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ABSTRACT
Recent experimental findings suggest that the assumption of a homogeneous recombination rate along

the human genome is too naive. These findings point to block-structured recombination rates; certain
regions (called hotspots) are more prone than other regions to recombination. In this report a coalescent
model incorporating hotspot or block-structured recombination is developed and investigated analytically
as well as by simulation. Our main results can be summarized as follows: (1) The expected number of
recombination events is much lower in a model with pure hotspot recombination than in a model with
pure homogeneous recombination, (2) hotspots give rise to large variation in recombination rates along
the genome as well as in the number of historical recombination events, and (3) the size of a (nonrecombin-
ing) block in the hotspot model is likely to be overestimated grossly when estimated from SNP data. The
results are discussed with reference to the current debate about block-structured recombination and, in
addition, the results are compared to genome-wide variation in recombination rates. A number of new
analytical results about the model are derived.

THE process of recombination in humans has been 1985; see Griffiths 1981 for a two-locus model). The
intensively debated over the last years. Various re- idea is that recombination breakpoints are not chosen

cent findings suggest that the standard model assuming randomly along the chromosomes but are concentrated
a flat rate of recombination along a chromosome is too in certain regions of the chromosomes. One way to
crude an approximation to the actual recombination model this is to choose centers of recombination activity
process acting on the human genome and that the stan- (i.e., hotspots) according to some point process (e.g., a
dard model does not adequately explain the findings. Poisson process) and let recombination events happen
In Daly et al. (2001), Jeffreys et al. (2001), Johnson at a rate descending from the centers. In the following
et al. (2001), and Gabriel et al. (2002) it is argued that a model along these lines is developed. In the next
recombination tends to happen more often in certain section an informal description of the model is pre-
regions, so-called hotspots, of a chromosome than in sented followed by a mathematical treatment with com-
other regions, giving rise to long islands of nonrecom- parisons to the standard model. A scheme for simulation
bining or virtually nonrecombining genetic material. of sequence samples and histories is described. Some

If the above reports are true, our understanding of familiarity with the coalescent with recombination is
the recombination process as an evolutionary force must required.
be adjusted accordingly: Modeling of recombination This report is intended to be methodological, where
and interpretation of recombination patterns plays an issues of relevance to the analysis of data are addressed.
important role in the analysis of genetic data. In this The new model is compared to the coalescent model
report we develop a model, the coalescent with recombi- with uniform recombination rate through simulations
nation hotspots, which can be used for simulation and of various summary statistics. Of special interest are the
analysis of genetic data. Simulation of genetic data is an consequences of ignoring hotspot recombination and
important tool for investigating and testing hypotheses how hotspot recombination affects the genome-wide
about how genetic data have been shaped and is a useful variation in recombination rates. Various issues relating
way of gaining intuition about and insight into the con- to inference in the hotspot model are raised in the
sequences of evolutionary processes. discussion.

The coalescent with recombination hotspots is an ex-
tension of Kingman’s (1982) coalescent and of the coa-
lescent with recombination in various forms, the coales- A MODEL OF RECOMBINATION HOTSPOTS
cent with uniform recombination rate and multilocus

Think of an entire chromosome as being representedcoalescent models (Hudson 1983; Hudson and Kaplan
by a line and the gene or region we are interested in
as being represented by the interval (0, 1), as illustrated
in Figure 1. Throughout we use “gene” in a loose sense,1Corresponding author: Variagenics, 60 Hampshire St., Cambridge,

MA 02139. E-mail: wiuf@birc.dk letting it be short for an arbitrary but fixed region in
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Figure 1.—Chromosome and gene.

the genome. Thus, a gene might be several thousand
kilobases long. For a gene L nucleotides long each nu-
cleotide takes up 1/L of the interval. However, for math-
ematical convenience we think of the gene as a continu-

Figure 3.—Example of gene with two hotspots at x1 � 0.2
ous stretch of points. and x2 � 0.65. In addition, there is a hotspot outside the gene

The model we outline below is fairly general. In at x�1 � �0.15. Given that a recombination happens around
xj, j � �1, 1, 2, the breakpoint is chosen according to a normalmathematical exposition we restrict the model to a
density N(0, � 2

j ) with � 2
j � 0.01, 0.015, and 0.01, respectively.simpler model that still has most of the flexibility of

The three curves shown (one only partly) are all normal.the general model. Choose hotspots according to some
point process. Perhaps the simplest and most sensible
process in this connection is a Poisson process with gj(x) could be uniform on (��j, �j). The parameters
intensity � � 0, so that on average there are �x hotspots

� 2
j and �j could be chosen from a set of values or from

in a chromosomal segment of length x, and in particular a distribution. Potentially, this results in a model with
there are � hotspots on average in the gene (0, 1). many parameters stemming from the point process, the
In this fashion hotspots are scattered throughout the distribution of cj, and the specification of gj(x). Whether
chromosome and different genes will have different a hotspot, xj, is “hot” or “cold” (as used by, e.g., Rosen-
numbers of hotspots, but different copies of the same berg and Nordborg 2002) depends on the two dimen-
chromosome will have the exact same number and the sions, cj and gj(x): cj determines the absolute rate of
exact same locations of hotspots. In Figure 2 hotspots recombination in the region near xj, whereas gj(x) deter-
are labeled xj, j � �1, 2, . . . . If we knew the exact mines the relative rates of recombination for positions
locations of the hotspots, e.g., from experiments, these near xj. The “hottest” hotspots are obtained with high
would not have to be modeled stochastically. In the cj and very peaked gj(x); the “coolest” are obtained with
absence of such knowledge the point process reflects low cj and flat gj(x).
our prior information or expectation of how hotspots Two hotspots are in the example given in Figure 3,
are distributed throughout the chromosome. one at x1 � 0.2 and the other at x2 � 0.65, and gj(x),

