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ABSTRACT
The difficulty of experimental determination of haplotypes from phase-unknown genotypes has stimu-

lated the development of nonexperimental inferral methods. One well-known approach for a group of
unrelated individuals involves using the trivially deducible haplotypes (those found in individuals with
zero or one heterozygous sites) and a set of rules to infer the haplotypes underlying ambiguous genotypes
(those with two or more heterozygous sites). Neither the manner in which this “rule-based” approach
should be implemented nor the accuracy of this approach has been adequately assessed. We implemented
eight variations of this approach that differed in how a reference list of haplotypes was derived and in
the rules for the analysis of ambiguous genotypes. We assessed the accuracy of these variations by comparing
predicted and experimentally determined haplotypes involving nine polymorphic sites in the human
apolipoprotein E (APOE) locus. The eight variations resulted in substantial differences in the average
number of correctly inferred haplotype pairs. More than one set of inferred haplotype pairs was found
for each of the variations we analyzed, implying that the rule-based approach is not sufficient by itself for
haplotype inferral, despite its appealing simplicity. Accordingly, we explored consensus methods in which
multiple inferrals for a given ambiguous genotype are combined to generate a single inferral; we show
that the set of these “consensus” inferrals for all ambiguous genotypes is more accurate than the typical
single set of inferrals chosen at random. We also use a consensus prediction to divide ambiguous genotypes
into those whose algorithmic inferral is certain or almost certain and those whose less certain inferral
makes molecular inferral preferable.

THEORETICAL and practical considerations sug- and Kidd 1995; Long et al. 1995; Fallin and Schork
2000). This approach uses the assumption that the geno-gest that a more complete causal understanding of
types come from a population at or near Hardy-Wein-many complex traits, such as human diseases, will often
berg equilibrium to infer the expected frequencies ofbe gained by haplotype analysis, since such traits may
possible haplotype pairs that underlie ambiguous geno-often be the partial result of many genetic determinants
types. This assumption also underlies the related Bayes-(Chakravarti 1999; Judson et al. 2000; Hartman et
ian approach of Niu et al. (2002). Finally, several ap-al. 2001; Reich et al. 2001).
proaches rely upon more substantive population geneticsSince molecular inferral of haplotypes is difficult (e.g.,
to infer haplotypes. For example, Stephens et al. (2001a)see Michalatos-Beloin et al. 1996), nonmolecular
use the neutral coalescent model of sequence evolutionmethods for haplotype inferral have been developed.
as a basis for their method (see also Lin et al. 2002);One can distinguish three different approaches for a
this model implies that the population is at or neargroup of unrelated individuals. First, Clark (1990) pre-
Hardy-Weinberg equilibrium.sented a “rule-based” approach in which a list of haplo-

Here, we analyze the accuracy of the rule-based ap-types and a set of rules are used to infer the haplotypes
proach when applied to a sample of genotypes withunderlying each of the ambiguous genotypes. Second,
known haplotypes at the human apolipoprotein E (APOE)one can determine the maximum-likelihood solution,
locus (see Fullerton et al. 2000 for detailed informa-that is, the set of haplotype frequencies that generates
tion on this locus). An important motivation for ourthe largest likelihood given the observed genotype fre-
work is that Clark’s method is described as a plausiblequencies. Present implementations of this approach rely
inferral method in many of the nearly 100 articles inupon the expectation-maximization algorithm (Temple-
which his article has been cited (Science Citationton et al. 1988; Excoffier and Slatkin 1995; Hawley
Index 2003). In some articles, Clark’s method is de-
scribed as “meritorious” (e.g., Niu et al. 2002) or “effec-
tive” (e.g., Zhu et al. 2001) in regard to haplotype inferral.1Corresponding author: Fresh Pond Research Institute, 173 Harvey

