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ABSTRACT
The genomes of all organisms are subject to continuous bombardment of deleterious genomic mutations

(DGM). Our ability to accurately estimate various parameters of DGM has profound significance in
population and evolutionary genetics. The Deng-Lynch method can estimate the parameters of DGM in
natural selfing and outcrossing populations. This method assumes constant fitness effects of DGM and
hence is biased under variable fitness effects of DGM. Here, we develop a statistical method to estimate
DGM parameters by considering variable mutation effects across loci. Under variable mutation effects,
the mean fitness and genetic variance for fitness of parental and progeny generations across selfing/
outcrossing in outcrossing/selfing populations and the covariance between mean fitness of parents and
that of their progeny are functions of DGM parameters: the genomic mutation rate U, average homozygous
effect s, average dominance coefficient h, and covariance of selection and dominance coefficients cov(h,
s). The DGM parameters can be estimated by the algorithms we developed herein, which may yield
improved estimation of DGM parameters over the Deng-Lynch method as demonstrated by our simulation
studies. Importantly, this method is the first one to characterize cov(h, s) for DGM.

THE genomes of all organisms are subject to deleteri- standing of Haldane’s rule by the dominance hypothesis
(Turelli and Orr 1995). The current experimentalous genomic mutations (DGM) continuously. In spite
approaches and the estimation methods of the parame-of our increasing knowledge of the molecular underpin-
ters of DGM are summarized and compared (Deng andnings of mutations, little is known about the overall risk
Fu 1998; Deng et al. 1999; Deng and Li 2001). It isexerted on human health and on continuing survivabil-
concluded that under their respective assumptions ofity of other organisms (especially rare and endangered
various approaches, estimation by the Deng-Lynchspecies) by DGM (Crow 1993a,b, 1995). To assess this
method (Deng and Lynch 1996, 1997) in natural popu-overall risk correctly, we need to have a solid knowledge
lations generally results in the best statistical quality inof the genomic mutation rate (U) at which DGM arise
terms of bias and sampling variance (Deng and Fuin the whole genome of an individual and the distribu-
1998). In addition, it has been shown that violation oftion of their effects, such as the mean selection coeffi-
various assumptions [including the mutation-selectioncient (s), the mean dominance coefficient (h), and the
(M-S) balance assumption] underlying the Deng-Lynchcovariance of dominance and selection coefficients of
method does not seriously undermine its estimationDGM [cov(h, s)]. Estimation of these parameters is also
robustness (Li et al. 1999; Li and Deng 2000; Deng andimportant for testing the validity of a number of evolu-
Li 2001).tionary theories in genetics (Turelli and Orr 1995;

As with almost all the other estimation methods (ex-and the references within Deng et al. 1998, 1999).
cept a maximum-likelihood estimation method for mu-Despite the extreme importance of our knowledge
tation-accumulation experiments; Keightley 1994),of deleterious mutation parameters, few estimates are
the Deng-Lynch method that applies to natural outcross-available (Simmons and Crow 1977; Crow and Sim-
ing or selfing populations assumes constant fitness ef-mons 1983; Kondrashov 1988; Crow 1993a,b, 1995;
fects of DGM. This assumption is well recognized asBataillon 2000). Particularly, no method to estimate
biologically implausible. Although the estimation biasU is not biased by variable mutation effects, and no
introduced by variable mutation effects in the Deng-method to estimate cov(h, s) is important for our under-
Lynch estimation method by assuming constant muta-
tion effects is not substantial (Deng et al. 1999), an estima-
tion method that considers variable mutation effects may
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acterizing variable effects of DGM can be estimated only nk � Uk/2sk � Upk/2sk . (1b)
in statistical methods that consider variable mutation

