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ABSTRACT
An isolated population is a group of individuals who are descended from a founding population who

lived some time ago. If the founding individuals are assumed to be noninbred and unrelated, a chromosome
sampled from the population can be represented as a mosaic of segments of the original ancestral types.
A population in which chromosomes are made up of a few long segments will exhibit linkage disequilibrium
due to founder effect over longer distances than a population in which the chromosomes are made up
of many short segments. We study the length of intact ancestral segments by obtaining the expected number
of junctions (points where DNA of two distinct ancestral types meet) in a chromosome. Assuming random
mating, we study analytically the effects of population age, growth patterns, and internal structure on the
expected number of junctions in a chromosome. We demonstrate that the type of growth a population
has experienced can influence the expected number of junctions, as can population subdivision. These
effects are substantial only when population sizes are very small. We also develop an approximation to
the variance of the number of junctions and show that the variance is large.

AN isolated population is one that is descended from disequilibrium-based studies and to interpret the results
of such studies.a small group of individuals (founders) and in which

Lonjou et al. (1999) presented observed disequilibriapopulation growth is due almost exclusively to births
in two regions of the genome for a wide variety of humanwithin the population, rather than immigration from out-
populations. In general, levels of disequilibrium in iso-side. Interest in the genetics of isolated populations has
lated populations were only slightly higher than in out-recently been revived among human geneticists, because
bred populations. However, the pairs of loci they con-of suggestions that such populations may be useful for
sidered were very tightly linked (�0.2 cM apart) anddisequilibrium-based mapping of susceptibility loci for
therefore this result may simply reflect the large numbercomplex disease. In particular, it is hoped that diseases
of generations required to break down such associa-for which there are several susceptibility loci in large
tions. In this article, we address how the extent of link-outbred populations may be more homogeneous in small
age disequilibrium is affected by population history,isolated populations. In addition, small recently founded
rather than considering the magnitude of disequilib-populations may exhibit linkage disequilibrium over
rium between two loci a particular distance apart.longer genetic distances than large outbred populations

We study the effects of population history on the num-(Chapman and Wijsman 1998; Kruglyak 1999).
ber of junctions existing in a chromosome sampled fromIsolated populations are fundamentally different from
an isolated population. A junction is a point on the chro-the large outbred populations that are usually assumed
mosome where DNA from two distinct ancestral chro-in the theoretical study of linkage disequilibrium and
mosomes meet (Fisher 1949). Figure 1 shows examplesmay differ from one another in several aspects of their
of two chromosomes that might have been sampledhistory. Populations are founded at different times by
from an isolated population. Different shadings repre-founder groups of different sizes, experience different
sent different ancestral types. The top chromosome con-growth patterns, and may have varying levels of internal
tains two junctions, and the chromosome is thereforesubdivision. Chapman and Thompson (2001) give a
made up of three segments. The bottom chromosomebrief survey of the variety of histories and structures seen
contains eight junctions and is made up of nine seg-in human populations. It is important to understand
ments. A quantity of interest is the average length ofthe potential effects of these aspects of a population’s
contiguous ancestral segments remaining in the genera-history on disequilibrium, both to assess the utility of
tion under study. If the chromosomes have broken into
many short pieces relative to the founder population,
disequilibrium due to founder effect will stretch over
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the number of crossover events in a chromosome of
length L has a Poisson distribution with mean L. The
age of the population is assumed known, as is the size
of the population at each generation. In subdivided
populations, the generation of the split(s) and the sizes
of the subpopulations are assumed known. We first pre-

Figure 1.—Examples of chromosomes in isolated popula- sent some theoretical results, including an expression
tions. Different shadings represent different ancestral types. for the expected number of junctions per morgan exist-

ing on a chromosome randomly sampled from a particu-
lar generation and two approximations to the variance

to the founder generation, disequilibrium will stretch of this quantity. We then apply these results to some
over longer distances. If there are J junctions in a chro- example populations to illustrate the effects of popula-
mosome, there are J � 1 ancestral segments, and by tion size, type of growth, and subdivision.
Jensen’s inequality,

