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Improved thermodynamic parameters and helix
initiation factor to predict stability of DNA duplexes
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ABSTRACT DNA duplex stability were reported on the basis of a small

_ ) ) number of thermodynamic results of DNA oligomerg) (free
To improve the previous DNA/DNA nearest-neighbor energy changes for duplex initiation (1.82 kcal/mol for G/C pair
parameters, thermodynamic parameters ( AH®,AS°and  and 2.8 kcal/mol for AT pair) were quite different from that of RNA
AG®) of 50 DNA/DNA duplexes were measured. Enthalpy (3.4 kcal/mol). Such a large difference between DNA/DNA and
change of a helix initiation factor is also considered RNA/RNA duplex initiations is amazing. The enthalpy change
though the parameters reported recently did not for DNA/DNA duplex initiation has to be considered for the
contain the factor. A helix initiation factor for DNA/DNA improvement, because it was shown that the enthalpy contribution
duplex determined here was the same as that of to the duplex initiation was more important than the entropy
RNA/RNA duplex ( AG®37 = 3.4 kcal/mol). The improved contribution in the case of RNA/DNA duplexes. (
nearest-neighbor parameters reproduced not only Here, we report improved DNA nearest-neighbor parameters
these 50 experimental values used here but also 15 determined by measuring thermodynamic parameters for 50 DNA
other experimental values obtained in different studies. duplexes in 1 M NaCl buffer. The new nearest-neighbor parameters
Comparing AG°37 values of DNA/DNA nearest- are compared with the previous on&g ?).

neighbor parameters obtained here with those of
generally the most stable of the three kinds of dup ~ lexes

with the same nearest-neighbor sequences. Which is Materials

more stable between DNA/DNA and RNA/DNA duplexes

is sequence dependent, All deoxyribonucleotides (87 nucleotides) were synthesized

chemically on a solid support using phosphoramidite procedures
and purified with high-performance liquid chromatography (HPLC)
INTRODUCTION after deblocking operation$3). The synthesized oligonucleotides
, were further purified and desalted with a C-18 Sep-Pak cartridge.

Thermodynamics of enthalpy changkH(), entropy change The final purity was confirmed to be >98% by HPLC. These
(85°) and free energy chang’®°) for helix formation of nucleic  gjigoucleotides consist of the 10 kinds of nearest-neighbor
acids and melting temperaturgyf for helix melting can be gequences of Watson—Crick base pairs described above, and thei
explalned by considering nearest-neighbor interactions. Nearq%hgths range from 5 to 14 nucleotides. The sequences were
neighbor parameterd\i®, AS® andAG®) of DNA/DNA and  gejected to have many different combinations of the nearest-
RNA/RNA double helicesl(?) were obtained on the basis of theneighbor base pairs.
nearest-neighbor modél)( Recently, we also reported the nearest- | experiments were conducted in a buffer including 1 M
neighbqr parameters for.RNA/DN.A duplexé$. (Thus, thermo- NaCl, 10 mM NaHPQO, and 1 mM NaEDTA (pH 7.0). Each
dynamics for double helix formation of DNA/DNA, RNA/RNA jigonycleotide concentration was determined by measuring the
and RNA/DNA can be estimated with the nearest-neighboljysarhance at 260 or 280 nm at a high temperature as describec
parametersl(2,4,5) and their parameters are used to predict stabige\iously (4). Single strand extinction coefficients were calculated
secondary structures and active centers of nucleic &eids ( from mononucleotide and dinucleotide data by using a nearest-

_However, it was reported that there were sometimes larggighhor approximatiorLt), though it should be noted that the
differences between_measured and predlcte(_j thermodynamicg9f3 included not a small error. The DNA strand and its
DNA/DNA double helices(0,11) when the published DNAIDNA  ¢omnlementary DNA strand were mixed with a 1:1 concentration
nearest-neighbor parametet$ Were used. In order to make a 410 to obtain each DNA double helix.
much better prediction, as all DNA duplexes consist of 10 nearest-
neighbor sequences of dAA/dTT, dAT/dAT, dCG/dCG, dCT/dAG
GGAITC, dGOIGC, dGGIACC, dGTIIAC, dTAIGTA andUY Mmeasurement
dTG/dCA, these 10 DNA nearest-neighbor parameters should Absorbance measurements in the UV region were made on
improved. Also, an initiation factor should be improved becaudéitachi U-3200 and U-3210 spectrophotometers. Melting curves
enthalpy change of a helix initiation factor has been assumed(absorbance versus temperature curves) were measured at 260 o
be 0 kcal/mol for DNA/DNA and RNA/RNA parametefis?). 280 nm. Cell holders were thermostated by Hitachi SPR-7 and
Although new nearest-neighbor parameters for predicting DNAPR-10 thermoprogrammers. The water condensation on the
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cuvette exterior at the low-temperature range was avoided Hynamics by the pameters were sometimes larger than expected
flushing with a constant stream of drg dls. The heating rate (10,11). Accordingly, we improved the nearest-neighbor parameters
was 0.5 or 1.9C/min. for DNA double helix formation.