Outcrossing populations: We illustrate our experi-effects.
mental design and estimation method by using popula-In this article, we present a method for estimating
tions capable of selfing. The method may be extendedDGM parameters accounting for variable effects across
to outcrossing populations where selfing is not feasibleloci in natural outcrossing or selfing populations at M-S
as in the Deng-Lynch method (Deng 1998b). The basicbalance. We investigate the statistical properties (bias
data structure is outcrossed parents and multiple selfedand sampling variance) of this new method, using com-
progeny from each parent (forming selfed families).puter simulations in comparison with the Deng-Lynch
Let Wo and Ws be the mean fitness in the parental andmethod (Deng and Lynch 1996, 1997) that assumed
offspring generations, respectively, �2

o the genetic vari-constant mutation effects across loci.
ance of fitness in the parental generation, �2

t the total
genetic variance of fitness in the selfed progeny genera-

THEORY tion, �2
s the genetic variance of the mean fitness of selfed

progeny in selfing families, and cov(wp, ws) the covari-The assumptions are the same as those of the Morton-
ance between the fitness of a parent (wp) and the meanCharlesworth method (Morton et al. 1956; Charles-
fitness of its selfed progeny (ws). Under the above as-worth et al. 1990) and the Deng-Lynch method (Deng
sumption for mutation effects that are variable acrossand Lynch 1996, 1997; Deng 1998b). Namely, the pop-
various intervals at different loci, as in Deng and Lynchulation is assumed to be large, randomly mating, highly
(1996), it can be shown that the fitness moments areselfing or outcrossing, at linkage equilibrium, and at M-S
related to the DGM parameters asbalance. In addition, the fitness function is assumed to

be multiplicative, which is biologically plausible (Mor- Wo � Wmax exp(�U) (2)
ton et al. 1956; Crow 1986; Craddock et al. 1995; Fu

�2
o � W 2

o[exp(Uhs) � 1], (3)and Ritland 1996). Mutations at each locus are assumed
to have constant effect s and h. Ws � Wmax exp{�(U/4)[2 � (1/h̃)]}, (4)

In this study, we consider variable mutation effects in
the development of an estimation method for DGM �2

s � W 2
s {exp[(U/4)(s � hs � s/(4h))] � 1}, (5)

parameters in natural populations. Under variable mu-
�2

t � W 2
s[exp[U (hs/2 � s/(4h))] � 1], (6)tation effects across loci, homozygous effect s for muta-

tions is a random variable between 0 and 1. We assume cov(wp, ws) � WsWo {exp[(1/4)U(2hs � s)] � 1}, (7)
that, for a mutation, dominance coefficients h and s are

where the parameters with overbars denote arithmeticfunctionally related so that h � h(s). This assumption
mean properties of new DGM parameters, h̃ is the har-is supported by the limited data and theory (Simmons
monic mean dominance coefficient of new mutations,and Crow 1977; Kacser and Burns 1981; Crow and
and Wmax is the expected fitness of a mutation-free geno-Simmons 1983). We divide the domain of s, [0, 1], for
type in an environment where fitness measurements arenew mutations into T intervals with each having a
taken. Wmax serves as a scaling factor so that the fitnesswidth of 1/T. Let Ik � [k/T, (k � 1)/T] denote the kth
measurement can be on any scale instead of just frominterval, and define the probability
0.0 to 1.0 and also so that mean environmental effects

pk � P(s � Ik), k � 0, 1, . . . , T � 1. of experiments do not influence estimation (Deng and
Lynch 1996).When T is sufficiently large, s and h are approximately

Among Equations 2–7, there are only five indepen-constant within each interval but are variable across
dent equations containing six unknown parameters. Byvarious intervals. Let Uk denote the mutation rate corre-
assuming one of the six parameters known in the estima-sponding to mutations with an effect s falling into the
tion, estimators of the other parameters can be derived.interval Ik, and then Uk � Upk .
This is the strategy employed in the likelihood character-With the assumptions we have, in outcrossing popula-
ization of DGM parameters when variable mutation ef-tions, the number of mutant alleles with mutation effects
fects are considered in estimation (Keightley 1994;s falling into an interval Ik within an individual (all in
Deng et al. 1999; Deng and Li 2001). Here we assumethe heterozygous state; Morton et al. 1956; Deng and
that U is known in the estimation for the time being.Lynch 1996) follows a Poisson distribution with an ex-
Alternatively, an initial value of U may be estimated frompectation
other approaches (Deng et al. 1999) or may be estimated

nk � Uk/hksk � Upk/hksk (1a) by the current experimental design and data with the
Deng-Lynch method (Deng and Lynch 1996; see be-(Deng and Lynch 1996, 1997). In selfing populations,
low). (If we assume that one of the parameters h̃, s, andthe number of loci homozygous for mutant alleles with
hs is known, similar estimation procedures can be de-an effect s falling into an interval Ik within an individual

follows a Poisson distribution with an expectation rived for U and the rest of the other parameters. h̃ can
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be estimated by methods such as that of Deng 1998a.) selection coefficient s (from zero to one) into infinitely
small intervals so that s can be treated as constant withinSolving these equations jointly yields estimators of h̃,

hs, and s and as each of the intervals but varying across intervals in our
analytical derivation. Again, there are six unknowns (U,
h, hs, s, h2s, and Wmax) in the above five equations. Byh̃ �

1
2�4(y/U)

, s �
4b � 2x

U
, hs �

x
U

, (8)
assuming or estimating one of the six parameters, esti-
mators of the other five parameters can be derived.where
Here, as earlier for outcrossing populations, we assume
that U is known in the estimation for illustration. Alter-

x � ln� �2
o

W 2
o

� 1� , y � ln�Ws

Wo
�, natively, an initial value of U may be estimated from

other approaches (Deng et al. 1999) or may be estimated
with the Deng-Lynch method from the same data andz � ln� �2

s

W 2
s

� 1� , b � ln�cov(wp, ws)
WoW s

� 1� . (9)
experimental design as the current estimation method
(Deng and Lynch 1996). Solving these equations jointly

From these estimates, other composite parameters yields estimators of h, hs, and s,
of DGM, such as the mean number of mutations per
genome n, mutational variance Vm per generation, and h � 0.5 � (y/U), s �

2x
U

, hs �
2b
U

, (16)
mean mutation effects on fitness Uhs, can be derived
(Deng and Lynch 1996). The covariance of h and s for

wheremutations cov(h, s) can be approximated, or at least an
upper bound can be estimated, as

x � ln� �2
p

W 2
p

� 1�, y � ln�WF1

Wp
� ,

cov(h, s) � hs � hs � hs � h̃s . (10)

This is because for any distribution, h � h̃. Let cov(h, s) � z � ln� �2
F1

W 2
F1

� 1� , b � ln�cov(P, F1)

Wp WF1

� 1� . (17)
hs � sh̃, where cov(h, s) denotes an upper bound of
cov(h, s). This offers us the first opportunity to quantify

In selfing populations, we can use Equation 10 tothe magnitude and the sign of cov(h, s). It would be
estimate cov(h, s) by the above estimates of h, hs, andimpossible to come up with analytical estimators for
s, which are unbiased under variable mutation effectsDGM parameters such as cov(h, s) if in the analytical
with a known correct U. The estimators for h and sderivation, variable mutation effects are not considered.
when assuming U is known are the same as those inThis is simply because these parameters such as cov(h, s)
Deng and Lynch (1996) for selfing populations.would be zero and meaningless in an analytical estima-

The above estimation developed herein does not as-tion developed under constant mutation effects.
sume any specific functional relationship between s andSelfing populations: Random pairs of highly selfing
h and any specific distribution form for the selectionand homozygous parental genotypes (denoted as P gen-
coefficient s. Therefore, the estimates are robust to dif-eration) are crossed to obtain outcrossed progeny (de-
ferent unknown forms of the distribution of s and thenoted as F1 generation). Let Wp and �2

p be the mean
functional relationship between s and h. This is truefitness and genetic variance of fitness in the P genera-
despite that we assume specific distributions of s and ation, respectively, WF1 and �2

F1 be the mean fitness and
functional relationship between s and h in the followinggenetic variance of fitness in the F1 generation, respec-
simulation studies to investigate the statistical propertiestively, and cov(P, F1) be the covariance between the
of our estimation.mean fitness of the two parents and the fitness of their

F1 progeny. Under variable mutation effects across loci,
the fitness moments are related to the DGM parameters SIMULATIONS AND RESULTS
as follows:

As with Keightley (1994), we assume that s for muta-
Wp � Wmax exp(�U/ 2), (11) tions follows a gamma distribution, with a density function

�2
p � W 2

p[exp(U s / 2) � 1], (12) g(s) � ��s��1e��s/	(�),

WF1
� Wmax exp(�Uh), (13) where 	(�) � �∞

0 y��1e�y dy. � and � are the scale and
shape parameters, respectively. s � �/� and �2

s � �/�2.
�2

F1
� W 2

F1
(exp(Uh2s) � 1), (14)