Recombination crossovers happen around a particu- j � 1, 2, are normal with variances � 2
1 � 0.015 and

lar hotspot, xj, with a rate, cj, per generation and when
� 2

2 � 0.01, respectively. Thus, most breakpoints occur
a crossover occurs the breakpoint is chosen according near the hotspots but some might fall farther away.
to a distribution, gj(x), around xj. We choose to call xj There is little chance that a breakpoint around x2 falls
a hotspot, though a more correct terminology might be to the left of x1 and vice versa, but some chance that
a “center of recombination activity.” Unless the distribu- a breakpoint around x1 falls outside the gene and in
tion gj(x) is closely centered around xj, few recombina- consequence the recombination event does not affect
tions would be at xj precisely. We say that recombination the evolution of the gene. Also, there is positive proba-
happens around xj if the breakpoint is chosen from bility that a hotspot located outside the gene at x�1 �
gj(x). The rates cj could be chosen from some distribu-

�0.15 (not shown in Figure 3) gives rise to a breakpoint
tion, e.g., a �, or be constant for all j, cj � c. In the that is within the gene (indicated by the dotted line at
former case we talk about rate heterogeneity, and in the left in Figure 3).
the latter about rate homogeneity. Similarly, gj(x) might Since gj(x) is proportional to the probability by which
vary with j or be independent of j, gj(x) � g(x). For recombination happens at distance x from the hotspot
example, gj(x) could be normal with variance � 2

j , or xj, the sum of the curves in Figure 3 represents the
overall rate of recombination in a given point (Figure
4). If gj(x) is sufficiently narrow around hotspots little
overlap with other hotspots occurs, resulting in truly
distinguishable peaks.

The following interpretation of the model is intuitive:
A hotspot xj can be thought of as a specific site or
segment that is required for recombination to takeFigure 2.—Genes and hotspots. Each point xj, j � �1, 2,
place; however, the breakpoint itself might not be at. . . , represents a hotspot. Those to the left of 0 are indexed

by negative integers, those to the right by positive integers. the hotspot or fully determined by the hotspot, but just
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TABLE 1

List of symbols

Symbol Explanation

� Scale parameter in gamma process
m Shape parameter in gamma process
cj Recombination rate per generation in hotspot xj

c Expectation of cj

	j 4Ncj

	 4Nc
rzdz Recombination rate per generation in site z
rz1z2

Recombination rate per generation between sitesFigure 4.—The rate of recombination in a site z accumu-
z1 and z2lated over all hotspots in Figure 3.

r Expectation of r01, r � �c/m

z1z2

4Nrz1z2


 Expectation of 
01, 
 � �	/mlocated somewhere randomly in the vicinity. It is worth
v Homogeneous recombination rate per gene perstressing that at present published data are sparse and

generationthere is little evidence for choosing one model [i.e., the
� 4Nv

point process xj, j � �1, 2 . . . , the recombination rates
cj, and the breakpoint distributions gj(x)] in favor of
another.

which implies that (1) is finite (see the appendix). Let
r be �c/m. Then, E(rz) � r.

MATHEMATICAL EXPOSITION The rate, rz1z2
, of recombination between any two sites,

z1 and z2, can be found from (1) by integration,In the following we focus on establishing some results
about the rate of recombination between two sites and rz1z2

� �
z2

z1

rzdz , (3)
show how the rate affects the number of segregating
sites, Sn, and the number of recombination events, Rn,

and in particular the rate for the whole gene is r01. Thein a sample’s history as compared to the standard model
average rate of recombination between the two sites iswith flat recombination rate. We have simplified the
thusgeneral model of recombination hotspots presented in

the previous section to ease presentation and computa-
E(rz1z2

) � �
z2

z1

E(rz)dz � r(z2 � z2) . (4)tions. However, some of the results hold more generally.
To be specific, we assume that gj(x) does not depend

Again, in particular this applies for the whole gene,on j, i.e., gj(x) � g(x) for all j, and that the distance
E(r01) � r. For the gamma process the average numberbetween hotspots is Gamma distributed, �(m, �), m �
of hotspots in the gene (0, 1) is �/m and E(r01) is there-0 (hereafter referred to as the “gamma process”). If m �
fore the expected number of hotspots times the average1, then the gamma process is a Poisson process with
rate of recombination around a hotspot.rate �. Allowing m � 1 introduces interference: If m �

The variances of rz and rz1z2
are more involved and do1, hotspots tend to be pushed away from each other,

whereas if 0 � m � 1, they tend to cluster. Further, we not have simple closed expressions. In special cases they
can be found, though (see the appendix).assume that the distribution of rates, cj, has expectation

