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ABSTRACT
Relatedness between individuals is central to many studies in genetics and population biology. A variety

of estimators have been developed to enable molecular marker data to quantify relatedness. Despite this,
no effort has been given to characterize the traditional maximum-likelihood estimator in relation to the
remainder. This article quantifies its statistical performance under a range of biologically relevant sampling
conditions. Under the same range of conditions, the statistical performance of five other commonly used
estimators of relatedness is quantified. Comparison among these estimators indicates that the traditional
maximum-likelihood estimator exhibits a lower standard error under essentially all conditions. Only for
very large amounts of genetic information do most of the other estimators approach the likelihood
estimator. However, the likelihood estimator is more biased than any of the others, especially when the
amount of genetic information is low or the actual relationship being estimated is near the boundary of
the parameter space. Even under these conditions, the amount of bias can be greatly reduced, potentially
to biologically irrelevant levels, with suitable genetic sampling. Additionally, the likelihood estimator
generally exhibits the lowest root mean-square error, an indication that the bias in fact is quite small.
Alternative estimators restricted to yield only biologically interpretable estimates exhibit lower standard
errors and greater bias than do unrestricted ones, but generally do not improve over the maximum-
likelihood estimator and in some cases exhibit even greater bias. Although some nonlikelihood estimators
exhibit better performance with respect to specific metrics under some conditions, none approach the
high level of performance exhibited by the likelihood estimator across all conditions and all metrics of
performance.

AN understanding of the relatedness between individ- been developed for this purpose (Thompson 1975;
uals plays an important role in many areas of popu- Queller and Goodnight 1989; Li et al. 1993; Ritland

lation biology and genetics. For example, it is central 1996a; Lynch and Ritland 1999; Wang 2002). These
to quantitative genetics and plays a crucial role in esti- have been developed in a variety of different ways. The
mating heritability and additive genetic variances and Queller and Goodnight (1989) estimator was moti-
covariances (Falconer 1981; Lynch and Walsh 1998). vated to ensure that Hamilton’s rule (Hamilton 1964a,b)
Likewise, it may be useful in studies of isolation-by-dis- applied under general circumstances given an estimate
tance or population structure. Consequently, a number of relatedness r ; in contrast, the Ritland (1996a),
of different means of quantifying relatedness have been Lynch and Ritland (1999), and Wang (2002) estima-
developed. Most inclusive of these are the sets of iden- tors were based on different method-of-moments ap-
tity-by-descent modes described by Jacquard (1974). proaches to the relationship between relatedness and
However, for large noninbred populations these reduce genotypic similarity.
to a pair of quantities: the probability that two individu- Both Ritland (1996a) and Lynch and Ritland (1999)
als share two alleles identical-by-descent and the proba- mention maximum-likelihood estimators of relatedness
bility that they share one allele identical-by-descent. coefficients; however, they dismiss their utility on the
More commonly, the coefficient of coancestry � (Jac- basis of simulations that indicate that many (e.g., 70 or
quard 1974) or the coefficient of relatedness r � 2� more) loci may be required. However, both approaches
are used to quantify the degree of relatedness between deviate from the traditional approach involving a likeli-
two individuals. hood function defined for the set of three parameters

Estimates of � or r may be derived in a variety of sufficient for describing relatedness in a noninbred pop-
ways. Traditionally, they are calculated from a known ulation (Thompson 1975). While the likelihood func-
pedigree (Crow and Kimura 1970). Increasingly, how- tion used by Ritland (1996a, p. 180) is a special case
ever, molecular marker data have been used to estimate applicable to a single two-gene relatedness parameter
relatedness. Consequently, a number of estimators have (e.g., �), that proposed by Lynch and Ritland (1999,

Equation 12) cannot be derived from the traditional
one (see appendix b). Further, both admitted solutions1Address for correspondence: Department of Biology, New Mexico State
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(Thompson 1975) and thus yield estimates that cannot tions are known without error to focus on the behavior
of the relatedness estimator itself. In practice, realisticbe interpreted as probabilities of identity-by-descent.

Thus, despite extensive efforts to characterize the statis- samples will often involve enough individuals that errors
in the allele-frequency distribution will be quite small.tical behavior of other estimators of relatedness, it re-

mains unclear how the traditional-likelihood one com- In some cases, for example, microsatellites segregating
many alleles, errors in the frequencies may be signifi-pares.

The statistical behavior of relatedness estimators is cant. The importance of the additional sampling vari-
ance introduced is beyond the scope of this article.critical to their utility in practice. Because of their com-

plexity, simulations have generally been relied upon to Note that the approach taken here, to estimate rela-
tionship as a continuous parameter, is distinct from acharacterize the sampling error. These simulations have

taken two approaches. The first constructed data sets related one, which infers the degree of relatedness from
among a set of discrete possibilities. Both approachesfrom relatively simple conditions, assuming identical

allele frequency distributions across loci (Ritland 1996a; are discussed by Thompson (1975). The latter approach
is further developed by Thompson (1986) and has beenLynch and Ritland 1999). A second approach (Van

de Casteele et al. 2001) was motivated by actual micro- used extensively in human genetics recently to classify
groups of individuals (usually pairs) into distinct rela-satellite data. In this case, data sets were constructed

from more complex situations involving variation tionship classes (Boehnke and Cox 1997; Painter
1997; Broman and Weber 1998; Sieberts et al. 2002).among loci in allele frequency distributions and varia-

tion in population structure. A similar approach involv- The primary goal of this study is to assess the perfor-
mance of the likelihood estimator, in comparison withing actual data and a known pedigree was used to test

the utility of marker-based estimators (Thomas et al. some of those already developed, under a range of bio-
logical sampling conditions. In particular, the perfor-2002). These two basic approaches have yielded some-

what contradictory pictures of the range of estimators mance is quantified by two measures of the distribution
of estimates obtained for each estimator (the standardavailable. It is clear, however, that not all estimators

perform equally well under all conditions. Further, the error and the bias) and by the overall deviation of those
estimates from the parametric value, quantified by thesame estimator may not perform best under all condi-

tions. Which estimator performs best may depend not root mean-square error. From this information it is pos-
sible to determine how aspects of the sampling condi-only on the nature of the biological conditions, but also

