuna in the framework presented here

Thus the two approaches are consistent. is the lack of a model for random genetic drift. Its effects
Bürger’s (2000, p. 188) expression for cumulant as- can be included by accounting for the variation in allele

sociations at QLE in generation t is frequencies and associations caused by random sam-
pling. The effects of drift on allele frequencies and

cm(t) �
h̃m,LE(C, t)

rm

� O(s2). (63) pairwise associations have been well studied (Ewens
1979), but exact results and approximations for the joint
probability distribution of the higher-order associationsHere, m is a vector containing the number of times that
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TABLE A1

Fitnesses for the two-locus example

Maternal haplotype

Paternal haplotype 0 0 0 1 1 0 1 1

0 0 1 1 � sj 1 � si 1 � si � sj � eij

0 1 1 � sj 1 � 2sj 1 � si � sj � eij 1 � si � 2sj � 2eij

1 0 1 � si 1 � si � sj � eij 1 � 2si 1 � 2si � sj � 2eij

1 1 1 � si � sj � eij 1 � si � 2sj � 2eij 1 � 2si � sj � 2eij 1 � 2si � 2sj � 4eij

The haplotypes indicate the alleles carried at loci i and j.

hermaphrodite, the contexts for the two loci need only
ai f

� aim �
si

W
,to give the sex of origin for each gene. For example, im

stands for a gene that was inherited via a sperm.
To calculate the selection coefficients (the a’s), first ajf � ajm �

sj

W
,

write the fitnesses that appear in Table A1 in the form
of a polynomial in the X ’s:

ai f jf � aim jm � ai f jm � aim jf �
eij

W
. (A3)

W(Xif , Xj f
, Xim, Xjm) � 1 � si(Xi f

� Xim) � sj (Xjf � Xjm)

The other 8 selection coefficients that appear in (A2)� eij (Xi f
Xjf � Xi f

Xjm � XimXjf � XimXjm).
are 0.(A1)

The change in the frequency of allele 1 at locus i is
Next, write out the fitness function that defines the calculated using Equation 10. Because the population
selection coefficients, Equation 7: is hermaphroditic, allele frequencies and associations

in genes inherited via sperm will be equal to those inher-
W (Xi f

, Xj f
, Xim

, Xjm
) � W {1 � ai f

[(Xi f
� pi) � Di f

] � aim
[(Xim

� pi) � Dim
]

ited via eggs: pi f � pim � pi and Di f j f � Dim j m � Dij. After
one generation of random mating, associations involv-

� ajf
[(Xjf

� pj) � Djf
] � ajm

[(Xjm
� pj) � Djm

]
ing more than one sex of origin (e.g., Di f j m) are zero.
The exact change in allele frequency will then be� ai f jf

[(Xi f
� pi)(Xjf

� pj) � Di f j f
]

�pi � �pi f� ai f jm
[(Xi f

� pi)(Xjm
� pj) � Di f jm

]

� ti f ← i f
{ai f

pqi � ajfDij � ai f jf Diij}
� aim jf

[(Xim
� pi)(Xjf

� pj) � Dim jf
]

� ti f ← im{aimpqi � ajmDij � aim jmDiij}
� aim jm

[(Xim
� pi)(Xjm

� pj) � Dim jm
]

�
1
2





si

W
pqi �

sj

W
Dij �

eij

W
Diij



� a i f im

[(Xi f
� pi)(Xim

� pi) � Di f im
]

� a j f jm
[(Xj f

� pj)(Xjm
� pj) � Dj f jm

] �
1
2





si

W
pqi �

sj

W
Dij �

eij

W
Diij





� a i f im jf
[(Xi f

� pi)(Xim
� pi)(Xjf

� pj) � Di f im jf
]

�
1
W

[sipqi � sjDij � eij(1 � 2pi)Dij]. (A4)
� a i f im jm

[(X if
� pi)(Xim

� pi)(Xjm
� pj) � Di f im jm

]

That result can be written entirely in terms of the
� a i f jf jm

[(Xi f
� pi)(Xjf

� pj)(Xjm
� pj) � Di f jf jm

] selection coefficients and allele frequencies once the
population reaches QLE. At that point, Equation 22

