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ABSTRACT
I derive several properties of the model proposed by Gavrilets for maternal selection at a single diallelic

locus. Most notably, (i) stable oscillations of genotype frequencies (i.e., cycling) can occur and (ii) in the
special case in which maternal effects and standard viability selection act multiplicatively, maternal selection
effectively acts on maternally derived alleles only.

THE maternal environment is of crucial importance y, and z are the postselection frequencies of adults with
respective genotypes AA, Aa, and aa, then the recursionto the developing organism. This realization is long-

standing for groups such as mammals, but more recently equations for these frequencies in the following genera-
tion areit has become clear that maternal effects profoundly

influence embryonic development in many animals not
wx � � w 11px � 1⁄2w 12py,exhibiting such a close relationship between mother

and offspring, even those in which maternal care is wy � � w23pz � 1⁄2w22y � w21qx ,
completely absent (Rossiter 1996; Mousseau and Fox

wz � � 1⁄2w32qy � w33qz , (1)1998; Wolf 2000). In a DNA microarray analysis of 4028
Drosophila melanogaster genes, for example, 1212 of the in which
RNA transcripts found in the first hours of development

p � x � y/2,were maternally deposited during oogenesis (Arbeit-
man et al. 2002). Nevertheless, all but 27 of these same q � 1 � p , (2)
genes were subsequently expressed from the embryo’s

and w, the population’s mean fitness, is the sum of theown copies, and so much of their maternal effect is
right-hand sides of (1) so that the iterated frequenciescompounded by standard genetic expression (Arbeit-
(x�, y�, and z�) add to one. This normalization meansman et al. 2002). Gavrilets (1998; see also Wade 1998)
that only the relative values of the fitness parameters,proposed a two-allele single-locus model that describes
rather than their absolute values, need to be specified.the population-genetic consequences of this pattern of
This property, shared with most models of selection,gene expression when fitness differences exist among
means that there are just six independent parameters.both the maternal and zygote’s own gene products. In
Gavrilets (1998) wrote Equations 1 solely in terms ofthis note I derive several properties of this model and
x, y, and z (i.e., without p and q), but the above formcompare it with other population-genetic models of se-
reveals the paternal contribution (the p’s and q’s), whichlection at a single locus.
is useful when considering the special multiplicativeGeneral model: Gavrilets (1998) considered a sin-
case below. Equations 1 are not formally equivalent togle locus with two autosomal alleles, A and a, in a ran-
those previously used to describe any other populationdomly mating, dioecious population, in which the ef-
genetic system. They are not, for example, equivalentfects of mutation and genetic drift are negligible. Let
to those describing fertility selection (Bodmer 1965;i � 1, 2, and 3 correspond to the genotypes AA, Aa,
Hadeler and Liberman 1975), which has five indepen-and aa, respectively, and suppose wij is the fitness of
dent parameters once the sex-symmetry property (Feld-individuals of genotype i with genotype j mothers. If x,
man et al. 1983) is noted, even though both systems are
determined by iterations of genotype frequencies.

The model exhibits a number of interesting proper-
1Address for correspondence: Allan Wilson Centre for Molecular Ecol-

ties. As shown by Gavrilets (1998), distinct polymor-ogy and Evolution, Department of Zoology, University of Otago, P.O.
Box 56, Dunedin, New Zealand. E-mail: h.spencer@otago.ac.nz phic equilibria can be simultaneously locally stable (see,
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Figure 1.—Mean fitness (top
graphs) and genotype-frequency dy-
namics (bottom graphs) for numeri-
cal examples of the general model:
(a) w11 � 0.385, w12 � 0.642, w21 �
0.306, w22 � 0.494, w23 � 0.068, w32 �
0.875, and w33 � 0.245, which has two
simultaneously locally stable poly-
morphic equilibria; (b) w11 � 0.719,
w12 � 0.070, w21 � 0.109, w22 � 0.943,
w23 � 0.264, w32 � 0.128, and w33 �
0.630, which has simultaneously sta-
ble fixations and a stable polymor-
phism. The genotype frequencies are
plotted on ternary graphs, in which
the frequency of a genotype increases
the farther a point is from the axis
labeled with that genotype. (The fre-
quency of the genotype, therefore, is
one at the apex opposite the labeled
axis.) Mean fitness, w, is plotted as a
function of x for the trajectories
shown in the bottom graphs. Locally
stable equilibria are shown as solid
circles; unstable equilibria as open
circles. Arrows indicate the direction
of temporal change.

e.g., Figure 1a). Nevertheless, these systems are rare in tion at a diallelic locus (Hadeler and Liberman 1975;
see also Doebeli and de Jong 1998); frequency-depen-parameter space. I found �10 cases in 105 sets of wij

values independently and uniformly sampled over the dent viability selection at a diallelic locus (May 1979;
Altenberg 1991); density-dependent selection at a dial-unit interval [0, 1]. Each of these sets was investigated

for simultaneously stable equilibria by iterating from lelic locus (Asmussen 1979); constant viability selection
in the two-locus, two-allele model (Hastings 1981; Akin100 randomly chosen initial genotype frequencies. The

example shown in Figure 1a also shows that mean fit- 1982); and mutation with constant viability selection
(Hofbauer 1985; see also Bürger 2000).ness, w, need not increase over time and hence need

not be at a local maximum at equilibrium. It is also Multiplicative model: This special case further as-
sumes that the selective pressures of the maternal effectspossible, as noted by Gavrilets (1998), for a parameter

set to give rise to a locally stable polymorphic equilib- and ordinary viability selection are independent, as, for
example, when selection occurs at two separate stagesrium while both fixations are also locally stable (see