on the criterion used to measure performance. tions, e.g., number of loci or segregating alleles, or as-
pects of the relationship being estimated influence theConspicuously lacking from the array of relatedness

estimators under test is the traditional general maxi- ability of one estimator or another to perform well.
Thus, some guidance for experimental design can bemum-likelihood estimator (Thompson 1975). Often

maximum-likelihood estimators exhibit many desirable developed.
The initial focus of this study is on a relatively simplefeatures (Kendall et al. 1979), including having lower

standard error, being asymptotically unbiased, being set of conditions, although one meant to mimic a variety
of natural situations. In this sense, it is more closelyadaptable to a wide variety of sampling conditions, and

naturally accounting for differences among different connected to the evaluation used by Lynch and Rit-
land (1999) than to that used by Van de Casteele etsubsets of the sample, for example, different allele-fre-

quency distributions among loci. The primary negative al. (2001). This approach has been chosen to provide
a clearer indication of how each different factor, e.g.,feature of maximum-likelihood estimators is that they

are often biased for finite sample sizes. However, in number of loci sampled, number of segregating alleles,
and allele frequencies, influences the performance ofmany cases that bias is small enough to be biologically

irrelevant or can be dramatically reduced with reason- each estimator.
able sampling.

Given the many desirable features of maximum-likeli-
STATISTICAL MODELS

hood estimators, it would be natural to develop one for
relatedness of individuals. Further, it would be useful For population samples in which the ancestry of indi-

vidual alleles is unknown, the most general means ofto determine whether a maximum-likelihood estimator
of relatedness approaches its asymptotic properties rap- describing the relatedness of one individual to another

is in terms of the nine identity modes described byidly enough to be useful in practice or to compete with
nonlikelihood estimators. In this study, we investigate Jacquard (1974) (Figure 1). The degree of relatedness

is quantified by a set of coefficients � � (�1, �2, . . .one such estimator (Thompson 1975) on the basis of
the genetic information available for two individuals �9), each of which represents the probability of the four

alleles at a single locus in two diploid individuals shar-assayed at many different loci. In addition to the geno-
typic information, the estimator relies on the allele fre- ing the corresponding particular pattern of identity-

by-descent. In a large, noninbred population, only �7,quency distributions at each locus sampled. For this
analysis we assume that the allele-frequency distribu- �8, and �9 are nonzero; consequently, in such a popula-
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for the four alleles sampled at a single locus in two
individuals. Table 1 lists these in the second column.
As an example, a pair of individuals each homozygous
for allele A1 represent identity-in-state mode �1, whereas
two individuals of genotypes A1A1 and A1A2 represent
identity-in-state mode �3.

Given that a pair of individuals is known to be related
according to identity-by-descent mode Sj, the probability
of each identity-in-state pattern Si is dependent on the

Figure 1.—Modes of identity-by-descent between two indi- allele frequencies. For example, if two noninbred indi-
viduals. In each figure the two upper dots represent the two

viduals have two identical-by-descent alleles (S7), eitheralleles in one individual, while the two lower dots represent
of two identity-in-state patterns (�1 or �7) could occur,the two alleles in the second individual. The lines indicate

alleles that are identical-by-descent. depending on the sampling of actual alleles at the locus.
The former, which corresponds to both identical-
by-descent alleles also having the same state Ai, occurs

tion any pattern of relationship between two individuals with probability p 2
i , whereas the latter, which corre-

can be described by that set of three coefficients. The sponds to distinct Ai and Aj alleles, occurs with probabil-
most commonly used summary of the degree of relation- ity 2pipj. Table 1 lists the probability of observing each
ship is the coefficient of coancestry (Jacquard 1974; of these patterns of identity-in-state conditioned upon
Lynch and Walsh 1998), the two individuals being related according to each of

the possible modes of identity-by-descent (Figure 1),
� � �1 �

1
2
(�3 � �5 � �7) �

1
4

�8 , (1) Pr(�i|Sj). Note that this table corrects a typographical
error present in the classical formulation (Thompson
1975). Ritland (2000) gives a more compact notation,which quantifies the probability that two individuals will

produce an inbred offspring were they to mate. This which may be useful computationally, that covers the
rightmost three columns of Table 1; however, the com-latter coefficient plays central roles in the estimation

of heritability and additive genetic variance (Falconer pactness also makes the biological structure of the
model less apparent.1981; Lynch and Walsh 1998) and in the definition

of inclusive fitness (Hamilton 1964a,b). Hence, estima- Recall that the set of parameters � � (�1, �2, . . . �9)
correspond to the probabilities of each identity-tors of relatedness (Queller and Goodnight 1989; Li

et al. 1993; Ritland 1996a; Lynch and Ritland 1999; by-descent mode and completely quantify the degree of
relatedness between individuals. Following ThompsonWang 2002) primarily focus on � or r � 2� even though

there is a loss of information in the process of trans- (1975), the probability of observing a particular allelic
pattern, �i, for two individuals at a single locus, givenforming the complete set of parameters � into a single

quantity �. For development of a likelihood estimator the degree of relatedness � and the distribution of allele
frequencies, is equal to the likelihood of �:of relatedness, the underlying complete set of parame-

ters � is used; subsequently � (or r) can be calculated
L(�) � Pr(�i|�)

from Equation 1 if necessary.
Likelihood models: Likelihood estimators are based � �

j
Pr(�i|Sj)�j . (2)

on a probability model of the sampled data. In this case,
the unit of sampling is a pair of individuals, each one The likelihood of the entire sampled array of L loci is

simply the product of Equation 2 across loci. Althoughof which has been assayed genetically at L loci. The
estimator described here is based on the assumption of each locus will be characterized by its own set of allele

frequencies, the degree of relatedness between the twoindependently segregating marker loci. The likelihood
for the overall sample, therefore, is simply the product individuals (the parameter � in Equation 2) is constant

across loci as it represents the overall relatedness of theof the likelihoods across the loci.
The basic probability model of the sampled alleles at individuals to each other.