THEORETICAL DEVELOPMENTE[length of a segment] � E � 1
J � 1� �

1
E[ J ] � 1

. (1)

Mean number of junctions
Thus by obtaining the expected number of junctions

Let Jt be the number of junctions present on a chro-
in a length of chromosome, we obtain the expected

mosome of length L, sampled at random from a popula-
number of contiguous segments and therefore a lower

tion at generation t. Let n � {n 0, n 1, . . . nt }, where njbound on their expected length.
denotes the number of junctions formed in meioses

A junction is formed when a crossover occurs between
from generation j . Finally, let It(k, j) � 1 if the kth

two chromosomes, at a point where they are not descen-
junction formed in meioses from generation j is present

dants of the same ancestral chromosome. That is, the
on the chromosome selected at time t, and let It(k, j) �

chromosomes are not identical by descent (IBD) at that
0 otherwise. Then as a function of n,

point. Once a junction is formed, it is transmitted as is
any other gene (according to the laws of Mendelian

Jt � �
t�1

j�0
�
nj

k�1

It(k, j).inheritance). Since IBD is defined relative to some an-
cestral population, and since junctions require non-IBD

Taking the expectation conditional on n,to be formed, junctions are also defined relative to some
ancestral population. In this article, junctions are de-

E[ Jt �n] � �
t�1

j�0
�
nj

k�1

E[It(k, j)].fined relative to the founding generation; that is, this
generation is assumed to consist of noninbred, unre-

Now E[It(k, j)] is equal to the probability that junctionlated individuals.
k from generation j is present on the selected chromo-Some analogous questions regarding the lengths,
some. Let l denote the locus where junction k formed,number, and ancestral origins of chromosome segments
and consider the population at generation j � 1. Onehave recently been considered by Wiuf and Hein (1997)
can think of locus l as having two alleles: One is junctionand Derrida and Jung-Muller (1999). Wiuf and Hein
k, and the other is not junction k. The frequency of k(1997) consider, as do we, the moments of the number
in generation j � 1 is exactly 1/(2Nj�1), where Nj�1 is theof ancestral chromosome segments, while Derrida and
population size in generation j � 1, and is assumedJung-Muller (1999) focus on the number of distinct
known for all j . In a random-mating population, each ofancestors contributing to a current chromosome. The
the 2Nj�1 genes at locus l in generation j � 1 are equallyprimary difference from this article is that these authors
likely to be the ancestor of locus l in the randomlyhave considered the long-term equilibrium between the
selected chromosome. Therefore E[It(k, j)], the proba-process of recombination and the IBD process modeled
bility that junction k from generation j is present on thevia the coalescent ancestry of chromosomes. Recombi-
selected chromosome, is equal to 1/(2Nj�1), and thusnation increases the number of contributing ancestors,

whereas coancestry decreases this number.
E[ Jt �n] � �

t�1

j�0

nj

2Nj�1

.By contrast, in this article we consider IBD relative
to a founder population at some defined time point

Taking the expectation again,in the past and the shorter-term effects of population
structure. We study the formation and transmission of

E[ Jt] � E[E[ Jt �n]] � �
t�1

j�0

E[nj]

2Nj�1

, (2)junctions in random-mating subdivisions of a monoe-
cious population with discrete generations. We assume
that during gamete formation, crossover events along and so we require E[nj].

Calculation of E[nj]: Let Hj(p) denote the proportionthe chromosome happen according to a Poisson pro-
cess, which has rate one per morgan. This implies that of the chromosome that is non-IBD in individual p of
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generation j . Then Growth patterns that result in small population sizes
over long periods of time will result in the accumulation
of IBD, and as a result fewer junctions will be expectedHj(p) � �

L

0

I p
j (x)

L
dx ,

in chromosomes from such populations. Similarly, chro-
mosomes from populations in which there is extensivewhere L denotes the length of the chromosome in mor-
subdivision will be expected to carry fewer junctionsgans, and I p

j (x) � 1 if the two haplotypes of individual
and therefore have longer intact ancestral segments.p are non-IBD at point x on the chromosome, I p

j (x) � 0
otherwise. Thus

Variance of the number of junctions
E[Hj(p)] � �

L

0

E[I p
j (x)]
L

dx
Recall that ni denotes the total number of junctions

formed in all meioses from generation i .
Poisson approximation: We first consider a variance� �

L

0

hj

L
dx

approximation on the basis of some simplifying assump-
tions. Specifically, suppose that� hj , (3)

1. ni has a Poisson distribution with mean 2Ni�1hiL.where hj is the probability of non-IBD at a particular
2. ni is independent of nj for all i � j.locus between the two haplotypes of an individual in
3. The presence of any one junction in the sampledgeneration j . Now nj � � 2Nj�1

m�1 Xj(m), where Xj(m) denotes
chromosome from generation t is independent ofthe number of junctions formed in meiosis m from gen-
the presence of any other junction in that chromo-eration j . Since crossovers happen along the chromo-
some. That is, Pr( junction k formed in a meiosis fromsome according to a Poisson process with rate one per
generation i exists in the chromosome sampled at generationmorgan, conditional on Hj(pm), Xj(m) has a Poisson
t � junction l formed in a meiosis from generation j exists indistribution with mean Hj(pm)L, where pm denotes the
the chromosome sampled at generation t) � Pr(junction kparent of meiosis m, and L denotes the length of the
formed in a meiosis from generation i exists in the chromo-chromosome in morgans. Therefore
some sampled at generation t), for any k, l, i, and j, where

E[Xj(m)] � E[E[Xj(m)�Hj(pm)]] k � l if i � j .

� E[Hj(pm)L] Let Jt(i) denote the number of junctions formed in
generation i that exist in the randomly sampled chromo-

� hjL ,
some from generation t. Then assumption 1, together

since the parent is simply a randomly chosen individual with the fact that the probability that a junction formed
from generation j , and by Equation 3. Then in a meiosis from generation i exists in the chromosome

sampled at generation t equals 1/(2Ni�1), implies that
E[nj] � E � �

2Nj�1

m�1
Xj(m)� � 2Nj�1hjL . (4) Jt(i) has a Poisson distribution with mean hiL, for 0 �

i � t � 1. Furthermore, assumptions 2 and 3 imply that
Jt(i) is independent of Jt( j), for i � j . ThereforeSubstituting Equation 4 into Equation 2, we obtain

Jt � �
t�1

j�0

Jt( j) � Poisson ��
t�1

j�0

hjL� .E[ Jt] � �
t�1

j�0

hj · L . (5)

For the random-mating population considered here, For the Poisson distribution, the variance is equal to the
hj � � j�1

i�0(1 � (2Ni)�1) (Crow and Kimura 1970). This mean and can therefore be calculated using Equation 5.
The above assumptions do not generally hold. As-result allows calculation of the number of junctions

expected in a chromosome, as a function of population sumption 1 would hold if all of the individuals in genera-
tion i had the same proportion hi of their genome non-sizes, thereby allowing the exploration of the effects of

different patterns of population growth. In a subdivided IBD. In fact, this proportion varies across members of
generation i and is equal to hi only in expectation. Thispopulation, the required population sizes are simply

those within the subdivision of interest. extra variability leads to extra-Poisson variation in the
distribution of ni . Assumption 2 does not hold, since,Equation 5 demonstrates that population history af-

fects the expected number of junctions in a chromo- for example, knowing that ni is very small relative to the
number of meioses implies that the population is likelysome through the probability of non-IBD in each gener-

ation. This implies that in a large population where hj close to fixation, and therefore subsequent nj ( j � i)
must also be small. Junctions formed close to one anotherremains close to one over many generations, the num-

ber of generations since the founding of the population in the same meiosis are likely to be inherited together,
and therefore assumption 3 is not generally true. Theis the most important factor in determining the expected

number of junctions and therefore the lower bound violation of these assumptions implies that the true vari-
ance is likely higher than that predicted by the Poissonon the expected length of intact ancestral segments.
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TABLE 1