The melting curves of all the DNA/DNA duplexes examined )
here showed normal melting behaviors as well as RNA/RNA ardfnproved nearest-neighbor parameters for DNA/DNA
RNA/DNA duplexesZ,4). Melting data were collected and fitted duplexes
with NEC PC9801 computer$y, values of Watson—Crick base
pairs were obtained with the curve fitting procedui®. (Thermo-
dynamic parameterall°, AS° andAG°) for DNA/DNA double-
helix formation were determined as the average values obtai
by T versus InCy) plot and the curve fitting procedu&4).

To determine new nearest-neighbor parameters, we measured the
thermodynamics of duplex formation for 50 DNAs. Thermo-
n%)épamic parameters of all the duplexes determined withThoth
versus InCy plots and the curve fitting procedus® ére provided
as supplementary material (Tables S1 and S2). Melting behaviors
Calculation of nearest-neighbor parameters of all 50 DNAs used here show a two-state transition, so that they
are considered to show similar transition enthalpy changes as
According to the nearest-neighbor model, a free energy changealculated from the shape of the calorimetric cuniésl ).
37°C (AG°3y) of the helix formation consist of three terms: (i) aThermodynamic parameters for another 15 DNA duplexes
free energy change for helix propagation as a sum of ea¢h10,17) were also considered, so data for 65 duplexes in order
subsequent base pair, (i) a free energy change for helix initiatiem determine the nearest-neighbor parameters are listed in Table S3
and (iii) a free energy change of an entropy effect when the duplax supplementary material.
is composed of self-complementary stranii®,4). Nearest- DNA/DNA double helices have 10 nearest-neighbor sequences
neighbor parameters of DNA/DNA duplexes were determined lyf dAA/dTT, dAT/dAT, dCG/dCG, dCT/dAG, dGA/dTC, dGC/
using thermodynamic data for 50 DNA/DNA duplexes measurediGC, dGG/dCC, dGT/dAC, dTA/dTA and dTG/dCA. We
here and the data for 15 DNA/DNA duplexes examinedonsidered these 10 values and thihalpy effect of a helix
previously (,10,17) on the computer prograr)( End effect by initiation for the prediction which had been ignoréd®) The
terminal dA/dT pair were not considered, because destability ehergies of an initiation at A/T and G/C base pairs were regarded
the fraying was not so large and it affected the whole dupless the same values according to the previous assuniptip®é
stability by only 0.4 kcal/mol 1Q). Each nearest-neighbor the helix symmetry factor was due to an entropy effect of
parameter oAG°37 andAH® was described on the program by associating self-complementary strands, the factor was regarded
0.1 kcal/mol steps so as to predict the stabilities of all thas the same as that of RNA double héljx Thus, the negative
DNA/DNA duplexes applying to a two-state model with minimumentropy change of —1.4 cal/mol/K is used for double helix
sum of square-error value$)(The initiation parameter &G°37;  formation of self-complementary strands.
was once fixed at 3.4 kcal/mol, because the initiation factor is
included to all 65 DNA/DNA duplexes so that the change of th&t_’le_l' Improved ther_moc_iynamic parameters for DNA/DNA double helix
initiation parameter significantly affected all base-set parametefdtiation and propagation in 1 M NaCl buffer
Once the base-set parameters were determined, all nearest-neighbar

parameters including the initiation factor were calculated againSequence AH® as® AG 37
Nearest-neighbor parametersdf® were obtained in the same kcal/mol cal/mol/K kcal/mol
way as forAG°37 determination. The values &S° were dAA -8.0 -21.9 -1.2
estimated by the determined valueA@f 37andAH®. Predicted  dTT
melting temperatures at 100/ strand concentration were also dAT -5.6 -15.2 -0.9
calculated. dTA
dTA -6.6 -18.4 -0.9
dAT
RESULTS dCA -8.2 -21.0 -1.7
: : dGT
Thermodynamics of DNA/DNA double helices doT 66 164 15
Measured free energy changes atG7AG°37) of d(CTAG-  dGA
TGGA)/d(TCCACTAG), d(GCCAGTTA)/d(TAACTGGC) and dGA -8.38 -23.5 -15
d(GGTGCCAA)/d(TTGGCACC), for example, were —7.5, —8.2 4CT
and —9.0 kcal/mol, respectively. One can predict the thermoiCT —94 =255 -1.5