Parameter space: The maximum-likelihood estimatea single diploid locus is well known (Thompson 1975).
Usually it is given only for the case of large, noninbred of the set of � is found by searching over the parameter

space until a maximum is found. In general an algebraicpopulations where only three modes of relatedness (S7,
S 8, and S 9) are possible. However, the structure of the solution is impossible; as a result numerical methods

are used. The implementation used here is based on amodel is much clearer in its general form and it is
applicable to the full range of population structures. As translation of the simplex method (Press et al. 1992),

a hill-climbing optimization technique, into a set ofa basis of further generalization it thus warrants explic-
itly outlining the complete one-locus likelihood model C�� classes (B. G. Milligan, unpublished data). Al-

though it is possible for such methods to identify localfor the nine relatedness coefficients.
There are nine distinct patterns of identity-in-state rather than global maxima in the likelihood function,
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TABLE 1

Probability of patterns of identity-in-state �i given modes of identity-by-descent Sj

Identity-by-descent mode Sj
Identity-in-
state mode Allelic state S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9

�1 Ai Ai, Ai Ai ∀i pi p 2
i p 2

i p 3
i p 2

i p 3
i p 2

i p 3
i p 4

i

�2 Ai Ai, Aj Aj ∀i, ∀j � i 0 pipj 0 pip 2
j 0 p 2

i pj 0 0 p 2
i p 2

j

�3 Ai Ai, Ai Aj ∀i, ∀j � i 0 0 pipj 2p 2
i pj 0 0 0 p 2

i pj 2p 3
i pj

�4 Ai Ai, Aj Ak ∀i, ∀j � i, ∀k � j, k � i 0 0 0 2pipjpk 0 0 0 0 2p 2
i pjpk

�5 Ai Aj, Ai Ai ∀i, ∀j � i 0 0 0 0 pipj 2p 2
i pj 0 p 2

i pj 2p 3
i pj

�6 Aj Ak, Ai Ai ∀i, ∀j � i, ∀k � j, k � i 0 0 0 0 0 2pipjpk 0 0 2p 2
i pjpk

�7 Ai Aj, Ai Aj ∀i, ∀j � i 0 0 0 0 0 0 2pipj pipj(pi � pj) 4p 2
i p 2

j

�8 Ai Aj, Ai Ak ∀i, ∀j � i, ∀k � i, j 0 0 0 0 0 0 0 pipjpk 4p 2
i pjpk

�9 Ai Aj, Ak Al ∀i, ∀j � i, ∀k � i, j, 0 0 0 0 0 0 0 0 4pipjpkpl

∀l � k, l � i, j

Alleles with different labels (e.g., Ai and Aj) are distinct, and the frequency of allele Ai is pi .

plots of the likelihood surface and evaluation of the 1993; Ritland 1996a; Lynch and Ritland 1999; Wang
2002). Because of the reliance on numerical optimiza-algorithm from distinct initial conditions suggest that

multiple optima are unlikely to exist, in agreement with tion, the statistical behavior must be determined by sim-
ulation. The basic simulation process involved generat-the analytical results of Thompson (1975).

A number of possibilities exist for defining the param- ing replicate genetic data sets for a pair of individuals
under conditions of known relatedness, a specifiedeter space over which the optimization will be carried

out. The complete parameter space is, of course, eight- number of sampled loci, and a known distribution of
allelic variation at each locus. Analytical results baseddimensional, corresponding to the nine distinct param-

eters �j � Pr (Sj) constrained by the fact that they sum on appendix a were used to verify the simulations.
Method-of-moments estimators: The performance ofto unity. The immediate purpose, however, is to con-

sider the case of a large noninbred population. In this 6 estimators of relatedness, quantified as the coancestry
coefficient �, was investigated. The likelihood estimatorinstance only the last three parameters are nonzero. For

the purposes of this analysis, the maximum-likelihood calculated � from Equation 1 as the maximum-likeli-
hood estimate of the identity-by-descent probabilities,estimate is obtained by optimization within the two-

dimensional parameter space defined by the parameters �. Five additional nonlikelihood estimators were consid-
ered as being representative of the diversity of the ones(�7, �8, �9) constrained by their sum being unity. It is

meaningless to admit solutions outside this region as available. They represent 5 different means of using the
similarity in allelic states between individuals to con-they correspond to undefined values for the probability

of identity-by-descent (Thompson 1975). struct estimates of relatedness, and the ones tested by
Van de Casteele et al. (2001) performed favorably un-One of the useful features of maximum-likelihood

estimators is that they can be readily adapted to a variety der some conditions in their evaluation of 10 different
estimators. These have all been described and com-of situations. In some cases it may be known that individ-

uals are either full-sibs or unrelated (or any other pair pared previously (Lynch and Ritland 1999; Van de
Casteele et al. 2001; Wang 2002); consequently, ratherof degrees of relatedness; Mousseau et al. 1998). In

such a case, the likelihood could be maximized within than repeating their formulations here the reader is
referred to the specific equations presented by Rit-the one-dimensional parameter space representing a

continuum of linear combinations of those two degrees land (1996a), Lynch and Ritland (1999), and Wang
(2002).of relatedness. Alternatively, it may be known that indi-

viduals are either full-sibs, half-sibs, or unrelated or full- The most commonly used estimator is one published
by Queller and Goodnight (1989), of which a numbersibs, parent-offspring, or unrelated (Thomas et al. 2002).

In such cases, the optimization can be done within the of variants are possible. The variant chosen here was
the symmetric one obtained by averaging (r̂xy � r̂yx)/2parameter space defined by appropriate linear combina-

tions of these three degrees of relatedness. Thus, the (Lynch and Ritland 1999, Equation 11) across loci. A
second estimator of relatedness (Li et al. 1993) is basedbasic-likelihood estimator described here can easily be

adapted to a variety of different population structures directly on the pattern of shared alleles between two
individuals and was obtained by averaging r̂xy (Lynchsimply by appropriate choice of parameter space.