Ratio of the estimated variance (based on 10,000 simulations)
to the theoretical mean as a function of population size

(N) and generation (t)

�̂ 2/	 t � 20 t � 50 t � 125 t � 150

N � 20 1.08 1.28 1.70 1.76
N � 50 0.99 1.06 1.29 1.34

Figure 2 shows the variance of the number of junc-
tions per morgan in populations of constant size either
N � 20 or N � 50, estimated by simulation and by
the Poisson approximation. The Poisson variance is an
underestimate of the true variance, especially for older
generations, and the smaller population. Since for a
true Poisson random variable, mean and variance are
equal, Table 1 shows the ratio of the estimated variance
(�̂ 2 , based on 10,000 simulations) to the theoretical
mean (	) as a function of N and t. Comparing the
populations at times where t/N � 1 (N � 20, t � 20
and N � 50, t � 50) we see that the mean underestimates
the variance by approximately the same amount: 6 or
8%. Similarly, comparing populations where t/N � 2.5
(N � 20, t � 50 and N � 50, t � 125) the mean under-
estimates the variance by 28 or 29%. This suggests that
for a constant-sized population, t/N approximately de-
termines the adequacy of the Poisson approximation to
the variance. For values of t/N � 1, the Poisson ap-
proximation underestimates the true variance. The im-
portance of the quantity t/N is not surprising, since forFigure 2.—Variance of the number of junctions in a ran-
a population of constant size, ht � (1 � (2N)�1)t 	domly selected chromosome from a population of constant

size N � 20 or N � 50, estimated by (i) simulation, (ii) Equa- exp(�t/(2N)). Larger values of t/N correspond to
tion 6, and (iii) the Poisson approximation. (a) N � 20. (b) increasing amounts of IBD in the population, and in
N � 50.

these situations, assumptions 1–3 may be further from
the truth.

approximation. The assumptions are probably closer to Relaxing assumptions 1 and 2: We now develop a
the truth in larger populations. second variance approximation, which does not require

Simulations: The performance of the Poisson approx- assumptions 1 and 2. Consider the calculation of E[ J 2
t ].

imation to the variance was investigated by simulation. As a function of n,
Chromosome data were simulated for random-mating
populations of constant size (N � 20 or N � 50) over 150 J 2

t � ��
t�1

j�0
�
nj

k�1

It(k, j)�
2

generations. Individual chromosomes were represented
by a linked list of segments, where adjacent segments

� �
t�1

j�0



�

nj

k�1

It(k, j)




2

� �
t�1

i�0
�
t�1

j�0,
j�i



�

ni

k�1

It(k, i)






�

nj

l�1

It(l, j)




were of distinct ancestral types. Each individual in gener-
ation i � 1 was produced by randomly choosing (with
replacement) two parents from generation i . A gamete
from each of these parents was generated by simulating � �

t�1

j�0
�
nj

k�1

It(k, j) � �
t�1

j�0
�
nj

k�1
�
nj

l�1,
l�k

It(k, j)It(l, j)
the locations of crossovers according to a Poisson pro-
cess and constructing the gamete out of the appropriate
segments of parental chromosomes. More details can

� �
t�1

i�0
�
t�1

j�0,
j�i

�
ni

k�1
�
nj

l�1

It(k, i)It(l, j).be found in Chapman (2001). In each simulation, a
chromosome was randomly selected for the generation

The first term in J 2
t is a sum over all junctions. Theof interest, and the number of junctions existing in

second term is a sum over pairs of distinct junctionsthat chromosome was recorded. Variance estimates are
based on 10,000 simulations. formed in the same generation, and the third term is
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a sum over pairs of junctions formed in different genera-
tions. Applying conditional expectation,

E[ J 2
t ] � E[E[ J 2

t �n]]

� E ��
t�1

j�0
�
nj

k�1

E[It(k, j)] � �
t�1

j�0
�
nj

k�1
�
nj

l�1,
l�k

E[It(k, j)It(l, j)]

� �
t�1

i�0
�
t�1

j�0,
j�i

�
ni

k�1
�
nj

l�1

E[It(k, i)It(l, j)]� .