� a im jf jm
[(Xim

� pi)(Xjf
� pj)(Xjm

� pj) � Dim jf jm
] shows that the association between the loci is

� a if jm jf jm
[(Xif

� pi)(Xim
� pi)(X jf

� pj)
Dij � �pqij

2rij
�[ai f jf(1 � rij) � aim jm(1 � rij)] � O(a2)

� (X jm
� pj) � Di f im j f jm

]}. (A2)

�
eijpqij

rij

� O(a2), (A5)There are 15 selection coefficients, as required with
four positions with two alleles each (15 � 24 � 1).

where by O(a2) we mean terms that are no larger thanEquating (A1) and (A2) and identifying coefficients
a constant of order 1 times the largest of the a’s givenwith the same combinations of X ’s gives the selection

coefficients above in Equation A3. At QLE, the mean fitness is to
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O(a) equal to the mean fitness of a population with no when it is expressed in terms of the centered association
among the residents and migrants before the event. Weassociations (at linkage equilibrium):
therefore define the reference values in the resident

W � 1 � 2sipi � 2sjpj � 4eijpipj � O(a2). (A6)
population, ℘R

i , to equal the allele frequencies in that
population before migration, pR

i .Putting together these last three results shows that the
Just after migration, the (uncentered) associationschange in frequency of allele 1 at locus i in a population

are given by Equation 3,at QLE is

D �A � EX[�i�A(X �i � pR
i )], (C1)

�pi �
1
W �sipqi � sj

eijpqij

rij

� (1 � 2pi)
e 2

ij pqij

rij
� � O(a3)

where X �i is the allelic state of an individual in the popu-
lation after migration. That expression can be rewritten� sipqi(1 � 2sipi � 2sjpj � 4eijpipj)
in terms of XM

i , the allelic states of the migrants, and
XR

i , the allelic states of the residents, as�
eijpqij

rij

[sj � (1 � 2pi)eij] � O(a3). (A7)

D �A � (1 � m)EX[�i�A(X R
i � p R

i )] � mEX[�
i�A

(X M
i � p R

i )]

� (1 � m)DR
A � mDMR

A , (C2)
APPENDIX B: MUTATION

where m is the migration rate. The DR
A are the (centered)

The centered associations following mutation can be associations among the residents before migration,
written as while DMR

A are the uncentered associations of the mi-
grants measured relative to the resident reference val-D″A � EX,M[�i�A((Xi � 	Xi) � (pi � ��pi))], (B1)
ues, ℘R

i � pR
i .

where 	Xi is the random change to allelic state at posi- The next step is to express the DMR
A in terms of the

tion i caused by mutation. The expectation EX,M [ ] is centered associations in the migrant population, DM
A. To

over random mutational events, M, as well as over allelic do that we need to rescale those associations in terms
states, X. ��p i is the change in the frequency of allele of the reference values for the migrant population,
1 at position i. Denoting the mutation rate at position ℘M

i . Using Equation 15 for changing reference values
i from allele 0 to allele 1 as ui and the reverse mutation and some algebra gives
rate from 1 to 0 as vi, that change is

DMR
A � �U�AdUDM

A\U, (C3)
��pi � uiqi � vipi. (B2)

where dU was defined earlier in Equation 31. The sum
Equation B1 can be simplified by defining the random includes the term in which U equals the empty set �,
variable R[x] as having value 1 with probability x and which generates the term DM

A. Substituting this expres-
zero otherwise. Let R̂[x] � R[x] � x. If Xi � 0, then sion for DMR

A in Equation C2 produces
	Xi � �R[ui], and if Xi � 1, then 	Xi � �R[vi]. Hence,

D �A � (1 � m)DR
A � m�U�AdUDM

A\U. (C4)	Xi � (1 � Xi)R[ui] � XiR[vi]. Rewriting this in terms
of R̂ and �i � Xi � pi, These associations D�A are based on the reference values

for the residents before migration, ℘R
i � pR

i .	Xi � (qi � �i)(ui � R̂(ui)) � (pi � �i)(vi � R̂(vi)).
(B3) To find the central moments after migration, we set

the new reference points to the allele frequencies after
Substituting into Equation B1,

migration: ℘″i � (1 � m)pR
i � mpM

i . Using Equation 15
as before gives Equation 30, above.D″A � EX,M[�i�A(pi � �i � (qi � �i)(ui � R̂(ui))