Of primary concern is the statistical behavior of the and Ritland 1999, Equation 8) across loci. The third
estimator, a method-of-moments one based on the cor-likelihood estimator, especially in contrast to existing

alternatives (Queller and Goodnight 1989; Li et al. relation between relatedness and genotypic similarity
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(Ritland 1996a), was obtained as �̂ (Ritland 1996a, the effect of the parameter range itself, as opposed to
Equation 5). The fourth estimator, another method- the type of estimator, all method-of-moments estimators
of-moments one based on the regression of similarity were examined in both the standard and the truncated
on relatedness (Lynch and Ritland 1999), was the form.
weighted average of (r̂xy � r̂yx)/2 across loci (Lynch and Simulations: A range of sampling conditions was con-
Ritland 1999, Equations 5–7). The final estimator was sidered to mimic the variety of different genetic markers
described by Wang (2002). Two forms of this were inves- that might be available for estimating relatedness. Al-
tigated. The first follows the method favored in this though for some organisms huge arrays of polymorphic
article and involves the following steps: calculating a set genetic loci are available, for the vast majority of natural
of locus-specific similarity and allele-frequency parame- populations this is not the case. Thus, the range in
ters, calculating a set of locus-specific weights from those number of loci (5–30) mimics moderate genetic sam-
locus-specific parameters, averaging the locus-specific ples. A great variety of types of genetic markers are
parameters across loci using those weights, and averag- available for quantifying relatedness. These range from
ing the locus-specific values of relatedness (obtained markers that segregate few distinguishable alleles, gen-
using the average parameters; Wang 2002, Equations 6 erally including allozymes, single-nucleotide polymor-
and 7 or 9–11) across loci, again using the same weights. phisms, or restriction/PCR fragments, to markers that
The second method involves calculating the locus-spe- segregate many distinguishable alleles, commonly mi-
cific values of relatedness using the locus-specific param- crosatellites. To reflect this range in marker types, loci
eters (rather than the averages) and averaging across segregating 2, 5, 10, and 20 alleles were considered.
loci in the same way. These two methods are identical Three different allele-frequency distributions were used
when allele frequencies are the same across loci; how- for the simulations: one in which all alleles occur at
ever, they may differ otherwise. Although seemingly equal frequency, one in which a single allele occurs
more natural, apparently the latter approach performed with a frequency of 0.8 and the remainder are equally
less well than the former (J. Wang, personal communi- frequent, and one in which allele frequencies at each
cation). Note that some of these nonlikelihood estima- locus were independently drawn from the same Dirich-
tors are of r � 2� and so were transformed to � to be let distribution (Stuart and Ord 1987, Exercise 5.33,
comparable with the maximum-likelihood estimator. p. 209) with all parameters set to unity. The last case

Several of these estimators have undesirable behavior approximates natural situations better by allowing the
under certain conditions. For example, with two alleles distributions to vary across loci; however, the first two
the Queller and Goodnight (1989) estimator is unde- are useful for isolating the effects of each factor. Finally,
fined for heterozygous reference individuals, and for four actual degrees of relatedness between individuals
two equally frequent alleles the Lynch and Ritland were considered: parent-offspring, full-sibs, first cousins,
(1999) estimator is also undefined for heterozygous ref- and unrelated individuals. This range of conditions in
erence individuals. Consequently, some loci must be relatedness, numbers of loci, numbers of alleles, and
discarded for multilocus estimates under these condi- types of allele-frequency distributions was chosen to
tions, depending on the sampling of alleles at each make the diversity of natural situations tractable, so that
locus. Both of these estimators are also based on arith- the influence of each main characteristic of a genetic
metic averages using each of the two individuals as a sample on the statistical performance of the estimators
reference. At a particular locus one, both, or neither of can be examined. Future studies can focus more spe-
those individuals can be heterozygous. Thus, the locus- cifically on particular types of genetic markers or popu-
specific value actually used in averaging across loci was lation structures.
the average (as described above) if both locus-specific To determine the statistical behavior of each estima-
values are defined and the defined value if only one is tor under each condition, sets of 1000 replicate samples
defined; otherwise, the locus was ignored. This ap- of two individuals were obtained. Each of the six estima-
proach attempts to maximize the amount of informa- tors was used to estimate � for each of the replicate
tion obtained from these estimators within the con- samples. The mean and standard error of the popula-
straints imposed by their mathematical definition. tion of estimates were calculated from these samples.

Additionally, the method-of-moments estimators are The bias of each estimator was quantified as the devia-
generally not constrained to lie within the biologically tion of the mean from the known parametric value of
relevant range of [0, 0.5], unlike the traditional maxi- � used to generate the data. The root mean-square error
mum-likelihood estimator. This property enables them was quantified as
to remain statistically unbiased; however, individual esti-
mates may not have meaning when interpreted as proba-

RMSE(�) � � 1
1000 �

1000

i�1

(�̂i � �*)2 , (3)bilities of identity-by-descent. One means of handling
this is to truncate the method-of-moments estimates to

where �̂i is the ith estimate and �* is the parametriclie within the proper range, that is, to replace lower
values with zero and larger values with 0.5. To investigate value used to generate the simulated data sets. In all
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Figure 2.—Distribution of
estimates of � for each estima-
tor under different conditions
of true relatedness. Each distri-
bution is based on a sample of
1000 estimates taken from five
loci, each segregating for five
alleles. The allele-frequency dis-
tributions for each locus are
drawn from a Dirichlet distri-
bution. The Wang (2002) esti-
mator is represented by the
published version.

cases it was assumed that the allele-frequency distribu- ever, the other five are rather similar overall. One fea-
ture of the other estimators is their propensity to yieldtion was known without error. Consequently, the focus is

on the sampling properties of the relatedness estimators estimates of � that lie outside the biologically meaning-
ful range of [0, 0.5]. Under some conditions approxi-themselves.
mately half of the estimates are negative, for example.
Because the focus of interest for these measures is on

RESULTS
a specific pair of individuals, it is difficult to interpret
the meaning of estimates that suggest, for example, thatAs with any estimator of genetic relatedness, the qual-

ity of the estimate depends on the amount of available two individuals are less related than unrelated. However,
because the likelihood estimator is constrained to alwaysgenetic information. Typically, both the number of loci

for which genetic information is available and the num- produce estimates within the biologically meaningful
range, some bias is introduced near the boundary. Forber of alleles segregating at those loci have strong influ-

ences on the standard error of the estimate of relat- example, for unrelated individuals � � 0, yet the likeli-
hood estimator evidently commonly generates valuesedness. Additionally, different estimators of relatedness

often respond differently to the amount of genetic infor- that overestimate that. Thus, while exhibiting less varia-
tion, the likelihood estimator is more biased under somemation available.