St., Cambridge, MA 02140. E-mail: orzack@freshpond.org Despite this attention, the accuracy of this method has
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we refer to the ensemble of pairs of inferred haplotypes associ-never been systematically assessed, especially with a data
ated with a given reordering as a “solution” for the genotypicset containing real haplotype pairs.
data. On the basis of such iterated calculations, Clark (pp.
117–118) went on to describe an important claim: “. . . the
solution with the fewest orphans is the valid solution andMATERIALS AND METHODS
suggests that when a solution resolves all haplotypes it is likely
to be unique.” We interpret this claim to be the predictionSubjects studied: Genomic DNA from each of 31 cell lines
that the set of inferred haplotypes that resolves the most indi-from the Coriell Cell Respository was sequenced to identify
viduals is the most accurate solution; that is, a higher percent-polymorphisms in the APOE locus. Using the data on race
age of its inferrals is correct than for any other solution. Thisand ethnicity at the Coriell web site, we classified 8 cell lines
is an important claim because it implies that the single, mostas derived from Asian individuals, 8 from Blacks, and 15 from
accurate solution can be identified using this approach. How-Caucasians. Some of the cell lines were from individuals with
ever, despite this suggestion by Clark to generate and comparerare inborn errors of metabolism, although none suffered
multiple solutions, it appears that no subsequent analysis isfrom a condition known to be associated with their APOE
so structured.genotype. Of the 80 individuals whose haplotypes were phased,

The rule-based approach—a general overview: We definewe classified 18 as Asians, 19 as Blacks, and 43 as Caucasians.
the list of “real” haplotypes as those obtained by serially in-All individuals were unrelated.
specting the ordered set of input genotypes and adding theDNA sequencing and genotyping: Polymorphisms were dis-
haplotypes of unambiguous genotypes to the end of a list.covered in the 31 cell lines by DNA sequencing using an ABI
How duplicates are handled is discussed below.3700 DNA sequencer and Polyphred software for identifica-

During haplotype inferral, haplotypes derived from ambigu-tion of candidate polymorphic sites, substantially as described
by Nickerson et al. (1997, 2000). Subsequently, primer exten- ous genotypes might be added to the list of real haplotypes; this
sion (minisequencing) genotyping assays (as described by larger list is the “reference list” of haplotypes. Each iteration of
Dracopoli et al. 2001) were developed for each polymorphic a given variation began with a random reordering of the list
site. The products of minisequencing reactions were analyzed of genotypes and the creation of the list of real haplotypes.
by gel electrophoresis on an ABI 377 DNA sequencer. Haplotype inferral proceeded in either of two ways. In the

Experimental haplotype determination: Haplotypes were first, proceeding downward from the genotype at the top of
determined first by using the genotype data to identify the 5� the list, we scanned down the reference list of haplotypes to
flanking heterozygous site for each phase-unknown individual. find one that could resolve the genotype in question. In the
(Sequence orientation is determined relative to the APOE second, proceeding downward from the haplotype at the top
locus.) Second, each of the two alleles of such individuals was of the reference list, we scanned down the list of ambiguous
amplified in a PCR reaction primed with an allele-specific genotypes to find one that could be resolved by the haplotype
primer at the 5� flanking heterozygous site and a constant in question. In either case, if a resolution was found, we then
(non-allele-specific) primer located just 3� of exon 4. Third, searched for additional resolutions. We either chose the first
the haplotypes of the two allele-specific amplicons from each haplotype found as the basis for the resolution of the genotype
individual were determined by genotyping all internal hetero- in question or chose among all of the haplotypes that could
zygous sites. A pair of allele-specific primers was designed and resolve it (see below). Finally, we decided whether the chosen
tested for all sites except the most 3� site, 21388, which is next haplotype and/or its complement haplotype was added to the
to the constant primer and therefore cannot circumtend two reference list.
heterozygous sites. Primer design and PCR conditions were Thus, each iteration of our implementation of the rule-
optimized for maximal allele selectivity at each site using based approach consisted of either a haplotype selection loop,
known pairs of haplotypes. The sequence of both alleles and which in turn contained a genotype selection loop, or a geno-
the genotyping results provided independent sources of infor- type selection loop, which in turn contained a haplotype selec-
mation for all haplotype inferrals. Primer sequences are avail- tion loop. In a given iteration, one of these pairs of loops was
able upon request. executed until no further genotypes could be resolved. We