As in Deng and Lynch (1996), we let h � h(s) � e�As/
2, where A � 13, which is in rough accordance with thecov(P, F1) � WpWF1

[exp(Uhs/ 2) � 1]. (15)
few available data (Gregory 1965; Mackay et al. 1992;

It should be noted that the derivation for Equations Deng and Lynch 1996; Deng and Fu 1998). With these
2–7 and 11–15 assumes mutation effects that are vari- assumptions, the parameters h, h̃, hs, and cov(h, s) can

be derived asable. The strategy is to divide the range of variable
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h � ��/[2(A � �)�], obtained by random sampling from the Poisson distribu-
tion defined above. The fitness of each selfed offspring
was obtained by allowing the nk heterozygous loci of ah̃ � �(� � A)�/[2��] when � � A 
 0

0 when � � A � 0, parent to segregate randomly into the AA, Aa, and aa
genotypes with respective probabilities of 1/4, 1/2, andhs � ���/[2(A � �)��1] ,
1/4. Letting n1k and n2k (k � 1, . . . , T) be the numbers

cov(h, s) � �A����1/[2(A � �)��1]. of heterozygous and homozygous loci containing muta-
tions with effects falling into the interval Ik in a selfedThese DGM parameters can be used for comparison
offspring, the fitness of the selfed progeny isto examine the estimated values with our estimation

methods in simulations.
Ws � Wmax �

T

k�1

(1 � hksk)n1k (1 � sk)n2k.The simulation procedures are the same as those that
have been documented extensively earlier (Deng and

Unless otherwise specified, for each set of parametersLynch 1996; Deng 1998b) and are thus not elaborated
(U, �, �, K, M), we performed 1000 simulations. We lethere. In simulations, we assume that the fitnesses of
Wmax � 1 throughout, as the value of Wmax does notvarious genotypes can be measured with little error,
influence DGM parameter estimation.which is justifiable in the investigation of estimation bias

For selfing populations, the fitness of an individualand comparison of various estimation methods (Deng
from the parental generation iset al. 1999). Under the assumptions for the analytical

development of our estimation methods, the number Wp � Wmax �
T

k�1

(1 � sk)nk ,
of mutant alleles corresponding to an interval Ik per
individual follows the Poisson distributions (Equations

where nk is the number of mutation-bearing loci with1a and 1b) with pk being determined as
mutation effects falling into the interval Ik in an individ-
ual, and it is obtained by random sampling from thepk � P(s � Ik) �

1
	(�) �

Ik

��s ��1e��sds, k � 0, 1, . . . , T � 1.
Poisson distribution defined earlier. Each parent mates
with another random parent (not in the original set of

It can be shown that K) to produce a total of K progeny (one per family)
with fitnesspk � �exp���

k � 1
T � � exp���

k
T �, when � � 1;

WF1
� Wmax �

T

k�1

(1 � hksk)n1k�n2k ,
pk � ��exp���

k � 1
T ����k � 1

T
� 1� � �exp���

k
T ����k

T
� 1�,

where n1k and n2k (k � 1, . . . , T) are the numbers of
homozygous mutant loci in interval Ik in the two parents,when � � 2
respectively.

and when � � 0.5, In the estimation Equations 8 or 16, U must be
known, assumed, or estimated with other approaches

pk � Erf �	�
k � 1

T � � Erf �	�
k
T � , first. In simulations, we experimented and examined

two methods to estimate U : (1) by the Deng-Lynch
method (Deng and Lynch 1996) and (2) by an empiri-where Erf(x) � (2/√�)�x

0e�t 2 dt (x 
 0). Erf(x) can be
cal regression procedure introduced here. We simu-approximated as
lated parents and their children according to variable

Erf(x) 
 1 � (1 � �
6

i�1

aix i)�16 (18) effects for each set of given parameter values of U, �,
and �, and obtained the estimates Û1, ŝ1, and ĥ1 by
the Deng-Lynch method (Deng and Lynch 1996). (A(Gao 1995), where a1 � 0.0705230784, a2 � 0.0422820123,
circumflex indicates an estimated value throughout.)a3 � 0.0092705272, a4 � 0.0001520143, a5 � 0.0002765672,
We found a strong linear relationship between the pa-a6 � 0.0000430638.
rameter values of U and the estimates Û1 and ŝ1 under anyTo evaluate the performance of our estimation in
fixed �. Through a series of simulations, we obtainedoutcrossing populations in simulations, for each set of
samples under various parameter values of U, �, andparameters U, �, and �, K parents were sampled from
fixed �-values, and we obtained estimates Û1 and ŝ1 withthe parental generation, and from each of these, M
the Deng-Lynch method under various fixed �-values.selfed progeny were produced. The fitness of an individ-
Then we fit a multiple regression model under eachual from the parental generation is
specific �-value,