Figure 2 illustrates the general level of variation conditions. Clearly, the truncated estimators will also
exhibit less variation and more bias than the untrun-yielded by each of the estimators. It is evident that the

likelihood estimator described here has lower standard cated ones for the same reason.
An additional feature that is evident from Figure 2 iserror than any of the others under all conditions; how-
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Figure 3.—Comparison of
standard error among estima-
tors. These curves are based on
samples of 1000 pairs of indi-
viduals, each related as shown,
assayed for different numbers
of loci, each of which segre-
gates for five alleles. The top
corresponds to five equally fre-
quent alleles, the middle corre-
sponds to one common allele
and four rare ones, and the bot-
tom corresponds to allele fre-
quency distributions drawn
from a Dirichlet distribution.

that many of the estimators are skewed. This is particu- the set {0, 0.25, 0.5, 1}) and the allele frequency. If by
chance a rare allele is shared between individuals, thislarly the case for the Queller and Goodnight (1989)

and especially the Ritland (1996a) estimators, which ratio can be substantial, greatly inflating the variance
of the estimator and causing the extreme skewness ob-interestingly are skewed in opposite directions. This

skew may have a significant impact on the use of these served in Figure 2. Thus, the utility of this estimator
is highly dependent on the unknown quantity beingestimators, because even though they are essentially un-

biased in expectation, the modal estimate does not estimated, relatedness, and the details of the genetic
sample. To a lesser degree, the same is true of theequal the expectation; the most probable outcome in

any particular case will be an incorrect estimate. Lynch and Ritland (1999) estimator. In contrast, the
likelihood estimator maintains a low standard errorStandard error: Figure 3 quantifies the standard error

of each estimator of � as a function of the amount across the full range of conditions. As such, it may be
preferable overall, because in general no informationof genetic information available. The variation for all

estimators declines with the number of loci sampled. is available to enable one to choose among the estima-
tors on the basis of their performance under the specialGenerally, the standard error of the likelihood estimator

is lower than that of any of the others. Interestingly, the conditions of actual relatedness applying to a particular
pair of individuals.estimators proposed by Ritland (1996a) and Lynch

and Ritland (1999) approach the likelihood estimator In these simulations there is no indication that the
two different versions of the Wang (2002) estimatorsunder conditions of both low degree of relatedness and

very restricted genetic information. Undoubtedly, this is differ substantially. Both are essentially unbiased under
all conditions and only for parent-offspring pairs werebecause the weights used across loci for these estimators

assume no relatedness. However, their performance is the differences between them �1%. Nor is there a
strong indication that they represent substantial im-not consistent even for unrelated individuals; when

more genetic information is available in the form of provements over the other estimators. In no case is either
better than the likelihood estimator. Perhaps these re-more uniform allele-frequency distributions, their per-

formance is consistent with the other nonlikelihood sults are a consequence of the slightly different statistics
used to evaluate the estimators. Whereas Lynch andestimators. The Ritland (1996a) estimator even per-

forms distinctly worse than any other under some condi- Ritland (1999) and Wang (2002) use the single-locus
variance, quantified as a mean for 10-locus samples, totions considered. This anomalous behavior is because

it involves a ratio of the allelic similarity (a number from evaluate the estimators, Figure 3 evaluates them on the
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Figure 4.—Comparison of
bias among estimators. These
curves are based on the same
samples used to construct Fig-
ure 3.

basis of the actual variance for many different sample tors are essentially unbiased under all conditions; in
contrast, the likelihood estimator is biased under somesizes. This approach is adopted for two important rea-

sons. First, it more closely approximates the information conditions. As mentioned before, this is a consequence
of the fact that the likelihood estimator is constrainedneeded directly for experimental design purposes, when

the fundamental decision is often based on the reduc- within the biologically meaningful range of [0, 0.5].
Unlike for standard error, the actual degree of relat-tion of variance as a function of genetic sample size.

Second, the relative performance of the different esti- edness does influence the bias of the likelihood estima-
tor. For example, the likelihood estimator for parent-mators is a function of the number of loci sampled;

basing an evaluation on a single sample size may be offspring and full-sib relationships yields estimates that
are quite close to the true value of �; in fact, its bias ismisleading for extrapolations to another.

The actual degree of relatedness between individuals either zero or close enough as to be biologically insig-
nificant. However, when actual relatedness is close tohas relatively little effect on the standard error of the

likelihood estimator of �. For example, the standard the boundary, which is the case for both first cousins
and unrelated individuals, the bias is much larger. Thiserrors of 30-locus likelihood estimates for full-sibs and

first cousins differ by �4%, despite these representing is true for any of the allele-frequency distributions.
When the allele-frequency distribution is favorable, in-quite different degrees of relatedness. The standard

error is lower for unrelated individuals because of the creasing numbers of loci can substantially reduce the
bias of the likelihood estimator, potentially to the pointconstraint that estimates must be within the biologically

realistic range. This independence of actual relatedness of being biologically insignificant even for unrelated
individuals. In contrast, when the allele-frequency distri-for standard error of � is broadly consistent across all

the estimators when the allele-frequency distribution is bution is dominated by a single allele, increasing num-
bers of loci have little effect on bias for reasonablefavorable; it is somewhat less so when the allele-fre-

quency distribution is dominated by a single allele segre- numbers of loci.
Root mean-square error: The third main statisticalgating at high frequency or when variation among loci

in allele-frequency distributions exists. feature of each estimator, root mean-square error, is
illustrated in Figure 5. This measure is a reflection ofBias: The second main statistical feature of each esti-

mator, bias, is illustrated in Figure 4. Two features are the mean deviation of the distribution of estimates from
the parametric value of � used in the simulation. Asimmediately apparent. All of the nonlikelihood estima-
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Figure 5.—Comparison of
root mean-square error among
estimators. These curves are
based on the same samples
used to construct Figure 3.

such it integrates both the standard error and the bias tor, and in most cases still exceed it. The reduction in
standard error is great enough for unrelated individualsof the estimators. Largely these curves follow the corre-

sponding ones for standard error, an indication that that, for the Dirichlet distribution of allele frequencies
and when one allele predominates the Ritland (1996a)under most conditions all estimators are essentially un-

biased. Only in situations both lacking in useful genetic and Lynch and Ritland (1999) estimators, both exhibit a
lower standard error than that of the maximum-likelihoodinformation (e.g., a single predominant allele at each

locus) and with true relationships near the boundary estimator. The others, and all truncated estimators when
alleles are equally frequent, exhibit standard errors similarof the parameter space (e.g., especially unrelated indi-

viduals) does the likelihood estimator perform notably to the maximum-likelihood estimator. Interestingly, the
relative ranking of the method-of-moments estimatorsworse than the others with regard to root mean-square

error. In all other cases considered, the likelihood esti- is quite similar whether they are truncated or not.
The bias of the truncated method-of-moments estima-mator performs better than any alternative with regard

to this integrated measure of performance. tors increases substantially for the two less-related cases.
Although the relative increase in bias is quite large (�10-Truncated estimators: The performance of the trun-

cated method-of-moments estimators relative to the like- to 100-fold in some cases), the bias is somewhat less than
that exhibited by the maximum-likelihood estimator.lihood estimator is largely anticipated from Figure 2.