We argued previously that E[It(k, j)] � 1/(2Nj�1). By
assumption 3,

E[It(k, j)It(l, j)] 	 1
2Nj�1

·
1

2Nj�1

,

Figure 3.—Variance of the number of junctions in early
and generations from a population of constant size N � 50, esti-

mated by (i) simulation, (ii) Equation 6, and (iii) the Poisson
approximation.E[It(k, i)It(l, j)] 	 1

2Ni�1

·
1

2Nj�1

.

Then mation, particularly for later generations. It is interesting
to note that in both examples, the Poisson approxima-E[ J 2

t ] � E[E[ J 2
t �n]]

tion begins to fail at approximately the Nth generation,
which is where the non-IBD proportion has been re-	 E ��

t�1

j�0
�
nj

k�1

1
2Nj�1

� � E ��
t�1

j�0
�
nj

k�1
�
nj

l�1,
l�k

1
4N 2

j�1
�

duced to �60%. For generations earlier than this, the
two variance approximations are almost indistinguish-
able, and they are very close to the simulated variance� E ��

t�1

i�0
�
t�1

j�0,
j�i

�
ni

k�1
�
nj

l�1

1
4Ni�1Nj�1

� (see Figure 3). This suggests that for young populations
or older, larger populations, the Poisson variance ap-
proximation may be adequate. The Poisson approxima-and so
tion to the variance has an advantage over Equation 6,
because it is so much easier to calculate.E[ J 2

t ] 	 �
t�1

j�0

E[nj]

2Nj�1

� �
t�1

j�0

E[nj(nj � 1)]

4N 2
j�1

� �
t�1

i�0
�
t�1

j�0,
j�i

E[ninj]

4Ni�1Nj�1

.

Therefore APPLICATION TO GROWING POPULATIONS
WITH AND WITHOUT SUBDIVISION

Var[ Jt] � E[ J 2
t ] � E[ Jt]2

To demonstrate the potential effects of different types
of population growth on expected junction number and	 �

t�1

j�0

E[nj]

2Nj�1

� �
t�1

j�0

E[nj(nj � 1)]

4N 2
j�1 therefore intact segment length, we consider an example.

Consider a population that has grown to 100 times its
� �

t�1

i�0
�
t�1

j�0,
j�i

E[ninj]

4Ni�1Nj�1

� ��
t�1

j�0

hjL�
2

. (6) initial size, over a period of 100 generations. This exam-
ple reflects the age of modern Finnish (Nevanlinna
1972) and Japanese (Benedict 1989) populations. We

Expressions for E[n2
j ] and E[ninj] are developed in the consider initial population sizes (N0) of 20, 100, and

appendix (Equations A8 and A9), and E[nj] is given in 500 individuals, and for each we consider five growth
Equation 4. The expectations in Equation 6 depend on scenarios:
the chromosome length and the population sizes over
time, through the single-locus non-IBD probabilities (hj , Linear growth: expansion by a constant number of indi-

viduals each generation.j � 0 . . . t � 1), and the two-locus non-IBD probabilities
[
j(�), �j(�), 
j(�) j � 0, . . . t � 1], which are described Exponential growth: expansion by a constant percent-

age each generation. A 100-fold increase over 100in the appendix.
Figure 2 shows the variance of the number of junc- generations corresponds to a growth rate of 4.72%

per generation.tions per morgan in populations of constant size either
N � 20 or N � 50. The variance is estimated by simula- Exponential growth with internal subdivision: popula-

tion bifurcates whenever a population size of 2N0 istion (10,000 iterations), Equation 6, and the Poisson
approximation. For both populations, Equation 6 is reached (first division at t � 15, subsequently every

15 generations).much better than the Poisson-based variance approxi-
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TABLE 3

Expected number of junctions on a chromosome of length
1 M from generation 100, for each of the five growth

scenarios with N0 � 100 and N0 � 500

N0
Type of
growth Subdivision 100 500

Linear None 97.9 99.6

Exponential None 91.7 98.3
Split at 8N0 90.9 98.1
Split at 4N0 88.9 97.7

Figure 4.—Population sizes over time for linear and expo- Split at 2N0 83.5 96.4
nentially growing populations with N0 � 20.