Wo � Wmax �
T

k�1

(1 � hksk)nk ,
Û � â1 � b̂1Û1 � ĉ1ŝ1 , (19)

where Û estimates U with little bias when � is correctlywhere nk is the number of mutation-bearing loci with
their effects falling into the interval Ik in an individual, assumed as shown by our simulation results not presented
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here. The empirical estimation is useful only when the selfing populations, Equation 16 yields the same esti-
mates for s and h as those obtained by the Deng-Lynchshape parameter � can be estimated using other methods

and experimental data (e.g., Keightley 1994). method (Table 2), which is expected as pointed out
earlier. The estimates of s, hs, and cov(h, s) are upwardlyThe simulation results are represented by the data in

Tables 1–4. The ranges of the values for the parameters biased and estimates of h are downwardly biased because
Û1 is downwardly biased, which can be understood from(such as U, h, and s) generally cover those reported

earlier from classical empirical experiments (e.g., Mukai Equation 16.
Third, in outcrossing populations, the cov(h, s) iset al. 1972; Lynch et al. 1999). Three general conclu-

sions emerge from our simulation studies under variable correctly estimated to be an upper bound of cov(h, s);
however, the sign of cov(h, s) can sometimes be esti-mutation effects. First, when U is set to equal true values

or when the estimates of U are obtained via Equation 19 mated to be different from that of cov(h, s). In selfing
populations, cov(h, s) can always be estimated with cor-by assuming a correct �-value, application of Equation 8

or 16 to both obligate selfing or outcrossing populations rect sign and small estimation bias.
yields nearly unbiased estimates for the DGM parame-
ters with small standard deviation. The estimates of U

ROBUSTNESS ANALYSIS
by Equation 8 have smaller mean square error despite
larger standard deviation when U is set equal to the In the estimation of the DGM parameters, we need

a prior estimate of one of the six parameters (such as Uestimates obtained by regression Equation 19 than those
obtained by the Deng-Lynch method. The larger stan- as investigated here) based on some external knowledge

obtained from other estimation approaches. The esti-dard deviation may be partly due to the fact that Equa-
tion 19 is established by empirical regression procedures mation bias of this parameter or the bias of an assumed

value will cause estimation bias of the other parameters.that involve an additional level of sampling error for
the final estimation. The estimates of s by Equation 8 Hence, we investigate the sensitivity of estimators to

the departures of U from true value, using computerin outcrossing populations have smaller sampling vari-
ance and smaller bias than those obtained directly by simulations (Figures 1 and 2). We define a relative bias

rate (RBR), (estimate � true value)/(true value), tothe Deng-Lynch method, e.g., by comparison of the esti-
mates in rows 1 and 3 for each parameter set in Table measure the sensitivity of estimators to an incorrectly

assumed or estimated U value. In examining the ro-1. This is true even when no prior assumption is made
about the magnitude of U, when U is first estimated bustness of the estimator for cov(h, s), the true value

used is the parameter value of cov(h, s) as defined afterdirectly with the Deng-Lynch method, and then the esti-
mate of U is used in the current estimation method, Equation 10 and not cov(h, s).

In simulations for the investigation of the robustness(Equation 8) for the other DGM parameters. The esti-
mates of h̃ by Equation 8 have smaller or comparable of our current estimation of the other DGM parameters,

U is set equal to a given value (denoted as Ugiven), whichsampling variance than those obtained directly by the
Deng-Lynch method for h (for each parameter set, com- ranges from 0.5U0 to 1.5U0 (U0 is the true value of U).