In the cases of full-sib and parent-offspring relatedness Under these conditions the truncated Ritland (1996a)
and Lynch and Ritland (1999) estimators exhibitedrelatively few estimates lie beyond the meaningful range

of [0, 0.5], so truncation has little effect; in contrast, the lowest bias. However, the truncated Ritland (1996a)
estimator is notably more biased under the two closerfor first cousins and unrelated individuals, substantial

numbers of estimates do so and truncation has a large degrees of true relatedness, even exceeding the bias of
the maximum-likelihood estimator under some condi-effect. For example, although the standard error is es-

sentially unchanged between truncated and nontrun- tions. This is another manifestation of the sensitivity of
this estimator to the conditions under study, at leastcated estimators for the former two, it is somewhat re-

duced for first cousins and substantially reduced for some of which will be unknown in any realistic situation.
Segregating alleles: The previous discussion illus-unrelated individuals. For first cousins the truncated

method-of-moments estimators exhibit no standard er- trated the performance of alternative estimators under
several different sampling conditions. These results areror lower than that of the maximum-likelihood estima-
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Figure 6.—Dependence of
the standard error of the likeli-
hood estimator on both the
number of loci sampled and
the number of alleles segregat-
ing at each. Each point is based
on 1000 replicate samples. Sym-
bols indicate different numbers
of alleles segregating.

quite typical. However, the difference between the likeli- These sampling conditions are basically uninformative,
so large samples are unhelpful. However, if the allele-hood estimator and the others declines as the number
frequency distribution is more favorable, the numberof alleles segregating at each locus increases. That is,
of alleles segregating at each locus does have an influ-the nonlikelihood estimators improve in performance
ence on the bias of the likelihood estimator. As withand approach the likelihood estimator as the amount
the standard error, substantial reductions in bias areof genetic information increases.
possible under all conditions of actual relatedness whenThe variation of the likelihood estimator itself also
even a few alleles are segregating. Even for conditionschanges in response to increasing numbers of alleles
exhibiting the largest bias (e.g., unrelated individuals),segregating at each locus (Figure 6). In all cases, more
the degree of bias can be reduced to biologically insig-segregating alleles reduce the standard error of the like-
nificant levels for realistic samples.lihood estimate of �. This is especially true when alleles

are equally frequent. When one allele predominates,
even a few additional alleles substantially reduce the

DISCUSSIONstandard error, which is not further reduced by many
additional alleles. Thus, for a wide range of conditions Despite its basic importance for understanding the
a large reduction in standard error relative to biallelic biology of natural populations, estimation of relatedness
samples is possible by sampling loci with even a few between individuals remains a difficult challenge. A di-
alleles; additional reductions are possible only if many versity of estimators (Thompson 1975; Queller and
alleles segregate at intermediate frequencies. Goodnight 1989; Li et al. 1993; Ritland 1996a; Lynch

In contrast, the bias of the likelihood estimator is and Ritland 1999; Wang 2002) have been developed
relatively unaffected by the number of alleles segregat- to use the information contained within samples of mo-
ing at each locus (Figure 7). In fact, when the allele- lecular markers to estimate relatedness. With one excep-
frequency distribution is dominated by a single allele, tion (Thompson 1975), none of the methods proposed
the number of additional alleles segregating (and, as to date are traditional maximum-likelihood estimators.
noted above, the number of loci) has essentially no Here we investigate its statistical properties in compari-
influence on the bias over the range of loci considered son with five of the commonly used alternatives.

The prominent feature of the likelihood estimator is(although the estimator is asymptotically unbiased).
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Figure 7.—Dependence of
the bias of the likelihood esti-
mator on both the number of
loci sampled and the number
of alleles segregating at each.
These are based on the same
samples used to obtain Figure
6. Symbols indicate different
numbers of alleles segregating.

that it exhibits a lower standard error than that of any cannot be directly interpreted biologically as probabili-
ties of identity-by-descent or from the nature of theof the others for a wide range of reasonable sampling

conditions. This conclusion appears to be independent likelihood function (see appendix b). In contrast, the
likelihood estimator investigated here is consistent withof the number of loci sampled, the number of alleles

segregating at each locus, or the frequency distribution the traditional literature on likelihood estimation of
relatedness (Thompson 1975) and admits only solutionsof the segregating alleles. When many loci are sampled,

the other estimators approach the performance of the that are fully interpretable biologically. As a result, it
performs much better than previously suggested forlikelihood estimator. This is especially true for the Rit-

land (1996a) and Lynch and Ritland (1999) estima- maximum-likelihood estimators.
The other feature of the likelihood estimator is thattors when individuals are only distantly related and the

allele-frequency distribution is highly skewed. However, it, unlike the others, is biased under some conditions.
The degree of bias is dependent on the actual degreeespecially the Ritland (1996a) estimator is much less

consistent across different sampling conditions and ex- of relatedness between individuals and the nature of
the genetic information. If the actual degree of relat-hibits a strong dependency on the actual degree of

relatedness, the unknowable quantity that is being esti- edness is near a boundary, such as for first cousins or
unrelated individuals, the bias is more severe than ifmated. Furthermore, the standard error of the likeli-

hood estimator is largely independent of the actual de- the actual degree of relatedness is within the interior
of the parameter space, such as for full-sibs. However,gree of relatedness between individuals. Thus, from this

standpoint the likelihood estimator exhibits preferable the degree of bias can be greatly reduced by sampling
loci that segregate for more alleles. Additional segregat-statistical behavior compared with any of the alterna-

tives, because it is the only one that consistently main- ing alleles are not helpful if their frequency distribution
is highly skewed. Samples of 20–30 microsatellite loci,tains a low standard error across all conditions.