The rule-based approach—Clark (1990): We first define found no systematic differences between the results stemming
some terms. Any inferral method “resolves” an ambiguous from the two methods; we present results based upon the
genotype when it chooses a “resolution,” that is, a pair of second.
underlying haplotypes for an ambiguous genotype. A genotype We developed eight variations of the rule-based approach
left unresolved is an “orphan.” that differ in the way that the initial list of real haplotypes

Clark (1990) described an inferral method that is appeal- and the reference haplotype list are formulated and in how
ing because it relies on unambiguous haplotypes and has weak the list of genotypes is analyzed. The development of these
assumptions about population structure and size. Once such variations was motivated by questions that a user of the rule-
haplotypes are identified, one proceeds as follows (Clark based approach must answer before using it:
1990, p. 112):

1. Does the reference list include just real haplotypes or in-For each known haplotype, we then look at all the re- ferred ones as well?maining unresolved [genotypes] and ask whether the 2. Are duplicate haplotypes removed or retained in the refer-known haplotype can be made from some combination ence list at the beginning of each iteration? If they areof the ambiguous sites. Each time such a haplotype is removed, the initial list is like a phone book, with a uniquefound, we immediately recover the complement of the “name” for each haplotype. If they are retained, they arehaplotype as another potential haplotype. This chain of
represented as distinct copies.inference continues until all haplotypes have been recov-

3. Are duplicate ambiguous genotypes “consolidated” at theered, or until no more haplotypes can be found.
beginning of each iteration or left separate? If they are
consolidated, identical genotypes will be resolved identi-Clark also proposed that this procedure be run more than
cally. If they are left separate, identical genotypes may beonce with the data being randomly reordered at the start each
resolved differently, except when the reference list is nottime so as to determine whether distinct resolutions would be

generated for any given ambiguous genotype. Following Clark, randomized (see below).
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TABLE 1

The characteristics of the eight rule-based algorithms for haplotype inferral

Duplicate haplotypes Haplotype Ambiguous Preference
list genotypes for real Frequency

Variation Real Inferred randomized? consolidated? haplotypes? preference Identical genotypes

1 Retained Retained Yes No No Population May be resolved differently
2 Retained Retained Yes Yes No Population Resolved identically
2a Removed Retained Yes Yes No Weak Resolved identically
2b Retained Retained No No Yes Population Resolved identically
2c Removed Retained No Yes Yes No Resolved identically
3 Retained Retained No No No Strong May be resolved differently
4a Removed Removed Yes Yes No No Resolved identically
4b Removed Removed No Yes Yes No Resolved identically

4. Before trying to resolve an ambiguous genotype, it is impor- them to be resolved identically by the first resolving haplo-
tant to ask is the current reference list of haplotypes ran- type found.
domized or not? Since the list is scanned from the top, Variation 2a: removal of duplicate real haplotypes from the
reordering or not may determine whether a particular hap- reference list at the beginning of each iteration generated
lotype and its complement are used in the resolution. a “weak” frequency preference. Its magnitude was typically

5. If multiple haplotypes can resolve a given ambiguous geno- less than that of the population frequency preference be-
type, is the haplotype chosen as the “resolving” haplotype cause the reference list had no initial frequency differences
the first one found, the one with the currently highest (any duplicate inferred haplotypes were retained).
frequency, or one chosen randomly? Variation 2b: lack of randomization of the haplotype reference

6. After a genotype is resolved by a given haplotype, how list caused real haplotypes to have a preference as resolving
is the reference list of haplotypes updated? We used two haplotypes since they are nearer the top of the list than are
alternatives. In the first, the resolving haplotype’s comple- inferred ones. Identical ambiguous genotypes were resolved
ment haplotype is added to the list only if it is new, thereby identically by the first haplotype that could do so because
maintaining the list as a phone book of names. In the haplotype order was fixed.
second, a resolving haplotype and its complement are Variation 2c: identical ambiguous genotypes were resolved
added to the reference list, thereby allowing any subse- identically by the first haplotype that could do so because
quent choice among competing resolving haplotypes for an haplotype order was never changed. Consequently, there
ambiguous genotype to be influenced by their population was a “no” frequency preference.
frequencies. Variation 3: there was a “strong” frequency preference in that

any given ambiguous genotype was solved by the currentlyIn all of our variations, we assumed that inferred haplotypes most frequent haplotype that could do so. This is the onlyare included on the reference list. We focused on how the variation in which frequency preference was an explicitanswers to questions 2, 3, 4, 5, and 6 affect inferral accuracy.
choice.None of these questions has one right answer; for example,

Variation 4a: the complement of a solution haplotype wasthe decision as to whether identical genotypes should be re-
added to the reference list only if it was new. Identicalsolved with the same haplotypes comes down to a judgment
genotypes were solved identically because of consolidation.as to the prevalence of homoplasy.