This range of the estimate of U investigated is reason-pare the estimates of the second to fourth rows with
that of the first row in Table 1). The comparison of able given the magnitude of bias that is normally found

with the method such as that of Deng and Lynchthe estimation quality between the current estimation
method and the Deng-Lynch method changes little with (1996). The changes in the mean relative bias rates

(MRBR) of the estimates of the parameter values inthe parameter values (Table 1). When � � 0.5, the bias
of the estimates of the parameters is larger than that 1000 simulations are shown in Figures 1 and 2. It can

be seen that when Ugiven ranged from 0.7U0 to 1.5U0when � � 1 and 2. This may be due to the approximation
formula 18 used to compute pk � P(si � Ik) when � � (which means that the departure of Ugiven from U0 ranged

from �0.3U0 to 0.5U0), the MRBR of the estimates of the0.5, while the computation of pk � P(si � Ik) when � �
1 and 2 is exact. parameter values changed smoothly and changed little

in both outcrossing and selfing populations. When UgivenSecond, when U is set equal to the estimates (Û1) that
were obtained by the Deng-Lynch method (Deng and ranged from 0.9U0 to 1.2U0, the absolute values of the

MRBR of the estimates of parameters [except cov(h, s)Lynch 1996) and that are downwardly biased, the esti-
mates of the other DGM parameters by Equations 8 and for outcrossing populations when � � 20] are �0.185

in both outcrossing and selfing populations. For out-16 are biased with small sampling variance (Tables 1 and
2). For outcrossing populations, the estimation Equation 8 crossing populations, when � � 20, if Ugiven � 0.9U0 or

Ugiven � 1.1U0, the absolute values of the MRBR of cov(h,yields less biased estimates with smaller standard devia-
tion for s than for the Deng-Lynch method (Table 1), s) are 
1.0 (Figure 1, b and d). (Note the scale differ-

ence of the y-axis in Figure 1, b and d, with the otherand the estimates of s, hs, cov(h, s) are upwardly biased
and estimates of h̃ are downwardly biased. The result can plots in Figures 1 and 2.) Thus, even when U is estimated

with some bias, if the magnitude is similar to that ob-be understood from Equation 8, since Û1 is downwardly
biased as estimated by the Deng-Lynch method. In tained by methods such as that of Deng and Lynch
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(Û
�

0.
15

7
�

1.
55

1
�

Û
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hĥs

co
v(

ĥ,
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(Û
)

of
U

by
re

gr
es

si
on

E
qu

at
io

n
19

in
th

e
th

ir
d

ro
w

[w
h

en
�

�
0.

5,
Û
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Figure 1.—The changes in RBR of the estimates of s, h̃, hs, cov(h, s) obtained by Equation 8 in outcrossing populations
when U were given equal to the values that ranged from 0.5U0 to 1.5U0. Each data point was the mean in 1000 simulations with
the following sets of parameters and � � 1.0: (a) U0 � 1.5, s � 0.01, and � � 100; (b) U0 � 1.5, s � 0.05, and � � 20; (c) U0 �
0.5, s � 0.01, and � � 100; and (d) U0 � 0.5, s � 0.05, and � � 20.

(1996), our current estimation method can generally Importantly, cov(h, s) for DGM can be estimated (Equa-
tion 10) from an experiment for the first time. Pre-still yield relatively robust estimates of DGM parameters

(except cov(h, s) for outcrossing populations when � is viously, a negative correlation between h and s has long
been conjectured from theory only (Kacser and Burnsas small as 20). In outcrossing populations, the MRBR

changed the sign in the robustness investigation of 1981) and from limited data (Simmons and Crow 1977;
Crow and Simmons 1983). There has been no formalcov(h, s) when s � 0.01 and 0.05, respectively. This is

because the parameter value cov(h, s) changed the sign statistical analysis and experimental design to character-
ize cov(h, s).from negative to zero and then to positive values under

the functions assumed when s changes from 0.047 to 0.048. Characterization of cov(h, s) is important, for exam-
ple, for testing the validity of the dominance hypothesis
(Turelli and Orr 1995) in explanation of Haldane’s