These conclusions differ dramatically from those ob- which often segregate for 20 or more alleles and exhibit
high heterozygosity, could yield estimates of � that aretained earlier for different maximum-likelihood estima-

tors of relatedness (Ritland 1996a; Lynch and Rit- quite unbiased, even for unrelated individuals. How-
ever, even markers segregating for only a few alleles canland 1999). Their estimators performed so poorly as

to be immediately discarded as useless in practice. This also dramatically reduce the bias compared with biallelic
markers. Thus, even though the likelihood estimator isdifference arises either from admitting solutions that
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more biased than any of the others, suitable genetic will be unknown whether the specific pair of interest is
unrelated or not.sampling can greatly reduce this problem. The amount

of genetic information required to reduce the bias of This difference in standard error between estimators
is likely to be significant. For example, in the study bythe likelihood estimator to insignificant levels is within

the range of feasible sampling efforts. Ritland and Ritland (1996) involving a sample of
eight loci in Mimulus, the actual variance of relatednessThese two quantities, standard error and bias, are

integrated by the measure of root mean-square error. was estimated to be only 0.04; almost all the observed
variance in estimates of r was due to sampling error.As with the standard error, the likelihood estimator

maintains a low root mean-square error under almost Indeed, the general lack of application of marker-based
estimates of relatedness to subsequent estimation ofall conditions. The exceptions are cases involving little

useful genetic information and true relationships that quantitative genetics parameters such as heritability or
additive genetic variance may be attributable to the rela-are near the boundary of the parameter space. However,

the fact that a low root mean-square error is maintained tively poor performance of the available estimators. An
estimator of relatedness, like the likelihood one discussedby the likelihood estimator, despite the inherent poten-

tial for enhanced bias, indicates that in fact the bias is here, that exhibits both lower standard error and lower
root mean-square error across many sampling conditionsof little biological consequence. The other estimators

more than make up for generally lower bias through would improve the discriminatory power of such analyses.
Overall, the likelihood estimator discussed in this arti-their greater standard error. Additionally, the skewness

identified for several other estimators may lead to fur- cle offers several advantages compared with existing,
commonly used estimators. First, except for some trun-ther problems in practice.

Often the primary interest lies in the estimate of relat- cated estimators applied to unrelated individuals, it uni-
formly exhibits lower variation, even under conditionsedness itself. Such would be the case, for example, in

ascertaining family membership or determining the spa- of relatively abundant genetic information. For exam-
ple, even when 30 loci, each segregating for 20 equallytial structure of relatedness for sessile organisms. In

such cases it is critical that each estimate of relatedness frequent alleles, are sampled, the standard error is 10%
(and �250% under some conditions) greater for someyield a biologically meaningful value. Such is the case

for the likelihood estimator, which is constrained to estimators than for the likelihood estimator. Second,
all likelihood estimates are constrained to lie withinyield estimates of � within the biologically meaningful

range of [0, 0.5]. The method-of-moments estimators the biologically meaningful range. Thus, the biological
interpretation of individual estimates is quite straight-may also be truncated to lie within the same range.

Under conditions of low relatedness, this reduces their forward. Although apparently not general practice, this
constraint can be obtained by truncating the nonlikeli-standard error and increases their bias. In many cases,

however, the maximum-likelihood estimator still exhib- hood estimates. While each estimate is now interpret-
able biologically, the statistical behavior of the truncatedits lower standard error or root mean-square error than

that of the truncated ones. Thus, the general perfor- estimators is not generally improved over the maximum-
likelihood estimator and in some cases is worse. Finally,mance characteristics of this estimator are not strictly

the result of constraining the parameter space to in- the likelihood estimator naturally accommodates differ-
ent genetic sampling schemes. For example, the relativeclude only biologically meaningful estimates.

The primary interest in estimating relatedness may weighting of data from microsatellite loci segregrating
for many alleles in contrast to data from single-nucleo-alternatively lie in using the estimates in a subsequent

analysis. Such would be the case, for example, in estimat- tide polymorphisms segregating for only two alleles is
accomplished directly by the likelihood function. Con-ing heritability or additive genetic variance from relat-

edness estimates and phenotypic observations (Ritland sequently, all available data can be used to ascertain the
degree of relatedness between two individuals.1996b, 2000; Ritland and Ritland 1996; Mousseau et

al. 1998; Thomas et al. 2000, 2002). In these cases, too, The main drawback associated with the likelihood
estimator is that it can be biased under some conditions,it may be problematic to allow relatedness estimates that

lie beyond the biologically meaningful range. However, especially if the true degree of relatedness is near the
boundary of the parameter space and little genetic infor-the amount of variation in estimates of � can also be

especially important, because of the propagation of er- mation is available. The same is also true of the trun-
cated estimators, some of which are more biased thanror in the estimate of � to variation in derived estimates

of additive genetic variance, VA. the likelihood function even when the true relatedness
is not near the boundary. Even though biased, however,Depending on the sampling conditions, standard er-

rors for the nonlikelihood estimators are between 2 and the maximum-likelihood estimator exhibits a lower root
mean-square error than do alternative estimators under250% larger than the standard error for the likelihood

estimator. That discrepancy is substantially improved many conditions. Thus, the bias is quite minor from a
biological perspective. Furthermore, the extent of theonly by truncating the nonlikelihood estimators when

individuals are unrelated; unfortunately, in practice it bias can be greatly reduced by suitable genetic sampling.
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TABLE A1

Single-locus cases segregating n equally frequent alleles

Probability of
identity-in-state Maximum-likelihood estimates

True relatedness Segregating alleles (n)
Identity-in- No. of allelic
state mode combinations �7 � 1 �8 � 1 �9 � 1 2 3 4 	5