� (pi � �i)(vi � R̂(vi)) � pi � ��pi)]
APPENDIX D: MATHEMATICA EXAMPLES

� EX,M[�i�A(qiR̂(ui) � piR̂(vi)
Here, we give some examples that outline how Mathe-

� �i(1 � ui � R̂(ui) � vi � R̂(vi)))].
matica (Wolfram 1999) can be used to find algebraic(B4)
expressions for the changes in associations due to vari-

Now, the R̂ are independent across loci and are inde- ous evolutionary processes. Software that extends Mathe-
pendent of allelic state and so vanish when the expecta- matica to do the calculations described in this article
tion over mutational events is taken. This leads immedi- is available on the Web at http://helios.bto.ed.ac.uk/
ately to Equation 28. evolgen. The notation used by that software is essentially

the same as that in the text, but there are a few differ-
ences that need to be explained. The examples below

APPENDIX C: MIGRATION
show the user’s input to Mathematica in boldface type
and the program’s output in regular type.We calculate the centered associations following a

migration event. The result is most easy to interpret Stages in the life cycle: Different stages in the life
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cycle are denoted by the first element in the context, Such expressions are simplified by defining the refer-
ence values (see below).rather than by primes. Thus, the association between

two positions in male gametes would be written Stabilizing selection: Stabilizing selection is repre-
sented by defining fitness as a function of genotype. It�{ i{�,�},j {�,�}}, where � denotes the gamete stage. (Special

German font is used to denote contexts to avoid clashes is convenient to define the trait and fitness separately
for each sex, even though they are in fact the same.with other symbols.) Similarly, the association between

two positions in a male diploid zygote, one inherited The expressions can be simplified later:
from the mother and one from the father, would be

z� � �i�{j,k}bi(Xi{�,�,�}
� Xi{�,�,�}

� 1);written �{i{�,�,�},j {�,�,�}}.
The first step is to define the contexts for each stage. z � � �i�{ j,k}bi(Xi{�,�,�}

� Xi{�,�,�}
� 1);

For example, this defines gamete (�), zygote (�), adult
(�), and new gamete (�*) stages: W� � 1 �

s
2
Z 2

�; W� � 1 �
s
2

Z 2
� .

DefineContext [�, {Sex}];
DefineContext [�, {Sex, SexOfOrigin}]; Fitness depends on two loci, j and k. This defines the set
DefineContext [�, {SexOfOrigin}]; of positions that influence fitness of males and females:
DefineContext [�*, {Sex}];

W� � {j{�,�,�}, j {�,�,�}, k{�,�,�}, k{�,�,�}};
Recombination: Expressions for the mean and for

W� � {j {�,�,�}, j{�,�,�}, k{�,�,�}, k{�,�,�}}.the associations at one stage are expressed in terms of
variables at the previous stage by applying various rules. The fitness is now an explicit polynomial function of
For example, the mean contribution of a gene in the the states of genes in zygotes:
new gamete pool is

W� � 1 �
1
2

s((�1 � Xj{�,�,�}
� Xj{�,�,�}

)bj�j{�*,�}
‖.Recombination[ ]

�j{�,�,�}
�{ }, { j } � �

j {�,�,�}
�{ j }, { }. � (�1 � Xk{�,�,�}

� Xk{�,�,�}
)bk)2.

Here, ‖. denotes the application of a transformation Since we assume two alleles per locus, the fitness must
rule, and �{ },{j } is a generalized recombination rate, which be simplified to remove superfluous higher powers of
gives the chance that the gene j was inherited from the the X ’s:
father at meiosis. Further rules apply the usual assump-
tions of Mendelian inheritance, W2� � Expand[W�]‖.Biallelic[ ];

�j{�* ,�}
‖.Recombination[ ] ∨ SymmetricRecombination[ ] W2� � Expand [W�]‖.Biallelic [ ]; W2�‖Simplify

1
2

�j{�,�,�}
�

1
2

�j{�,�,�}
, 1

2
(2 � s(�1 � Xj{�,�,�}

(1 � 2Xj{�,�,�}
) � Xj{�,�,�}

)b 2
j

where rule1 ∨ rule2 denotes a collection of rules. When � 2s(�1 � Xj{�,�,�}
� Xj{�,�,�}