Exponential growth with internal subdivision: popula- growing population increases its size rapidly enough in
tion bifurcates whenever a population size of 4N0 is the early generations that little IBD is accumulated. In
reached (first division at t � 30, subsequently every contrast, all the exponentially growing populations re-
15 generations). main small for a long period of time, during which IBD

Exponential growth with internal subdivision: popula- accumulates within the population. Thus fewer junctions
tion bifurcates whenever a population size of 8N0 is are formed. For the same reason, increasing amounts
reached (first division at t � 45, subsequently every of subdivision within the exponentially growing popula-
15 generations). tions results in substantially fewer junctions being formed.

Intact ancestral segments in the unsubdivided exponen-For a given value of N0, all scenarios have the same total
tially growing population are expected to be �50% largersize at generation 100. All exponential growth scenarios
than in the linearly growing population. In the mosthave the same total number of individuals at all genera-
subdivided exponential population, ancestral segmentstions—the difference is in the extent of internal subdivi-
are expected to be twice as long as in the linearly grow-sion. Figure 4 shows the total population sizes over time
ing population and almost 50% larger than those in thefor the population with N0 � 20.
unsubdivided exponentially growing population. ThusTable 2 shows the expected number of junctions in
different patterns of population growth can have a dra-a chromosome selected from generation 100 (using
matic effect on expected number of junctions in a chro-Equation 5) and the corresponding lower bound on
mosome and therefore the length of ancestral segments.the expected length of intact ancestral segments (using

Table 3 shows the expected number of junctions onEquation 1), for each of the five growth scenarios with
a chromosome of length 1 M from generation 100, forN0 � 20. In these populations, the type of growth has
each of the five growth scenarios and the larger found-a pronounced effect on the expected number of junc-
ing population sizes. For the larger populations (N0 �tions. Substantially more junctions are expected in the
100 and N0 � 500) the expected number of junctionslinearly growing population than in any of the exponen-
in the linearly growing population is close to 100, whichtially growing populations. This is because the linearly
is what one would expect in an infinitely large popula-
tion where IBD does not accumulate. This reflects the

TABLE 2 fact that little IBD accumulates in these populations
because they start relatively large and grow quickly. TheExpected number of junctions on a chromosome of length
number of junctions expected in the exponentially1 M from generation 100 and the corresponding lower
growing populations is reduced relative to the linearlybound on expected segment length for each of the
growing populations and further reduced in the sub-five growth scenarios with N0 � 20
divided populations. While these trends are the same

Lower bound (cM) as those observed in the smallest populations (N0 �
Type of on E[segment 20, see Table 2), the magnitude of the effects is much
growth Subdivision E[ J100 ] length] smaller. For example, when N0 � 500, only 3% more

junctions are expected in the linearly growing popula-Linear None 90.0 1.0
tion than in the most subdivided exponentially growing

Exponential None 64.9 1.5 population.
Split at 8N0 62.8 1.6 It is also important to consider the variability of the
Split at 4N0 57.3 1.7

number of junctions in a chromosome. Table 4 showsSplit at 2N0 45.0 2.2
the variance of the number of junctions in a chromo-
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TABLE 4 of the number of junctions in a chromosome is large,
and so the existing number of junctions in a chromo-Variance of the number of junctions in a chromosome
some may differ substantially from that expected on therandomly selected from generation 100, based on 10,000
basis of known population history and structure.simulations, Equation 6, or the Poisson approximation

These results allow us to predict that disequilibrium
Exponential growth may persist over longer distances in smaller, more re-

cently founded populations. Whether or not it doesLinear No
depends on the patterns of junction formation in manygrowth subdivision 8N0 4N0 2N0
meioses, which we cannot observe. Studies of the extent

N0 � 20 of disequilibrium across the genome of an isolated pop-
Simulation 92.04 86.94 81.85 77.78 68.86 ulation are therefore desirable. Only then can the utility
Equation 6 90.68 80.50 76.95 70.93 60.53 of a large-scale disequilibrium mapping study be assessed.
Poisson 90.04 64.93 62.80 57.28 45.00

We are grateful to a referee for drawing our attention to the related
N0 � 100 work of Wiuf and Hein (1997) and Derrida and Jung-Muller (1999).