Simulation of sample histories: Consider a diploidc. Table 1 provides an overview of the notation.
population of size N; i.e., there are 2N chromosomes.If an event happens around xj the probability that the
It follows from standard arguments (e.g., Hudson 1990)breakpoint is in (z, z 
 dz) is g(z � xj)dz, where dz
that for N large and cj small, cj � 0, and the time (goingdenotes a small segment around z, say, of the length of
into the past) until a gene has been created by a recom-a nucleotide. Summing over all hotspots xj gives the rate
bination event is exponential with parameter 
01/2,rzdz by which recombination happens per generation in
Exp(
01/2). Here 
z1z2

� 4Nrz1z2
and time is measured ina particular site z. Here rz is given by

units of 2N generations. Also define 	 � 4Nc, the scaled
average recombination rate per hotspot.rz � �

∞

j��∞
cjg(z � xj). (1)

The location of the breakpoint z is given by the den-
sity, h(z):The sum in (1) is finite, because hotspots are dropped

according to the gamma process. In fact, the expecta-

h(z) �
rz

r01

�
1

�∞
j��∞�

1

0
cj g(x � xj )dx

�
∞

j��∞
cj g(z � xj ) . (5)tion of rz over all possible outcomes of xj is

E(rz) �
�c
m�

∞

�∞
g(x)dx �

�c
m

, (2)
The density h(z) is called the breakpoint distribution
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up in the table. The corresponding point z on the gene
is the breakpoint.

It is straightforward to include uniform recombina-
tion and/or gene conversion in addition to recombina-
tion by hotspots. Uniform recombination can either be
included in the breakpoint distribution h(z), adjusting
rz accordingly, or be accounted for as a separate type
of event. Thus, in a simulation three types of events are

Figure 5.—The genetic material of a gene divided into possible: coalescence, hotspot recombination events,
ancestral, nonancestral, and nonancestral trapped material. and uniform recombination events. Gene conversion isRecombination affects the history of the gene if the breakpoint

best treated as a different type of event, because it oftenis in ancestral or nonancestral trapped material.
involves two breakpoints instead of one (Wiuf and Hein
2000). Both extensions seem realistic in light of how
genetic data presently are conceived. Infinite-site muta-and is in general difficult to sample from given that the
tion can be simulated at the same time as the genealogy,hotspots xj are fixed (instead of random) and that the
as described by previous authors (e.g., Hudson 1990density g(x) might have large support (a normal, for
and references therein).example). One uninspired way to sample h(z) is to simu-

Number of segregating sites: Of interest is the distri-late the hotspots in the gene and in two extra regions
bution of (A) the number of segregating sites, Sn, givensurrounding the gene, thereby ignoring the rest of the
a particular outcome, xj, of the gamma process and (B)chromosome. The length of the extra regions should
the same number averaged over all possible outcomesbe chosen such that a hotspot outside the two regions
of the gamma process. In both cases we average overhas little chance of producing a breakpoint inside the
all possible outcomes of cj. B relates to the genome-widegene. Then for each hotspot in the gene and the two
variation, whereas A relates to the variation within aregions simulate the distribution g(x) around xj and
single gene. Assume the mutation rate is � � 4Nu fortabulate the breakpoint distribution h(z).
the whole gene (0, 1), where u is the mutation rate perSimulation of sample histories can be performed in
gene per generation. As shown in Hudson (1990), Snthe following way. Assume that there are n genes in the
is Poisson-distributed Po(�Ln/2), where Ln is the totalsample. Let k count the number of genes that at a given
branch length measured in 2N generations of the gene-time in the past carries ancestral material (see Figure
alogy relating n sequences. The distribution of Ln de-5 for an illustration).
pends on whether we consider a particular outcome xj

(A) or whether we average over all such outcomes (B).1. Simulate cj and xj according to the gamma process
The expectation of Sn under both A and B can bewith parameters m and �. Calculate h(z) from Equa-

obtained easily, because it depends on the genealogytion 5 and compute 
01.
for a given site only (see, e.g., Hudson 1990). For A we2. Simulate the next event according to the coalescent
findwith flat recombination rate 
01 and sample size k.

3. If the event is a coalescence event choose two genes
Ex(Sn) � � �

n�1

j�1

1
j
, (6)at random to coalesce; otherwise choose one gene

to recombine. The breakpoint, z, is chosen according
to Equation 5. Update k. where Ex denotes expectation given an outcome of xj,

4. Stop when k � 1. j � �1, 2, . . . . For B we find

Simulation of hotspots (step 1) is straightforward
E(Sn) � E[Ex(Sn)] � � �

n�1

j�1

1
j
. (7)once the position of the first hotspot in the region is

determined: The length between hotspots is �(m, �),
The variance is more involved because it depends onwhich can be simulated using standard algorithms. The
the covariance between genealogies, which in turn de-location of the first hotspot in the region can be simu-
pends on the recombination rate between sites. Thuslated using a rejection algorithm. Details are given in
the variance of Sn differs under A and B. Applying thethe appendix.
method in Hudson (1983; see also Wiuf 2000) it canTime spent on computation in step 3 can be reduced
be shown that the variance under A isif a look-up table for h(z) is constructed. A look-up table

takes the form of a dense grid of points and for each
Varx(Sn) � Ex(Sn) 


�2

2 �
1

0
�

1

z1

fn(
z1z2
)dz1dz2 , (8)point, v, the corresponding point, z, on the gene is

determined such that the probability of a recombination
breakpoint between 0 and z is v, i.e., P(break between
0 and z) � �z