dynamics of the double helix formation of these DNAs with thedCA

previous nearest-neighbor parametédjs Ve have compared -8 —290 28
these measured values with predicted ones by the parameters. 'g@g 105 26.4 23
predicted\G° 37 values of d(GCCAGTTA)/J(TAACTGGC) and 4ce o e -
d(GGTGCCAA)/d(TTGGCACC) were —7.1 and —9.6 kcal/mol, | G _10.9 284 21
respectively. The differences between predicted and measurg@C ' ' '
values were not so small [15.5 and 6.3% for d(GCCAGTTA)/, - iion 06 9.0 3.4
d(TAACTGGC) and d(GGTGCCAA)/A(TTGGCACC), respect- self-complementary 0.0 14 0.4
ively]. Moreover, the predictediG°s7value of d(CTAGTGGA)/ 15 seit-complementary 0.0 0.0 0.0

d(TCCACTAG) was —5.3 kcal/mol, which was 41.5% different
from the measured value of —7.5 kcal/mol. It was Q|SO reportegstimated errors iAH°, AS® andAG® 37 are+0.3 kcal/mol1.3 cal/mol/K and
that the differences between measured and predicted therrao-1 kcal/mol, respectively.
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The optimized propagation factor for 10 nearest-neighboraaaaasA 5.1 -5.0 -5.7
sequences and an initiation factor are shown in TableeAH®, AAGCGTAG -8.0 -8.3 -7.1
AS°, AG°37 and Ty, values of 65 DNA duplexes predicted with AATCCAGT -6.8 -7.0 -6.1
the improved parameters are listed as supplementary data ATATATGT -5.7 -5.3 -3.4
Table S3 together with the measured values. ACCTAGTC -6.5 -71 4.6

ACGACCTC -8.7 -9.0 7.2
AGAGAGAG 7.4 -71 4.2
DISCUSSION AGCGTAAG -7.8 -8.3 71
) _ AGTCCTGA -75 -7.9 -5.9
Accuracy of the improved nearest-neighbor parameters ATGCGCAT 90 _88 9.3
. CACGGCTC -10.0 -10.0 -9.3
Improved nearest-neighbor parameters have the same tendency-@Ssarcg 68 65 68
the previous ones though the absolute values are quite different. Reg atatce 73 75 70
example, the dCG/dCG and dGC/dGC pair have a relatively largggcotata 84 8.7 81
stabilization energy, while dTA/dTA and dAT/dAT have the smallestcgcraTaa 79 _85 76
stability for a helix formation. Thermodynamics of d(CTAGTG- ctacTcGA 75 73 53
GA)/d(TCCACTAG), d(GCCAGﬁA)/d(TAACTGGC) and CTCACGGC —9.8 ~10.0 -9.3
d(GGTGCCAA)/d(TTGGCACC) which could not be predicted cteacTcc -8.0 79 5.9
with the previous parameters as described above are predictedaratTc 43 43 38
exactly with the improved parameters. For example, the predictedacTacTc -6.6 -6.1 -2.8
AG°37 values were —7.3, —7.8 and —9.2 kcal/mol, respectivelycAGTACTC -5.8 -6.1 -2.8
and the differences between the measured and pred@teg GATTAATC 4.3 -4.3 -3.8
values were only 2.7, 5.1 and 2.2%, respectively. RecenthGCATATGC -7.8 -6.9 -6.8
Santalucia Jet al reported new nearest-neighbor parameters folGCCAGTTA -8.2 -7.8 -71
DNA stability (12). Using their parameters for prediction of these GGTGCCAA -9.0 -9.2 -9.6
duplexes, the predicteéilG°37 values were —6.8, —7.5 and —8.9 GTCGAACA -8.3 -8.3 -6.6
kcal/mol, respectively, and the average diffiee was 6.9%. GTCTAGAC —6.5 6.1 -2.8
Thus, our improved nearest-neighbor parameters determined héGGCCTA -8.2 7.5 -7.0
are more useful to predict DNA stability than the parameters ofATGCATA —-5.9 5.5 4.8
Santalucia Jet al including the incorrect helix initiation factor AAAAAAAAA —6.2 —6.2 —74
described above_ ATAACTGGC -9.0 -8.7 -8.3