Variation 4b: the same as variation 4a except that the orderThe choices made for each variation in regard to the treat-
of the haplotypes in the reference list was not randomized.ment of duplicate haplotypes, haplotype list randomization,
There was a preference for real over inferred haplotypesand consolidation of ambiguous genotypes are shown in Table
(since they were nearer the top of the reference list). These1. These choices have consequences in regard to the choice
choices generated a “no” frequency preference. This variantof real vs. inferred haplotypes, the choice of more frequent
appears to be the approach described by Clark (1990)haplotypes, and the resolution of identical ambiguous geno-
although he did not provide an explicit algorithm.types. For example, variation 1 is perhaps the simplest inferral

algorithm: duplicate haplotypes were retained on the refer- One can devise additional rule-based algorithms. For exam-
ence list, which therefore included an entry for each haplotype ple, one might assess the real or inferred status of a comple-derived from unambiguous genotypes and resolved ambigu- ment haplotype when deciding among resolving haplotypes.ous genotypes. The order of the haplotypes on the reference However, our present choices allowed us to explore the sub-list was randomized before each iteration. Duplicate ambigu- stantial biological heterogeneity among the eight variationsous genotypes were not consolidated. The resolving haplotype of the rule-based approach to haplotype inferral. So, for exam-was selected randomly from among all possible resolving hap- ple, the variations differed in having no frequency preferencelotypes. These choices generated a “population” frequency

(variations 2c, 4a, and 4b), a weak frequency preference (2a),preference: a more common resolving haplotype was likely
a population frequency preference (variations 1, 2, and 2b),chosen more often than a less common resolving haplotype,
or a strong frequency preference (variation 3). In addition,although identical genotypes might not be resolved identi-
within either the first or the third group, the variations differedcally.
substantially in how a given frequency preference was mani-Comments on the other variations are:
fested. For example, variation 1 had a population preference
with no priority for real-over-inferred haplotypes. In contrast,Variation 2: the same as variation 1 except that duplicate

ambiguous genotypes were consolidated, which caused variation 2b had a population preference that favored real
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TABLE 2

Frequencies of APOE haplotypes in 80 subjects

Polymorphic site (base no.)c

e2, e3, e4 Haplotype
Haplotype typea frequencyb 17874 17937 18145 18476 19311 20334 21250 21349 21388

1 e3 53 (33.0) A T G G G G T C C
2 e3 42 (26.0) A T T C G G T C C
3 e3 12 (7.5) T T G G G G T C C
4 e4 10 (6.3) A T T G A G C C C
5 e2 9 (5.6) A C G G G G T C T
6 e3 8 (5.0) T T T C G G T C C
7 e4 5 (3.1) T T T G G G C C C
8 e3 5 (3.1) A C T C G G T C C
9 e2 3 (1.9) T T G G G G T C T

10 e3 3 (1.9) A T G G G G T T C
11 e3 2 (1.25) A T T G G G T C C
12 e3 2 (1.25) A T G C G G T C C
13 e4 2 (1.25) A T G G G G C C C
14 e4 1 (0.62) T T G G G G C C C
15 e4 1 (0.62) A T T G G G C C C
16 e3 1 (0.62) T T G C G G T C C
17 e3 1 (0.62) A T T C G A T C C

Variant nucleotides
(major/minor):d A/T T/C G/T G/C G/A G/A T/C C/T C/T

Minor allele
frequency (%): 18.75 8.75 46.3 36.9 6.3 0.63 11.9 1.9 7.5

a The e2, e3, e4 classification is determined by genotype at positions 21250 and 21388. e2 is T, T; e3 is T, C; e4 is C, C. There
are 2 e2, 10 e3, and 5 e4 haplotype subgroups.