DISCUSSION rule. Haldane’s rule states that when one sex is inviable
or sterile in the hybrids of two different animal races,We have developed a method in this study for consid-
that sex is often the heterogametic sex. The dominanceering variable mutation effects across loci in the estima-
hypothesis (Turelli and Orr 1995) states that allelestion. The method may yield improved estimation over
decreasing hybrid fitness are partially recessive. For thethat of Deng and Lynch (1996) as shown by employing
dominance hypothesis to explain Haldane’s rule, it isadditional and independent information (such as the
necessary that cov(h, s) is �0. Hence, our estimationcovariance between mean fitness of parents and that of
method here may offer the first opportunity to test thetheir progeny) to that employed in Deng and Lynch
validity of the dominance hypothesis in explaining Hal-(1996), although the experimental design is the same.
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Figure 2.—The changes in MRBR of the estimates of s, h, hs, cov(h, s) obtained by Equation 16 in selfing populations when
U were given equal to the values that ranged from 0.5U0 to 1.5U0. Each data point was the mean in 1000 simulations with the
following sets of parameters and � � 1.0: (a) U0 � 1.5, s � 0.01, and � � 100; (b) U0 � 1.5, s � 0.05, and � � 20; (c) U0 �
0.5, s � 0.01, and � � 100; and (d) U0 � 0.5, s � 0.05, and � � 20.

dane’s rule by characterizing the sign of cov(h, s). Al- with the Deng-Lynch method. We present in the appen-
dix the estimators of other DGM parameters when h isthough it would be nice and significant to have estima-

tors for the other DGM parameters as well, such as assumed or estimated and some representative simula-
tion results.variance of s, the observable phenotypic moments of

fitness do not relate to other DGM parameters (includ- It can be seen from Equations 1a and 1b that the mean
of h for the Charlesworth technique (Charlesworth eting the variance of s) in our analytical derivation that

considers mutation effects in Equations 2–7 and 11–15. al. 1990) in estimating U in selfing populations should
be the arithmetic mean h, and the mean for the MortonIn the estimation of the DGM parameters, we need

a prior estimate of one of the six parameters based on technique (Morton et al. 1956) in outcrossing popula-
tions should be the harmonic mean h̃. This has seldom,some external knowledge or based on the estimates

obtained from alternative approaches or from the same if ever, been pointed out because the Morton-Charles-
worth technique was derived under constant mutationexperimental design by using the Deng-Lynch method

as demonstrated here. We provided the estimators of effects. To our knowledge, there has been no method
for estimating either h̃ or h. Our proposed estimationthe other DGM parameters by using Equations 8 and

16 when assuming that U is known or estimated via methods here are able to, again for the first time, allow
estimates of h̃ and h with relatively small bias underother approaches. If we assume that one of the parame-

ters s, h̃ (h), or hs is known or estimated from other variable mutation effects.
The majority of earlier estimation methods for DGMapproaches, estimators of the other DGM parameters

can be obtained. Among the parameters, s and hs, h̃ (h) assume constant mutation effects. The only exception is
the maximum-likelihood estimation developed for analy-can be estimated individually with the analysis methods

already developed (Mukai et al. 1972; Deng 1998a) or ses of mutation-accumulation experiments (Keightley
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Genetic loads and estimates of mutation rates in highly inbred1994, 1996). Like our current estimation method, Keight-
plant populations. Nature 347: 380–382.

ley’s maximum-likelihood estimation also needs to as- Craddock, N., V. Khodel, P. V. Eerdewegh and T. Reich, 1995
sume a parameter value of DGM to estimate the other Mathematical limits of multilocus models: the genetic transmis-

sion of bipolar disorder. Am. J. Hum. Genet. 57: 690–702.DGM parameters in his model. Our results (Deng and
Crow, J. F., 1986 Basic Concepts in Population, Quantitative and Evolu-Li 2001) suggest that a method that accounts for variable tionary Genetics. W. H. Freeman, New York.

mutation effects does not necessarily always yield better Crow, J., 1993a How much do we know spontaneous human muta-
tion rates? Environ. Mol. Mutagen. 21: 122–129.estimation than a method that assumes constant muta-

Crow, J. F., 1993b Mutation, mean fitness, and genetic load, pp.tion effects even under variable mutation effects. In our 3–42 in Oxford Surveys in Evolutionary Biology, Vol. 9, edited by
current estimation, the covariance between mean fitness D. J. Futuyma and J. Antonovics. Oxford University Press, Ox-

ford, New York.of parents and that of their progeny is independent of
Crow, J., 1995 Spontaneous mutations as risk factors. Exp. Clin.the other measurable experimental data (such as the Immunogenet. 12: 121–128.

means and genetic variance of fitness of the two genera- Crow, J. F., and M. J. Simmons, 1983 The mutation load in Drosoph-
ila, pp. 1–35 in The Genetics and Biology of Drosophila, Vol. 3c, editedtions across inbreeding/outcrossing) that are used in
by M. Ashburner, H. L. Carson and J. N. Thompson. Academicthe Deng-Lynch estimation (Deng and Lynch 1996).
Press, London/New York.