)(�1 � Xk{�,�,�}
� Xk{�,�,�}

)bjbk
applied to an association, the result depends on the

� s(�1 � Xk{�,�,�}
(1 � 2Xk{�,�,�}

) � Xk{�,�,�}
)b 2

k).change in the reference values, ℘, defined for each
stage:

The rule Biallelic[] implements the reduction formula
�{i{�*,�},j{�*,�}

‖.Recombination[ ] ∨ SymmetricRecombination[ ] that led to Equation 5.
The effect of selection on the mean contribution of‖Simplify

a position is
�{ }, {i, j}(�{i{�,�,�},j{�,�,�}} � �

{j{�,�,�}}
(��i{�*,�}

� �i{�,�,�}
)

�i{�,�,�} /.Selection[{Sex}]/.

� (�{i{�,�,�}} ��
i{�*,�}

� �i{�,�,�}
)(�j{�*,�}

��j{�,�,�}
)) {	sex_,U_:→ (MakeSelectionCoefficient [U, W2sex]/wb)}/.

℘i_{�,_,_}
:� �i/.ReferencePointZero [�]‖Simplify� �{i }, {j } (�

{i{�,�,�},j{�,�,�}}
� �{j {�,�,�}} (��i{�*,�}

� �i{�,�,�}
)

� (�
{i{�,�,�}}

��
i{�*,�}

� �i{�,�,�}
)�j{�*,�}

��j{�,�,�}
))

�i �
s

2wb
(((�1 � 2�j)�{i{�,�,�},j{�,�,�}}

� �{i }, {j } (�
{i{�,�,�},j{�,�,�}}

� �{ j{�,�,�}} (��i{�*,�}
� �i{�,�,�}

)
� (�1 � 2�j)�{i{�,�,�},j{�,�,�}} � 2�{i{�,�,�},j{�,�,�}j{�,�,�}})b 2

j

� (�
{i{�,�,�}}

��
i{�*,�}

� �i{�,�,�}
)(�j{�*,�}

��j{�,�,�}
))

� 2((�1 � 2�k)�{i{�,�,�},j{�,�,�}} � (�1 � 2�k)�{i{�,�,�},j{�,�,�}}

� �{ } {i,j } (�{i{�,�,�},j{�,�,�}} � �
{ j{�,�,�}}

(��i{�*,�}
� �i{�,�,�}

) � �{i{�,�,�},k{�,�,�}} � 2�j�{i{�,�,�},k{�,�,�}} � �{i{�,�,�},k{�,�,�}}

� (�{i{�,�,�}} ��
i{�*,�}

� �i{�,�,�}
)(�j{�*,�}

��j{�,�,�}
)). � 2�j�{i{�,�,�},k{�,�,�}} � �{i{�,�,�},j{�,�,�},k{�,�,�}} � �{i{�,�,�},j{�,�,�},k{�,�,�}}
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� �{i{�,�,�},j{�,�,�},k{�,�,�}} � �{i{�,�,�},j{�,�,�},k{�,�,�}}bjbk � �2
{j{�,�},k{�,�}}

	�,{j{�,�,�},k{�,�,�},k{�,�,�}}

� ((�1 � 2�k)�{i{�,�,�},k{�,�,�}} � (�1 � 2�k)�{i{�,�,�},k{�,�,�}}

� �2
{j{�,�},k{�,�}}

	�,{j{�,�,�},k{�,�,�},k{�,�,�}}

� 2�{i{�,�,�},k{�,�,�},k{�,�,�}})b 2
k).

� 2�{j{�,�},k{�,�}}
�{j{�,�},j{�,�},k{�,�}}

	�,{j{�,�,�},j{�,�,�},k{�,�,�},k{�,�,�}}
)MakeSelectionCoefficient[U, W2sex] generates the coef-

ficient aU from the fitness function. ReferencePoint
We now substitute in the selection coefficients for thisZero[�] sets the reference values in zygotes equal to
specific scheme:the current allele frequencies, which are assumed equal

across the sexes. The mean fitness in the denominator nms � nm‖. {	sex_,U_ :→ (MakeSelectionCoefficient [U, W2sex]/wb)}
is represented by wb and is best substituted later.