b Absolute and relative frequencies of the 17 observed haplotypes in 160 chromosomes. Numbers in parentheses are percentages.
c Position of variant nucleotides in GenBank accession no. AF050154.
d The more common nucleotide in the sample is listed first and the less common second.

haplotypes. We ran at least two independent sample paths of unable to develop reliable allele-specific PCR reactions
10,000 iterations for each variation. for one of the 10 polymorphic sites; this site (19753) was

omitted from subsequent analyses. As shown in Table 2,
a total of 17 haplotypes involving 9 sites were experimen-RESULTS
tally identified; these range in frequency from 0.62%

Identification of polymorphisms in the apolipopro- (1 of 160) to 33.1% (53 of 160). Eleven of the haplotypes
tein E locus: A 415-bp segment of the APOE locus ex- can be inferred from unambiguous genotypes.
tending from 570 bp upstream of the transcription start Of the 80 individuals, 33 have unambiguous pairs of
site to the end of exon 4 (nucleotides 17800–21958 of haplotypes and 47 have ambiguous pairs. There are 17
GenBank accession no. AF050154) was sequenced and genotypes with two polymorphic sites, 20 genotypes with
polymorphisms were identified at nucleotides 17874, three such sites, 6 genotypes with four such sites, and
17937, 18145, 18476, 19311, 19753, 20334, 21250, 4 genotypes with five such sites. Haplotype pairs for all
21349, and 21388. These polymorphisms have been de- genotypes are available at http://www.genetics.org.
scribed previously (Artiga et al. 1998; Bullido et al. Genotypic proportions at all nine sites do not deviate
1998; Nickerson et al. 2000) except for the polymor- significantly (� � 0.05) from Hardy-Weinberg propor-
phism at nucleotide 20334, which was identified in a tions: 17874 (�2 � 1.769, P � 0.183), 17937 (3.775,
single chromosome. It is a missense polymorphism that 0.052), 18145 (0.250, 0.617), 18476 (0.290, 0.590),
changes amino acid 18 of the primary translation prod- 19311 (0.356, 0.551), 20334 (0.003, 0.955), 21250
uct from alanine to threonine. Amino acids 1–18 com- (0.868, 0.352), 21349 (0.029, 0.864), and 21388 (0.786,
prise a leader sequence that is cleaved off to form the 0.375).
mature protein. The cleavage properties of the threo- Computational results: Our first goal was to compare
nine allele are unknown. Nucleotides 21250 and 21388 the performances of the variations. The second goal
correspond to amino acids 112 and 158 of the mature was to determine whether the important inferential
protein and account for the classical e2, e3, and e4 principle enunciated by Clark was true, that is, whether
allele classification (see Table 2). the solution with the fewest orphans is the most accurate

solution. Finally, we wished to determine whether multi-Experimental identification of haplotypes: We were
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Figure 1.—The distribu-
tion of the number of cor-
rectly inferred pairs of hap-
lotypes for a sample path of
variation 1. Only the 47 am-
biguous genotypes are con-
sidered.

ple complete solutions exist and, if so, to understand quency on the process of inferral; this restricts resolu-
tions to a small part of the solution space.how they could be of use.

The average accuracy score and its 95% confidenceThe frequency distribution of accuracy for a 10,000-
interval for each of the variations are shown in Tableiteration sample path of variation 1 is shown in Figure
4. It is clear that the variations differed substantially in1. The first important point is that there are “different”
their predictive accuracy, with variations 2a, 2c, 4a, andsolutions, that is, those that differ in the resolution of
4b performing poorly (36–40% accuracy) and variationsat least one ambiguous genotype. In fact, each of the
1, 2, 2b, and 3 performing better (62–68% accuracy).10,000 iterations resulted in a different complete solu-