0h(x)dx � v. For each recombination event where fn(x) denotes the covariance between the branch
length of the genealogies in two sites separated by xa uniform variable, V, is simulated and v � V is looked
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recombination units (Hudson and Kaplan 1985). The
whole gene is 
01 units. The integral differs from that
of Hudson (1983) because 
z1z2

does not depend simply
on the length z2 � z1 (cf. Equation 4). For n � 2, fn(x)
is known,

f2(x) �
4(18 
 x)

18 
 13x 
 x 2
, Figure 6.—A two-locus recombination model (left) com-

pared to an infinite-site recombination model (right). The
second recombination event does not affect the genealogy inand for n � 2, Kaplan and Hudson (1985) provide
the two-locus model because the second breakpoint hits therecursions. Under B the variance becomes location of the first.

Var(Sn) � E[Varx(Sn)] � E(Sn) 

�2

2 �
1

0
�

1

z1

E[ fn(
z1z2
)]dz1dz2

1) so that the rate of recombination becomes uniform:(9)
The distribution of Rn given 
01 is that of Rn in a model

(upon taking expectation of Equation 8; Var(Ex[Sn]) � 0). of uniform recombination rate 
01. Similarly to Varx(Sn),
Both variances are bounded from above by Varx(Rn) can be bounded from above:

� �
n�1

j�1

1
j


 �2 �
n�1

j�1

1
j 2

, Varx(Rn) � Ex(Rn) 
 
2
01 �

n�1

j�1

1
j 2

.

The variance of Rn under B cannot simply be obtainedwhich is the variance of Sn for nonrecombining se-
quences (Watterson 1975). If n � 2, fn(x) is convex from (13) by taking expectation, because Ex(Rn) varies

with xj. Instead, using the definition of the variance, weand using Jensen’s inequality,
find

E[ f2(
z1z2
)] � f2(E[
z1z2

]) � f2(
(z2 � z1)) ,

Var(Rn) � E[Varx(Rn)] 
 Var(
01)��
n�1

j�1

1
j �

2

, (14)because E(
z1z2
) � 
(z2 � z1). As a consequence, Var(S2)

under B is larger than the variance of S2 under a model
orwith uniform rate 
,

Var(Rn) � E(Rn) 
 E �
2
01

2 �
1

0

(1 � z) fn(
01z)dz�� 

�2

2
� Var(S2) � � 


�2

2 �
1

0

(1 � x) f2(
x)dx . (10)

The approximation of fn(x) given in Hudson (1983) 
 Var(
01)��
n�1

j�1

1
j �

2

. (15)
provides a similar (approximative) bound for all n. Un-
fortunately, the recursion provided in Kaplan and Hud- The bound on Varx(Rn) provides a bound on Var(Rn),
son (1985) is difficult to work with and does not seem
to offer a proof of (10) for general n.

Var(Rn) � E(Rn) 
 E(
2
01) �

n�1

j�1

1
j 2


 Var(
01)��
n�1

j�1

1
j �

2

.
Number of recombination events: The same line of

argumentation as in the previous paragraph applies to
In general, neither Var(
01) nor the second term in (15)the number of recombination events, Rn, in a sample’s
can be calculated explicitly. For n � 2, the functionhistory. We show results for the expectation and vari-
x2fn(x)/2 
 x2 is convex and it follows that Var(R 2) isance of Rn without detailed proofs, again distinguishing
always larger than the variance of R 2 in a model withbetween A and B.
uniform rate 
. The last term is almost zero if the supportFor A we have
of g(x) covers a large region. It attains its largest value
if g(x) has all probability mass in the hotspots. If m �Ex(Rn) � 
01 �

n�1

j�1

1
j
, (11)

1 (Poisson process), then Var(
01) � �	2 � 
2/� and
E(
2

01) � �(� 
 1)	2 � 
2 
 
2/� (see also the appendix).
and thus, Equations 11–13 hold only if g(x) is a continuous

distribution; e.g., if the breakpoint is exactly in xj, then
E(Rn) � E(
01) �

n�1

j�1

1
j

� 
 �
n�1

j�1

1
j
. (12) Ex(Rn) and E(Rn) are lower than the values given in

Equations 11 and 12, respectively. In Figure 6, left, the
The expression for the variance of Rn under A follows second breakpoint hits the location of the first and,
directly from Hudson and Kaplan (1985), thus, does not count in Rn. In contrast, both events count

in Figure 6, right. When all breakpoints are exactly in
Varx(Rn) � Ex(Rn) 



2
01

2 �
1

0

(1 � z) fn(
01z)dz . (13) xj, j � �1, 2 . . . , the model is effectively a multilocus
model rather than an infinite-site model. Griffiths
(1991) discussed a two-locus model with recombinationEquations 11 and 13 follow from rescaling the gene (0,
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E(R 2) �
�

m
ε2(	). (19)

Thus, rate heterogeneity decreases the expected num-
ber of recombinations in comparison to a model with
rate homogeneity. Evaluation of E(Rn) in (18) can be
achieved by combining numerical evaluation of the re-
cursion for εn(y) with Monte Carlo simulation of f(y).