∨ Biallelic [ ] ∨ rules/. {�i_ → �i}‖SimplifyThe complete life cycle: This set of rules defines the
change over the whole life cycle:

�j{�,�} �
s

wb
(bj(1 � �j{�,�}

)�j{�,�}�12(1 � 2�j{�,�}
)bj � (1 � 2�k{�,�}

)bk�
rules � (Recombination [ ] ∨ SymmetricRecombination [ ]

� �{j{�,�},k{�,�}}
bk�12(1 � 2�k{�,�}

)bk�)∨ ReferencePointSame [�, {�, �}]

∨ ReferencePointZero [{�*, �}] This expression is the same as Equation 42 with two
loci.∨ Selection[{Sex}] ∨ UnionOfGametes [ ] ∨ RandomUnion [�]

Other processes: Non-Mendelian inheritance is han-
∨ Symmetrize [Disequilibrium] ∨ SymmetricSexes [ ]); dled by interpreting recombination rates appropriately.

For example, a cytoplasmically inherited gene is certain
The mean contributions in the two sexes are assumed

to be inherited from the mother:
equal, as are all the linkage disequilibria; thus, Symmet-

{�{i,j },{k} �{j },{i,k}}/.NonMendelian[CytoplasmicLoci → {i}]ricSexes[] is applied. Symmetrize[Disequilibrium] sim-
plifies �{k,j} to �{j,k}. ReferencePointSame[�,{�,�}] sets {r{j }, {k}, 0}
the reference points in diploid stages to be inherited

�{i,j},{k} is the chance that genes i, j are inherited from thefrom the gamete stage, where they are equal to the
mother and k from the father; if i is cytoplasmicallycurrent allele frequencies. UnionOfGametes[] derives
inherited, then this is equal to the recombination rategenes at the zygote stage from those in the gamete stage,
for the autosomal loci, �{j},{k}. The converse, �{j},{i,k}, is impos-and RandomUnion[�] makes the further assumption
sible if i is cytoplasmically inherited.that gametes unite at random.

Migration is implemented in a similar way to recombi-The new mean depends on selection coefficients up
nation, as a set of transmission rules. For example, thisto fourth order:
is the cross-genome association between loci j and k

nm � �j{�*,�}
//.rules//Simplify among juveniles, 
, after migration:

�{j{
,1,�,�},k{
,1,�,�}}
/.Migration[{1, 2} &]

�
1
2

(2�j{�,�}
� �{j{�,�},k{�,�}}

	�,{k{�,�,�}}

M1,1 (�{j{�,1,�,�},k{�,1,�,�}}
� �{k{�,1,�,�}}

(��j{
,1,�,�}
� �j{{�,1,�,�}

)

� �{j{�,�},k{�,�}}
	�,{k{�,�,�}}

� �{j{�,�},j{�,�},k{�,�}}
	�,{j{�,�,�},k{�,�,�}} � �{j{�,1,�,�}}

(��k{
,1,�,�}
� �k{�,1,�,�}

) � (��j{
,1,�,�}
� �j{�,1,�,�}

)(��k{
,1,�,�}
� �k{�,1,�,�}

))

� M1,2 (�{j{�,2,�,�},k{�,2,�,�}}
� �{k{�,2,�,�}}

(��j{
,1,�,�}
� �j{�,2,�,�}

)
� �{j{�,�},j{�,�},k{�,�}}

	�{j{�,�,�},k{�,�,�}}

� �{j{�,2,�,�}}
(��k{
,1,�,�}

� �k{�,2,�,�}
) � (��j{
,1,�,�}

� �j{�,2,�,�}
)(��k{
,1,�,�}

� �k{�,2,�,�}
))

� �{j{�,�},j{�,�}}
(	�,{j{�,�,�}}

� 	�,{j{�,�,�}} These expressions are linear sums, weighted rates, Mi,j.
The set of possible source demes is defined by {1,2}
&—that is, all demes can receive immigrants from� �{j{�,�},k{�,�}}

(	�,{j{�,�,�},j{�,�,�},k{�,�,�}}

demes 1 or 2. The deme in which a gene is found is
indicated by an extra element in the context, which

� 	�,{j{�,�,�},j{�,�,�},k{�,�,�}}
))

takes value 1 or 2 in this example.