Simulation — — 94.07 91.67 86.24 This work was supported in part by the Burroughs Wellcome Fund for
Equation 6 97.93 92.06 91.24 89.34 84.60 the Program in Mathematical and Molecular Biology.
Poisson 97.93 91.74 90.91 88.93 83.45
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DISCUSSION Communicating editor: M. Veuille

The theoretical development shows that the most im-
portant factor in determining the expected number of

APPENDIX: CALCULATION OF SECOND-ORDERjunctions in a chromosome, and therefore a lower
MOMENTS OF Hi(p ) AND nibound for the average length of intact ancestral seg-

ments, is the time since founding of the population. To calculate the second-order moments of ni, we re-
quire the second-order moments of Hi(p), the propor-In generation t of an infinitely large random-mating

population, we expect t junctions per morgan in a chro- tion of the chromosome that is non-IBD in individual
p of generation i .mosome. In finite populations, the expectation is �t,

but the difference is substantial only if the historical Second-order moments of Hi(p): To calculate second-
order moments of Hi(p), we consider some two-locuspopulation sizes have been small enough to result in

the accumulation of IBD and therefore the production gene nonidentity measures described by Weir et al.
(1980) and illustrated in Figure A1. Generally, we areof fewer junctions. Similarly, different growth patterns

and levels of subdivision affect the expected number of interested in the probability that genes a and a� at locus
x are non-IBD, and genes b and b� at locus y are alsojunctions in a substantial way only if population sizes

are very small. Even when this is the case, the variance non-IBD. This probability is denoted 
, �, or 
 ac-
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4 is obtained from line 3 by a change of variables s �
�x � y � and integration. 
i is too complicated to evaluate
exactly. Weir et al. (1980) discuss its estimation by nu-
merical integration.

Calculation of E[Hi(p) · Hi(p�)]: Consider the product
of the non-IBD proportions of two distinct individuals
p and p� in the ith generation.

E[Hi(p) · Hi(p�)] � E ��
L

0

I p
i (x)
L

dx · �
L

0

I p�
i (y)
L

dy�
�

1
L2 �

L

0
�

L

0

E[I p
i (x) · I p�

i (y)]dxdy

�
1
L2 �

L

0
�

L

0


i(�� x�y �)dxdy

�
2
L2 �

L

0

(L � s)
i(�s)ds 
 
i . (A2)

Calculation of E[Hi(p) · Hj(p�)]: Finally, we examine
the product of the non-IBD proportions of two individu-
als: p from the ith generation, and p� from the jth genera-
tion. We assume that i � j . Then

Figure A1.—Two-locus gene nonidentity measures. (a) 
.
(b) �. (c) 
.

E[Hi(p) · Hj(p�)] � E ��
L

0

I p
i (x)
L

dx · �
L

0

I p�
j (y)

L
dy�

cording to the number of chromosomes in which the
�

1
L2 �

L

0
�

L

0

E[I p
i (x) · I p�

j (y)]dxdyloci are being compared (see Figure A1). Weir et al.
(1980) consider the evolution of these probabilities over
time for populations reproducing according to various �

1
L2 �

L

0
�

L

0

Pr(ai � a�i ; bj � b�j )dxdy,
schemes of random mating with discrete generations.
Let �i � (
i, �i, 
i)T denote the column vector of two- (A3)
locus non-IBD probabilities at generation i . Weir et al.

where ai and a�i denote the genes at locus x in person(1980) show that �i�1 � � · �i, where � is a transition
p of generation i, bj and b�j denote the genes at locus ymatrix that depends on the recombination fraction �
in person p� of generation j , and � indicates non-IBD.between the loci and the size (Ni) of the population at
To have bj � b�j , bj and b�j must be descended fromgeneration i . Therefore �i depends on the population
different individuals in generation j � 1. This implies thatsizes up to and including generation i � 1 and the

recombination fraction �. We denote the probabilities
Pr(ai � a�i ; bj � b�j ) � �1 �

1
2Nj�1

� · Pr(ai � a�i ; bj�1 � b�j�1) ,of interest by 
i(�), �i(�), and 
i(�).
Calculation of E[Hi(p)2]: Consider E[Hi(p)2], the ex- (A4)

pected value of the square of the non-IBD proportion
in an individual in generation i . where bj�1 and b�j�1 denote the ancestors at generation

j � 1 of bj and b�j , respectively. Applying (A4) iteratively,
E[Hi(p)2] � E ��

L

0

I p
i (x)
L

dx · �
L

0

I p
i (y)
L

dy� we obtain

Pr(ai � a�i ; bj � b�j ) � �
j�i�1

k�1
�1 �

1
2Ni�k

� · Pr(ai � a�i ; bi�1 � b�i�1) ,
�

1
L2 �

L

0
�

L

0

E[I p
i (x) · I p

i (y)]dxdy
(A5)

where b and b� denote genes at locus y on distinct chro-�
1
L2 �

L

0
�

L

0


i(�� x�y � )dxdy
mosomes in generation i � 1. The probability on the
right-hand side of Equation A5 depends on the relation-

�
2
L2 �

L

0

(L � s)
i(�s)ds 
 
i . (A1) ship between the chromosomes carrying ai, a�i , and the
ancestors bi and b�i of bi�1 and b�i�1. Table A1 shows the
possible configurations of bi and b�i , the probability ofIn this equation, �s denotes the recombination fraction

between two loci a distance s morgans apart, and line each configuration, calculated using the random-
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· � 1
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(A7)

where

�i 
 2
L2 �

L

0

(L � s)�i(�s)ds .

Second-order moments of n i: To calculate E[n 2
i ] and

E[ninj], we use the formula ni � �2Ni�1
m�1 Xi(m), where Xi(m)

denotes the number of junctions formed in meiosis m
from generation i. Since crossovers happen along the
chromosome according to a Poisson process with rate
one per morgan, given Hi(pm), Xi(m) has a Poisson distri-
bution with mean Hi(pm)L, where pm denotes the parent
of meiosis m, and L denotes the length of the chromo-
some in morgans. Therefore

E[Xi(m)2] � E[E[Xi(m)2 �Hi(pm)]]mating model, and the desired probability Pr(ai � a�i ;
bi�1 � b�i�1) conditional on that configuration. � E[Hi(pm)L � (Hi(pm)L)2]

The probability required in Equation A3 is then ob-
� E[Hi(pm)]L � E[Hi(pm)2]L2

tained by summing over the possible configurations and
substituting that quantity into Equation A5. Therefore � hiL � 
iL2 ,

since the parent is simply a randomly chosen individualPr(ai � a�i ; bj � b�j ) � �
j�i�1

k�1
�1 �

1
2Ni�k

� from generation i .
To calculate E[n 2

i ], we also consider E[Xi(m)Xi(m�)],
· � 1

2N 2
i


i(�� x�y � ) the expected value of the product of the numbers of
junctions formed in two different meioses from the same
generation:

�
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N 2
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(A6) since conditional on the proportion non-IBD in each
of the parents, the numbers of junctions formed in eachSubstituting Equation A6 into Equation A3, we find
meiosis are independent. With probability 1/Ni , both
meioses are from the same parent. Otherwise they areE [Hi(p ) · Hj(p�)] �

1
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L

0
�

L

0
�

j�i�1
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� from distinct individuals in the ith generation. Therefore
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by Equations A1 and A2. Then
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m��1

E[Xi(m)Xj(m�)]Calculation of E[ninj] requires that we first obtain
E[Xi(m)Xj(m�)], the expected value of the product of
the numbers of junctions formed in two meioses oc- � 4Ni�1Nj�1 �

j�i�1

k�1
�1 �

1
2Ni�k

�� 1
2N 2

i
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curring in two different generations. Now,
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