Figure 1b). in the life cycle of each individual, the first the result
of its mother’s phenotype and the second the result ofPerhaps the most surprising behavior is genotype-

frequency cycling, although it is even rarer in parameter its own phenotype. These effects thus act multiplica-
tively, and sospace than two stable polymorphisms: I found just 2

cases in 105 parameter sets, with fitnesses chosen from
wij � vimj (3)

a uniform distribution with the proviso that both fixa-
tions are unstable. In the example shown in Figure 2, for i � 1, 2, 3. Equations 1 thus become
(x, y, z) alternates between (0.2769, 0.6315, 0.0916) and

wx� � v1p(m1x � m2y/2),
(0.5608, 0.1956, 0.3306), with w between 0.2620 and
0.3306, respectively. wy� � v2(m3pz � m2y/2 � m1qx),

Gavrilets (1998) found cycling when paternal as
wz� � v3q(m2y/2 � m3z). (4)

well as maternal effects contributed to fitnesses and
argued that the interaction of these two sorts of parental This model is formally equivalent to Bodmer’s (1965)

model of multiplicative fertility selection (Gavriletseffects were what gave rise to the oscillations. He noted
also that Ginzburg and Taneyhill (1994) had found 1998). But as Bodmer (1965) noted, his model is also

the same as Owen’s (1953) model of separate viabilitythat ecological factors could give cycling in models of
population size with maternal effects. Thus, the example selection on males and females. In the case of maternal

selection, this last equivalence allows a natural reinter-above demonstrates that cycling can occur in models
with just maternal selection arising from purely genetic pretation of how maternal selection acts.

Because mating is at random, the maternal environ-effects.
Cycling has been found previously in a number of ment affects all paternally derived alleles equally, which

amounts to no selection on males at this stage. Thus ifother population genetic models: constant fertility selec-
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Figure 2.—(a) Genotype fre-
quency and mean-fitness dynamics
for a numerical case of the general
model exhibiting cycling: w11 � 0.028,
w12 � 0.966, w21 � 0.116, w22 � 0.011,
w23 � 0.886, w32 � 0.614, and w33 �
0.042. The solid line in the bottom
graph shows x; the dotted line, y. (b)
Bifurcation diagram for AA homozy-
gote frequency, x, showing also equi-
librium values as a function of w21. For
w21 � �0.214 only one equilibrium
(heavy solid line) is stable; all other
equilibria are unstable (dashed
lines). As w21 decreases below �0.214,
a stable two-cycle bifurcates from this
equilibrium, which becomes unsta-
ble. Note that a sixth unstable and
unfeasible equilibrium that ranges
from x � 1.36 to x � 3.23 is not
shown.

the frequency of maternally derived A alleles in zygotes internal equilibrium, at p � 0.585, both are unstable.
after maternal-effect selection is pf and that of paternally Two further equilibria are unfeasible, although the sec-
derived A alleles in zygotes after maternal-effect selec- ond misleadingly looks feasible in Figure 3, since at
tion (which is also that in sperm) is pm, we have m2 � 0.05, for instance, the frequency of AA genotypes

is negative, yet p̂ � x̂ � ŷ/2 � �0.079 � 1.111/2 �
p f �

m1x � 1⁄2m2y
m1x � m2y � m3z

(5) 0.476. As the value of m2 is increased past �0.43, the
first of these unfeasible equilibria breaks into feasible
biological space and steals the local stability from the

and A fixation. Further increases in m2 lead to this internal
equilibrium merging with the unstable internal equilib-pm � x � 1⁄2y (� p). (6)
rium, at which point they become complex conjugates

Thus, a little algebra shows that and biologically irrelevant. Various other properties
(e.g., monotonic convergence near equilibria) can be

p �f �
m1x� � 1⁄2m2y�

m1x� � m2y� � m3z�
derived by application of Mandel’s (1971) results.

I thank Michael Nachman for talking about maternal effects with
me, Andrew Clark for discussions about the models, and two anony-�

m1v1p fpm � 1⁄2m2v2(p fqm � q fpm)
m1v1p fpm � m2v2(p fqm � q fpm) � m3v3q fqm

(7)
mous referees for helpful comments. This work was carried out while
I was on leave at Dickinson College (Carlisle, PA). I am most grateful

and for the hospitality and support of the Department of Biology and the
Office of Global Education at Dickinson during my stay.

p�m � x� � 1⁄2y�

�
v1p fpm � 1⁄2v2(p fqm � q fpm)

v1p fpm � v2(p fqm � q fpm) � v3q fqm

, (8)

which are the equations of differential viability selection
on the two sexes, with the fitness of female genotype i
being mivi, and that in males, vi. In this multiplicative
model, therefore, maternal selection is effectively acting
only on females.

At least six equilibria may exist for certain parameter
values, but some of these may be unfeasible or even
complex, and others are unstable. The greatest number
of simultaneously locally stable equilibria is two (Owen

Figure 3.—Equilibrium values for p as a function of m21953; Mandel 1971), but both of these may be internal
in the multiplicative model. All other fitness parameters are(i.e., polymorphic; Gavrilets 1998). A numerical exam-
constant: m1 � 0.35, m3 � 0.88, v1 � 0.41, v2 � 0.73, and v3 �

ple is shown in Figure 3. For m2 � 0, the fixation of A 0.23. Solid lines indicate locally stable equilibria; dashed lines,
and an internal equilibrium are simultaneously locally unstable but feasible equilibria; and dotted lines, unstable

unfeasible equilibria.stable, whereas the fixation of the a allele and a second
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