SIMULATION RESULTS

In this section we investigate various quantities by
simulation. Particularly, we are interested in the expec-Figure 7.—The number of recombination events in a two-
tation and variance of Rn and the variances of Sn andlocus model with n � 2. Sequences marked with * are common

ancestors of the sample in locus A. The recombination event 
01. The expectation of Sn is independent of the recombi-
marked REC does not affect the genealogy of the sample and nation process and is given in Equation 7. The expecta-
therefore should not be counted. However, it counts in the tion of 
01 is found from Equation 4. In addition, weexpectations provided in Griffiths (1991) and Simonsen and

present simulated results for Hudson and Kaplan’sChurchill (1997).
(1985) lower bound, RM, on the number of recombina-
tion events in a sample history and Myers and Grif-
fiths’ (2003) haplotype-based bound, HM. It is alwaysand found a recursion for the expected number of re-
true that HM � RM and that HM is lower than the truecombination events. This recursion can be solved explic-
minimum (Myers and Griffiths 2003). Both statisticsitly for small n. Also Simonsen and Churchill (1997)
give indications to what the overall rate of recombina-discussed a two-locus model and found analytic expres-
tions might be.sions for the expectation and variance of the number

The coalescent with recombination hotspots and ho-of recombination events for n � 2. Their result for the
mogeneous recombination rate was implemented in aexpectation agrees with that of Griffiths (1991) for
program by one of us. A program was implemented ton � 2. In a sense, the number of events is overcounted
calculate E(Rn) in Equation 18 with Gamma-distributedin both articles, because events involving loci that al-
rates, 	j � 	Zj, Zj � �(�, �). (This is analogous to howready have found a most recent common ancestor are
heterogeneity in mutation rates is modeled; see, e.g.,counted (Figure 7 gives an example). However, Grif-
Yang 1996.) Tables 2 and 3 show the mean and variance,fiths’ (1991) recursion can still be applied after chang-
respectively, of Rn for various combinations of the twoing the boundary conditions (see the appendix for
rates: the hotspot rate 
 (varying �, m, and 	) and thedetails). Let εn(y) be the expected number of recombi-
uniform rate � � 4Nv, where v is the rate per gene pernation events between two loci with scaled rate y. Then
generation. The density g(x) was either a normal, N(0,
�2), or a uniform, U(��, �). Values of � and � wereε2(y) �

2y(2y 
 9)
y2 
 13y 
 18

� min(y, 4), (16)
chosen such that the respective distributions had the
same variance, i.e., � � √3�2 . Note that �2√�2 createsif n � 2, and
an approximate 95% confidence interval for the normal

Ex(Rn) � �
j:0�xj�1

εn(	j), (17) distribution. E.g., for �2 � 5 � 10�3, �2√�2 � �0.14 or
14% of the whole gene. In that case � � 0.12. Table 4

because all events that count in Rn necessarily happen shows the variance of Sn, and Table 5 the variance of
between two adjacent loci. Equation 16 demonstrates 
01; both are simulated under the same conditions as in
that ε2(y) is lower than that in a model of uniform rate Tables 2 and 3. The results obtained with the uniform
y and, more importantly, that ε2(y) does not depend distribution were very similar to the results obtained
linearly on the rate of recombination. A similar behavior with the normal distribution (they deviated � �5%)
is expected for Ex(Rn) in Equation 17 or if g(x) is continu- and are thus not shown in the tables. In Tables 2–5 the
ous) with low variance. The expectation under B can sample size (n � 20) and the mutation rate (� � 10)
be derived from Equation 17, are fixed; other parameter values showed similar trends.

If the chosen parameter values are interpreted in the
E(Rn) �

�

m �
y

εn(y) f(y)dy , (18) context of humans, they correspond roughly to a region
of size 1000–10,000 nucleotides. This is of course not a
large genomic region, but it suffices to illustrate somewhere f(y) denotes the density of 	j, j � �1, 2, . . . . In

particular, if 	j � 	 is constant, E(Rn) � (�/m)εn(	). It points.
The tables show some interesting trends. First of all,appears that ε2(y) is concave and increasing in y, and

by application of Jensen’s inequality, Table 2 shows that E(Rn) is considerably lower in a model
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TABLE 2

The expectation, E(Rn), of Rn

Homo Het

�/m 0:8 4:4 8:0 0:32 16:16 32:0 0:8 4:4

1 14.10 22.96 28.38 29.65 77.99 113.5 11.94 21.77
4 20.69 25.87 28.38 56.39 91.84 113.5 18.40 24.83

16 25.38 27.54 28.38 82.78 103.5 113.5 24.06 26.95

Sample size is n � 20 and �2 � 0. Above each column is shown the values of � and 
 as �:
; Homo, rate
homogeneity; Het, rate heterogeneity (� � 1). The expectations for 8:0 and 32:0 are the theoretical values
(cf. Equation 12), which also apply for �2 � 0. All other expectations are obtained from Equations 17 and 18.
E(Rn) depends on � and m only through �/m. Rate heterogeneity lowers the expectation compared to rate
homogeneity.