�1 n
1
n

1
n2

1
n3

�̂7 � 1 �̂7 � 1 �̂7 � 1 �̂7 � 1

�2 n(n � 1) 0 0
n � 1

n3
�̂9 � 1 �̂9 � 1 �̂9 � 1 �̂9 � 1

�3 n(n � 1) 0
n � 1

n2

2(n � 1)
n3

{�8, �9} �̂8 � 1 �̂8 � 1 �̂8 � 1

�4
1
2
n(n � 1)(n � 2) 0 0

(n � 1)(n � 2)
n3

�̂9 � 1 �̂9 � 1 �̂9 � 1

�5 n(n � 1) 0
n � 1

n2

2(n � 1)
n3

{�8, �9} �̂8 � 1 �̂8 � 1 �̂8 � 1

�6
1
2
n(n � 1)(n � 2) 0 0

(n � 1)(n � 2)
n3

�̂9 � 1 �̂9 � 1 �̂9 � 1

�7
1
2
n(n � 1) 1 �

1
n

n � 1
n2

2(n � 1)
n3

�̂7 � 1 �̂7 � 1 �̂7 � 1 �̂7 � 1

�8 n(n � 1)(n � 2) 0
(n � 1)(n � 2)

n2

4(n � 1)(n � 2)
n3

�̂9 � 1 {�8, �9} �̂8 � 1

�9
1
4
n(n � 1)(n � 2)(n � 3) 0 0

(n � 1)(n � 2)(n � 3)
n3

�̂9 � 1 �̂9 � 1

The number of different combinations for each identity-in-state mode are given, together with the total probability of observing
all such patterns given true relatedness corresponding to monozygotic twins (�7 � 1), parent-offspring (�8 � 1), and unrelated
individuals (�9 � 1). The final columns list the maximum-likelihood estimates obtained for each possible identity-in-state mode
given observations on a single locus and n equally frequent alleles segregating in the population. Cases designated by {�8, �9}
correspond to situations in which the estimate is indeterminant and any linear combination of the two maximizes the likelihood.

tion can be solved analytically. In some cases (e.g., �3, depends on the number of alleles segregating. If only
two alleles are segregating, only five of the nine possible�5, and �8) the maximum depends on the number of

alleles segregating. Note also that when only a few alleles patterns are observable. Two of these yield estimates of
�̂7 � 1, one yields an estimate of �̂9 � 1, and the remain-are segregating not all the identity-in-state modes are

possible to observe. der yield indeterminate estimates. Given that some of
these patterns can occur under any degree of relation-Even from Table A1 it is possible to understand the

behavior of the maximum-likelihood estimator under ship, it is clear that the maximum-likelihood estimate
may be misleading under such situations. However, thismore general conditions. For example, if an infinite

number of alleles segregate in a noninbred population is entirely due to the fact that the information available
for the inference is itself misleading, something that nothe identity-in-state pattern �i (i � {7, 8, 9}) will occur

only when individuals are related by identity-by-descent estimator can alter.
The rapid improvement in performance of the maxi-mode Si. The corresponding maximum-likelihood esti-

mate will also be �̂i � 1. More loci will reinforce the mum-likelihood estimator with increasing number of
segregating alleles is also understandable from Tablecorrect estimate; in cases such as full-sibs or first cousins

involving a linear combination of the three fundamental A1. With only two alleles, the set of observable identity-
in-state patterns is quite constrained and the maximum-relationship modes, more loci will yield an estimate of

the correct proportion of loci corresponding to each likelihood estimates are less concordant with the actual
mode of identity-by-descent. Even one additional alleleof the fundamental modes. This may provide intuitive

justification for the asymptotically unbiased nature of greatly improves the concordance.
A second special case that is amenable to analysisthe maximum-likelihood estimator (Kendall et al. 1979).

The effect of fewer alleles segregating is also evident corresponds to a parent-offspring pair assayed at L loci,
each of which segregates for n equally frequent alleles.from Table A1. In this case identity-in-state patterns

�1–�6 will be observed simply because identical alleles In this case the true relationship is S 8 � 1 and the
likelihood function is given byare resampled from the finite pool. The effect of this
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L(�7, �8, �9) � �1
n2

�7 �
1
n3

�8�
l1 �2

n2
�7 �

2
n3

�8�
l 7 �1

n3
�8�

l 3�l 5�l 8

A �
1
2
[
ik
jl � 
il 
jk]

� c(n�7 � �8)L1(�8)L 2 , (A1)
�

1
2
[SacSbd � SadSbc] (B1)

where li is the number of loci exhibiting identity in state
pattern �i, L1 � l1 � l 7 and L 2 � l 3 � l 5 � l 8, and c is

B �
1
4
[(
ik � 
jk)pl � (
il � 
jl)pk]a constant of proportionality independent of �i. Explicit

maximization of Equation A1 yields the estimate of rela-
tionship �

1
4
[(Sac � Sbc)pd � (Sad � Sbd)pc] (B2)

C � pkpl�̂7 � � nL1�L
(n � 1)L

if nL1 � L

0 otherwise,
(A2)

� pcpd (B3)

where L � L1 � L 2 is the total number of loci sampled. D�1 � pipj(2 � 
ij)(2 � 
kl)
�̂8 � 1 � �̂7 and �̂9 � 0. These estimates, together with

� papb(2 � Sab)(2 � Scd). (B4)the probabilities of observation given in Table A1 and
the binomial distribution, can be used to derive the For each of these pairs of terms, the first uses the nota-
mean and variance of �. tion of Ritland (2000) and the second uses the nota-

tion of Lynch and Ritland (1999). Letting LR refer to
the likelihood function given by Ritland (2000, Equa-

APPENDIX B
tion 3.4),

The method-of-moment estimator used by Lynch
DLR � �7A � �8B � �9C . (B5)

and Ritland (1999) is apparently from the same proba-
bility model as described above, based on both its deriva- Noting that �xy and φxy of Lynch and Ritland (1999)

correspond to �7 and �8 of Ritland (2000) and thattion and its performance in simulations. However, the
proposed-likelihood function (their Equation 12) dif- �7 � �8 � �9 � 1, some algebra demonstrates that this

is equivalent tofers from that presented by Thompson (1975) and gen-
eralized here in Table 1. The following illustrates this

DLR � DLLR � (2�7 � �8)(B � C), (B6)
incompatibility beginning with the compact notation
used by Ritland (2000), which expresses as a single where LLR is the likelihood function proposed by Lynch

and Ritland (1999, Equation 12). Because B � C �expression the likelihood function for samples from a
noninbred population (Thompson 1975). 0 is never true, the two likelihood functions are not

equivalent.First, let