All thermodynamic values of the 65 DNAs were predicted withATCTATCCG -8.7 —8.7 -8.2
both improved and previous parameters, and the vali&gf ~ CCCTGTTAC —9.9 -10.0 8.7
are shown in Tablg. The average error of the predicted values CCCAGTTAA —8.8 —9.0 —88
by the previous parameters is 23.5%, while that by the improve‘éi"*AAAA""AAA 6.7 —r4 —9.1
parameters is only 4.8%. The improved parameters can alSg>CCAAGCGE —133 -15:6 -174
predict much higher accuracy of the other 15 thermodynamicgAGGTTATAA 1.0 - —1.0
(average error of only 5.6%) compared with the previousACGTATTATGC -104 12 106
prediction (that of 27.9%). The average differencés-sf, AS° ATTGGATACAAA 103 114 12,0

.. ACATTATTATTACA -11.3 -12.0 -11.7
andTpy, of 65 DNA duplexes between measured and predicted =~ .~ 4 02 8.7 o4
values by the improved parameters are 6.1, 6.8 and 5'708'AAAAAGd _4'4 _4'6 _4'7
respectively. These errors are much smaller than those by the. .-, o8 _106 903
previous parameters (9.3, 9.4 and 19.5%, respectively). Thus, the s ccrrd 6.7 6.9 6.0
improved parameters can lead to much improved prediction fogc aarTcod 74 6.7 74
the stability of DNA/DNA double helices. GGTATACKH 55 61 50
CAAAAAAAG ¢ -7.3 -7.0 -8.1
Table 2. Measured and predicted free energy changes for DNA duplex CAAACAAAG® -7.9 —7.8 —7.6
formations CAAAGAAAG ¢ -7.3 -7.6 -7.4
CAAATAAAG d -6.5 -6.4 -6.7
SNA oy S values (ealma GCGAATTCGC -12.9 -12.7 -14.0
sequen AG37 values (kcal/mol) CGCGTACGCGTACGCG —29.1 27.7 286
Measured Predicted ) Predicted (11§ CACAG® -3.6 -3.0 -0.8
AGCCG 56 53 5.0 CAACCAACCAACT -14.1 -14.0 -14.2
ACCGCA 6.7 7.0 6.6 CTTCCTTCCTTd -14.1 -13.4 -13.6
ATGCGC -7.3 -6.6 -6.7
CGGTGC —12 -0 6.6 aThe DNA duplex consists of the denoted DNA strand and its complementary
CGTGCC -6.9 7.0 6.6 DNA strand.
TGCGCA —6.9 —7.0 —6.9 bThe values predicted with our parameters in Table 1.
AATACCG -5.9 —6.0 =57 CThe values predicted with the parameters of ref. 1.
AGCCGTG —8.5 —8.5 —7.9 dData from Breslaueet al (1).
AGCTTCA -6.1 —6.3 -5.1 eData from Hallet al (10).

GGACTTA -5.6 -5.3 -3.9 fData from Ratmeyeet al (17).
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Nearest-neighbor base pairs

Figure 1.Comparison aAG°37for DNA/DNA (black) (this study), RNA/RNA (stripe) (2), and RNA/DNA hybrid (gray) (4) nearest-neighbor base pairs. The denoted
nearest-neighbor base pairs are for RNA/DNA hybrid formation.

Comparison of DNA/DNA nearest-neighbor parameters values of dPuC/dGPy and dPuG/dCPy of DNA/DNA duplexes
with RNA/RNA and RNA/DNA parameters are[D.6 kcal/mol less stable than those of RNA/DNA hybrids.

Free energy change of the initiation factor for DNA/DNA was>UPPLEMENTARY MATERIAL

determined to be 3.4 kcal/mol in this study, which was the sanf@ree tables listing thermodynamic parameters obtained with the
as that of RNA/RNAX). AsAG°370f RNA/IDNA was 3.1 kcal/mol - T,~Lversus InCy) plot (Table S1) and the curve fitting procedure

for the duplex initiation4), the duplex initiation processes for (Table S2), and 65 measured and predicted thermodynamic data
DNA/DNA, RNA/RNA and RNA/DNA seem to be not so of DNA/DNA duplex formation (Table S3).

different energetically. It is reasonable that these helix initiations . . . .
are similar because each duplex associates two oligonucleotidesS®f SUPPlementary material available in NAR Online.
the same manner. But, though the enthalpy change of the helix
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