with pure block recombination than in a model with by variation in the number of hotspots; as � increases the
rate becomes more uniform and the variance decreases,pure homogeneous recombination. This is true irre-

spective of whether or not interference is assumed or both for m � 1 and m � 4. As an example compare the
three values for �2 � 10�4 in the first column. Thiswhether all hotspots have the same recombination rate

or the rate varies (� � 1). The expectation E(Rn) is the is further emphasized by the observation that Var(Rn)
seems to be (slowly) decreasing in �2 � 0, which is assum of the expectations for pure block recombination

and for pure homogeneous recombination. Note that expected because the recombination rate becomes
more uniform with higher �2. Interference decreasesrate heterogeneity lowers the expectation compared to

the case of rate homogeneity. This is in line with the variation, because the variance in the number of hot-
spots decreases with increasing m and �/m fixed, andobservation in Equation 19 for n � 2. If g(x) has low

variance, the expectation for pure block recombination the recombination rate becomes more uniform. Hetero-
geneity, on the other hand, increases variation, becausecan be seen as an approximate “effective” number of

recombinations, because mutations are unlikely to sepa- the recombination rate becomes more variable.
The same trends in Table 3 are seen in Table 4:rate close recombination breakpoints. For m � 1, the

probability of no hotspots within the gene is exp(��), Var(Sn) decreases with increasing �2 and also with in-
creasing �, for both m � 1 and m � 4. However, notewhich evaluates to 37% for � � 1 and 2% for � � 4.

For m � 4, the probability of no hotspots is exp(� �) that for �2 � 0 the variance of Sn attains its largest
value because trees for individual nucleotides are more{1 
 3⁄4� 
 1⁄4�2 
 1⁄24�

3}, which is 20% for � � 4 and
0.1% for � � 16. correlated than those for �2 � 0. We do not see the

same for Rn: If �2 � 0, some recombination events breakTable 3 shows that variation in Rn is largely induced

TABLE 3

The variance, Var(Rn), of Rn

� 
 
 � 32:� 
 
 � 8

m � 1, Homom � 1, Homo m � 4, Homo m � 1, Het

�/m �2 0:8 4:4 0:8 4:4 0:8 4:4 0:32 16:16

1 0 218.7 116.3 101.3 68.99 205.6 130.7 908.3 628.3
10�4 766.5 254.4 358.3 139.1 1461 506.7 9455 3086
5 � 10�3 746.7 248.3 363.8 135.7 1399 388.1 10070 2883

4 0 136.0 93.15 65.31 65.14 153.3 106.8 868.4 635.5
10�4 249.6 119.0 121.5 90.49 475.4 177.6 3088 1094
5 � 10�3 239.2 117.1 126.2 85.60 432.5 172.9 3129 1043

16 0 98.75 75.47 58.75 64.94 100.3 79.53 624.7 459.1
10�4 117.9 88.74 83.77 78.44 169.3 99.28 1189 596.4
5 � 10�3 121.1 81.39 80.34 74.77 162.5 93.63 1101 579.0

Sample size is n � 20. Above each column is shown the values of � and 
 as �:
; Homo, rate homogeneity;
Het, rate heterogeneity (� � 1). A total of 1000 replicates were obtained for each entry. The variances for 8:0
and 32:0 (pure homogeneous recombination) are 73.94 and 420.6, respectively, obtained from simulation of
1000 replicates.
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TABLE 4

The variance, Var(Sn), of Sn

� 
 
 � 32:� 
 
 � 8

m � 1, Homom � 1, Homo m � 4, Homo m � 1, Het

�/m �2 0:8 4:4 0:8 4:4 0:8 4:4 0:32 16:16

1 0 163.0 117.0 162.3 117.7 167.0 112.7 140.3 74.78
10�4 153.5 117.7 136.6 111.4 172.6 114.3 141.9 71.83
5 � 10�3 151.8 103.8 139.4 102.5 146.6 109.0 133.1 74.83

4 0 124.2 100.9 114.5 109.9 136.4 107.3 106.7 71.33
10�4 122.1 103.7 111.4 109.9 127.8 108.1 92.86 65.90
5 � 10�3 120.8 101.1 96.12 104.2 118.0 110.0 90.50 64.36

16 0 110.3 105.5 105.9 104.6 107.6 96.58 74.48 66.15
10�4 111.3 106.2 102.5 106.2 104.8 104.5 70.95 65.31
5 � 10�3 107.7 105.5 98.8 100.1 100.7 101.1 70.98 63.96

Sample size is n � 20 and � � 10. The expectation of Sn is 38.48. Above each column is shown the values
of � and 
 as �:
; Homo, rate homogeneity; Het, rate heterogeneity (� � 1). A total of 1000 replicates were
obtained for each entry. The variances for 8:0 and 32:0 (pure homogeneous recombination) are 95.45 and
66.21, respectively, obtained from simulation of 1000 replicates.

between the same nucleotides and might therefore not small values of �. It appears that the variance is roughly
inversely proportional to �.count in Rn (cf. Figure 6). Interference and heterogene-

ity affect the variance similarly to what was seen in Table Table 6 shows summary statistics of RM and HM. The
inferred minimum number of recombinations is lower3, though less dramatically.

Table 5 summarizes the genome-wide variation, in the hotspot model than in the uniform model: We
tend to underestimate the amount of historical recombi-Var(
01), in recombination rates in the hotspot model.