This additional and independent information contrib- Deng, H.-W., 1998a Estimating (over)dominance coefficient and
discriminating dominance vs. overdominance as the geneticutes to the improved estimation of our current method
cause of heterosis. Genetics 148: 2003–2014.in quality and to our ability to estimate additional DGM

Deng, H.-W., 1998b Characterization of deleterious mutation rate
parameters that could be estimated earlier. and properties in outcrossing populations. Genetics 150: 945–

956.For our methods that are applicable to natural out-
Deng, H.-W., and Y.-X. Fu, 1998 On the three different methodscrossing populations and selfing-fertilizing populations,

for estimating deleterious genomic mutation parameters. Genet.
M-S balance is assumed to be the mechanism main- Res. 71: 223–236.

Deng, H.-W., and J. Li, 2001 Comparison of two estimation methodstaining variation for fitness. Alternatives to M-S balance,
for mutation accumulation experiments: maximum likelihoodsuch as functional overdominance or overdominance in-
and method of moments. Life Sci. Res. 5: 189–201.
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Gao, H.-X., 1995 Statistical Computation. Peking University Press,Deng-Lynch method in the presence of violation of the Beijing.
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1999 Perspective: spontaneous deleterious mutation. Evolution
53: 645–663. U �

4y
2 � (1/h̃)

, s �
4b � 2x

U
, hs �

x
U

. (A1)
Mackay, T. F. C., R. F. Lyman and M. S. Jackson, 1992 Effects of P

element insertions on quantitative traits in Drosophila melanogaster.
Genetics 130: 315–332. and in selfing populations,

Morton, N. E., J. F. Crow and H. J. Muller, 1956 An estimate of
the mutational damage in man from data on consanguineous

U �
y

(0.5 � h)
, s �

2x
U

, hs �
2b
U

. (A2)marriages. Proc. Natl. Acad. Sci. USA 42: 855–863.
Mukai, T., S. I. Chigusa, L. E. Mettler and J. F. Crow, 1972 Muta-

tion rate and dominance of genes affecting viability in Drosophila
Simulations are performed similar to that describedmelanogaster. Genetics 72: 335–355.

Simmons, M. J., and J. F. Crow, 1977 Mutations affecting fitness in in the text and with the above estimation for other DGM
Drosophila populations. Annu. Rev. Genet. 11: 49–78. parameters when h̃ (in outcrossing populations) or hTurelli, M., and A. Orr, 1995 The dominance theory of Haldane’s

(in selfing populations) is known or estimated. Therule. Genetics 140: 389–402.
simulation and the experimental procedures, when h̃

Communicating editor: Z-B. Zeng
(in outcrossing populations) and h (in selfing popula-
tions) are estimated by the methods of Deng (1998a)

APPENDIX: ESTIMATION OF OTHER DGM or Mukai et al. (1972), are detailed in Deng et al. (1998)
PARAMETERS WHEN h IS ASSUMED OR and thus are not elaborated here.

ESTIMATED AND SOME REPRESENTATIVE Some representative results are presented in TablesSIMULATION RESULTS
A1 and A2. It can be seen that, relative to the Deng-
Lynch method, the new method developed here canIf h̃ (in outcrossing populations) or h (in selfing popu-

lations) is known by other estimation methods or as- estimate more parameters, such as cov(h, s) and its sign.
In an outcrossing population, the sign of cov(h, s) can-sumed at particular values on the basis of some external

knowledge, based on Equations 2–7 and 11–15, we have not be reliably estimated. However, in selfing popula-
tions, if the h is estimated first by the Deng-Lynchestimators for other DGM parameters as follows, the

notations being the same as in the text, in outcrossing method and then used in the current method, the sign
of cov(h, s) can be characterized correctly.populations,
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hĥs
,

an
d

co
v(

ĥ,
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