The variation is mainly due to variation in the number nations more in the hotspot model than in the uniform
model. This is the case even if �2 � 0 (results not shown),of hotspots and very little to the value of �2. If � is large

the variance approaches 0, but it can be substantial for because recombination events around a hotspot are de-
tected by RM or HM only if there is an accumulation of
mutations in the region around the hotspot. The actual
number of recombination events is in general muchTABLE 5
higher (cf. Table 2).The variance, Var(�01), of �01

Homo Hetero
DISCUSSION

�/m �2 m � 1 m � 4 m � 1
We have developed an extension of the coalescent

1 0 100.0 40.78 200.0 with recombination that in a simple way accounts for
10�4 103.3 39.33 193.6

heterogeneity in recombination rate and hotspots. Rate5 � 10�3 96.45 33.86 190.5
heterogeneity can be modeled in ways other than the

4 0 25.00 7.23 50.00 one proposed here: Basically, what is required is a rela-10�4 24.23 6.95 49.74
tionship, stochastic or deterministic, between physical5 � 10�3 22.96 6.08 49.94
and genetic distance. The standard coalescent model

16 0 6.25 1.62 12.50
of uniform rate suggests a linear relationship between10�4 6.22 1.56 12.38
the two distances. This results in a one-parameter5 � 10�3 5.55 1.38 11.75
model. In contrast the model proposed here has a sto-

The variance of 
01 for 
 � E(
01) � 10. Homo, rate homoge- chastic relationship between the two distances, in the
neity; Hetero, rate heterogeneity (� � 1). The variance for

sense that the rate is different for each realization of aother values of 
 is obtained by multiplying the value in the
gene’s history. The model can be summarized as havingtable by 
2/102. Note that adding homogeneous recombina-

tion does not change Var(Rn), because the homogeneous rate four main parameters: an intensity, �, that controls the
is constant. The variances for �2 � 0 are obtained theoretically number of hotspots; a measure of interference, m ; a
(see the appendix). A total of 1000 replicates were obtained recombination rate, 	, per hotspot; and a parameterfor each entry. It appears that the values for m � 4 are roughly

that regulates the size, �2, of the hotspot. Two of these,a factor of 4 smaller than those for m � 1, Homo, and that
the variance is inversely proportional to � for large �. �2 (or more correctly, √�2) and �, are scaled in the
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TABLE 6

Summary statistics of RM and HM

RM

n � 20, � � 10 n � 50, � � 10 n � 20, � � 40

� 
 Mean Variance Mean Variance Mean Variance Mean Variance

HM:

n � 20, � � 10

8 0 2.33 1.70 2.84 1.80 4.31 3.67 3.16 3.31
4 4 2.10 1.46 2.47 1.64 3.81 2.85 2.92 3.14
0 8 1.55 1.10 1.72 1.24 2.28 1.84 2.37 3.34

32 0 4.97 3.34 5.81 3.51 10.4 7.14 8.20 8.28
16 16 4.10 2.41 4.99 3.00 8.37 6.12 7.07 7.48

0 32 2.16 1.39 2.38 1.66 3.14 2.55 4.31 6.81

Sample size n � 20, 50; mutation rate � � 10, 40. Hotspots are simulated with �2 � 0, � � 4, and m � 1.
The expectation of Sn is 38.48 for � � 10 and n � 20, 153.9 for � � 40 and n � 20, and 44.79 for � � 10 and
n � 50. A total of 1000 replicates were obtained for each entry.

length of the gene, 	 is scaled in the effective population length of the genomic region increases. Similarly, it might
be expected that �, m, 	, and �2 can be estimated con-size, and m has no scale.

Fisher et al. (1947) introduced the gamma process sistently. Fearnhead’s (personal communication) proof
does not directly apply in the present situation becausein the context of chromatid interference. Their model

is called the �2 model. The �2 model is not conceptually he works with the standard one-parameter coalescent
model and the proof makes explicit use of this. As a finalidentical to the model presented in this article: In our

model the gamma process determines the location of comment along these lines, if data are analyzed under
the standard model alone, a systematic downward bias ishotspots. These locations are the same for all individuals

and are potential breakpoints for recombination. In expected; this was clearly demonstrated in Table 2.
We calculated summary statistics for the recombina-contrast, in the �2 model the gamma process determines

the location of chromatid crossovers, actual recombina- tion rate from 22 genes spread throughout the human
genome (from Table 1 in Nachman 2001). We foundtion breakpoints. These vary from individual to individ-

ual, both in number and in location. an average rate of 2.08 cM/Mb with a variance of 1.63.
If we assume the effective population size is N � 104We showed how various summary statistics are af-

fected by hotspot recombination compared to uniform and a gene of �104 nucleotides, then estimates of the
expectation and variance of 
01 are given by E(
01) �recombination. One important message is that in the

hotspot model we tend to underestimate the number 8.32 and Var(
01) � 26.08, respectively. Compared with
the values in Table 5, these point to a fairly high levelof recombination events more in a sample history than

in a model of homogeneous recombination. From an of variation in recombination rate. For example, the
variance (26.08 � 102/8.322 � 37.7) is consistent withinference point of view this is extremely unsatisfactory:

There are more parameters to estimate in the hotspot some interference and homogeneity in rates (e.g., m �
4, � � 4) or with no interference and heterogeneity inmodel than in the uniform model and reliable estimates

might therefore be difficult to achieve. For one thing, rates (e.g., m � 1, � � 5.2, assuming an inverse propor-
tional relationship between Var(
01) and �; see Table 5).it is well known that estimators of the recombination

rate are often biased downward (Wall 2000), sug- Table 6 also brings a message to researchers spending
effort on inferring haplotype maps of human chromo-gesting that these estimators are even more likely to be

biased downward in the hotspot model. As a further somes. Hotspots (or block end and start points) are
inferred from single-nucleotide polymorphism (SNP)issue, the extra parameters in the hotspot model make

inference computationally intractable. Even in the stan- patterns, but as shown in Table 6 these patterns lead
to gross underestimation of the true number of recombi-dard model, maximum-likelihood estimation is compu-

tationally nontrivial (Fearnhead and Donnelly 2001), nation events. The statistic RM infers at most one recom-
bination between any two SNPs: �̂ � RM is thus an esti-and many approaches rely on summary statistics and/

or simplifications of the likelihood (Wall 2000; Fearn- mate of � (in general, RM is an estimate of �/m) and
B̂ � 1/RM an estimate of block size. If � � 0 and 
 �head and Donnelly 2002, and references therein).

Statistically, it is not known whether the parameters 8, then B̂ � 0.65 for � � 10, and B̂ � 0.43 for � � 40.
If � � 0 and 
 � 32, then B̂ � 0.46 for � � 10 and B̂ �can be estimated consistently. Fearnhead (personal

communication) shows that in certain cases it is possible 0.32 for � � 40 (using the simulated expected values
of RM). However, the expected block size is 1/� � 0.25to estimate the flat recombination rate consistently as the



416 C. Wiuf and D. Posada
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Speed (1995) state the distribution of the position ofmass in the hotspot, the variance of rz1z2
can be found.

the first hotspot in a gene,Note that in this particular case

rz1z2
� �

j:z1�xj�z2

cj , �1(x) �
�m
1

�(m 
 1) �
∞

u

um�1e��udu , (A2)

and provide a rejection algorithm for simulating fromso that
�1(x). The density of x�1 is ��1(x) � �1(x). If m is an

r 2
z1z2

� �
j
c 2

j 
 2 �
i�j

cicj , integer, a value from �1(x) can be realized by simulating
a Gamma variable, �(k, �), where k is chosen randomly

and among 1, . . . , m. If m is noninteger, let m0 be the first
integer �m, and simulate a value, x, from �1(x) with m0

E(r 2
z1z2

) �
�

m
E(c 2

j ) 
 2c 2 �
1

0
�

1

u

P(hotspots in u and v)dudv and �. Accept x with probability

�
�

m
E(c 2

j ) 
 2
c 2�

m �
1

0

(1 � u)�
∞

k�1

�k(u)du . (m0 � 1)!
�m0�m�(m)

�
∞

x
um�1e��udu

�
∞

x
um0�1e��udu

. (A3)

The latter follows from McPeek and Speed (1995), but
Equation A3 can be evaluated only numerically.is more generally treated in Karlin and Taylor (1975).

Recursion for εn(y): Griffiths (1991) provides theHere �k(u) is
following recursion for calculation of εn(y) for given
values of n and y. Let a, b, and c � 0, and let n � a 
�k(u) �

1
�(mk)

�mkumk�1e��u .
b 
 c. The number c is the number of genes where both
loci are ancestral to the sample, a is the number whereIf m � 1, then �k�k(u) � � , and
locus 1 is ancestral, and b is the number where locus 2
is ancestral. The recursion isE(r 2

z1z2
) � �E(c 2

j ) 
 c 2�2 .

In particular, if cj � c, then E(r 2
z1z2

) � �(� 
 1)c 2 � r(r 
 q(a, b, c ; y) �
cy

n(n � 1) 
 cy
[1 
 q(a 
 1, b 
 1, c � 1; y)]

1/�) and Var(rz1z2
) � �c2 � r 2/�. If cj � cYj, Yj � �(�,

�), then Var(rz1z2
) � �c 2(1 
 1/�) � r 2(1 
 1/�)/�. If



2ab

n(n � 1) 
 cy
q(a � 1, b � 1, c 
 1; y)

m � 2, then �k�k(u) � �(1 � e�2�u)/2 and



a(a 
 2c � 1)
n(n � 1) 
 cy

q(a � 1, b, c ; y)
E(r 2

z1z2
) �

�

2
E(c 2

j ) 

c 2

4
[�(� � 1) 


1
2

(1 � e�2�)] . (A1)



b(b 
 2c � 1)
n(n � 1) 
 cy

q(a, b � 1, c ; y)If m � 4, then �k �k(u) � �(1 � e�2�u)/4 � �e��usin(�u)/
2 and



c(c � 1)

n(n � 1) 
 cy
q(a, b, c � 1; y) , (A4)

E(r 2
z1z2

) �
�

4
E(c 2

j ) 

1
4
C(�) �

c 2

8
[� � 1 
 e��cos(�)],

with boundary conditions q(0, b, 1; y) � q(1, b, 0; y) �
where C(�) is the second term in Equation A1. The q(a, 0, 1; y) � q(a, 1, 0; y) � 0. Then εn(y) � q(0, 0, n;
variance is easily obtained from these equations. By re- y). [Griffiths (1991) uses boundary conditions q(0, 0,
placing r with 
 and c with 	, the variance of 
z1z2

is 1; y) � q(0, 1, 0; y) � q(1, 0, 0; y) � q(1, 1, 0; y).] Ethier
and Griffiths (1990) solve (A4) using a tridiagonalobtained.

Simulation of the first hotspot in a gene: McPeek and scheme.