Variations 2c, 4a, and 4b, with no frequency prefer-tion of the 47 ambiguous genotypes. None of these
ence, performed poorly. Average accuracy tends to in-solutions had an orphan. It is clear for this locus, then,
crease with increasing reliance on frequency, althoughthat the principle enunciated by Clark concerning the
most of this increase is achieved by a population fre-accuracy of the solution with the fewest orphans cannot
quency preference as a strong frequency preferenceapply since there is no one solution with the fewest
added little to average accuracy.orphans. Analyses of two other sets of phase-known ge-

Dealing with multiple solutions: For this data set, allnotypes and of simulated genotypic data also resulted
of the rule-based variations generate multiple solutionsin multiple solutions with no orphans (S. Orzack and
of quite variable quality. Without an understanding ofD. Gusfield, unpublished results). This underscores
what sense, if any, can be made of multiple solutions,the potential for mistaken inferrals particularly when
it is difficult to understand what insights any rule-basedan investigator runs a method only once on a given data
algorithm could provide an investigator. However, al-

set. We expect the occurrence of multiple complete
most all of the variations generate some solutions in

solutions to be common when using the rule-based ap- which �80% of the ambiguous genotypes are correctly
proach. inferred. If one could identify such solutions, it would

Multiple distinct solutions were manifested in differ- be extremely advantageous.
ent ways, as shown in Table 3. In one variation there Consensus methods: These considerations led us to
are only two solutions, in one there are �500, in some develop consensus methods that are based on the multi-
there are �2000, and several had 10,000 or close to ple solutions that are present in any given simulation.
it. Thus, while the algorithmic differences among the We evaluated several ways to generate a consensus pre-
variations at first may seem minor, they led to substan- diction.
tially different outcomes. The first way was to tally the different inferrals for

The normal-like distribution of accuracy shown in any given genotype across all 10,000 iterations of the
Figure 1 is not typical, as can be seen in Figure 2, which genotypic data. The inferral appearing in the highest
contains the distribution of accuracy for variation 2, and number of iterations was taken to be the “full” consensus
in Figure 3, which contains the distribution of accuracy prediction for the genotype.
for variation 3; here, there are only two solutions. This Our knowledge of the real haplotype pairs for each

genotype allowed us to determine whether particularlast result reflects the never-decreasing influence of fre-
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TABLE 3 and accuracy is that typical mutation and recombination
rates do not substantially increase the expected numberNumber of complete solutions and number of distinct
of haplotypes for genotypes with k ambiguous sites abovesolutions for all variations
k � 1, the number possible with no recombination and
no recurrent mutation. This implies that a populationNo. of complete No. of distinct

Sample path solutions solutions will tend to contain few haplotypes (relative to k) and
therefore that solutions generated by fewer haplotypesVariation 1
will be more accurate (S. Orzack, D. Gusfield and C.1 10,000 10,000
Wiuf, unpublished results).2 10,000 10,000

We believe haplotype number will prove generally
Variation 2 useful as the basis for making more accurate consensus

1 10,000 9,792 predictions. Accordingly, the second way we generated
2 10,000 9,787 a consensus prediction for each genotype was to use
3 10,000 9,805

either just the solutions that were based on the fewest4 10,000 9,822
number of haplotypes (“minimum”) or those solutions
plus those that were based on one more than the fewestVariation 2a

1 10,000 10,000 number of haplotypes (“minimum � 1”). As for full
2 10,000 10,000 consensus, the most common inferral was taken to be

the consensus prediction for a genotype.
Variation 2b The results shown in Figure 4 are relevant to claims

1 10,000 436
that the rule-based approach satisfies a parsimony crite-2 10,000 437
rion in regard to the number of haplotypes used. For
example, Stephens et al. (2001a, p. 979) wrote thatVariation 2c

1 10,000 2,005 Clark’s approach “can be viewed as an attempt to mini-
2 10,000 1,996 mize the number of haplotypes observed in the sample
3 10,000 2,049 and, hence, as a sort of parsimony approach” and Niu

et al. (2002, p. 158) wrote that “Clark’s parsimony ap-
Variation 3

proach attempts to assign the smallest number of haplo-1 10,000 2
types for the observed genotype data.” The incorrect-2 10,000 2
ness of these claims is indicated by the fact that variation

Variation 4a 4b (the variation that appears to be that of Clark 1990)
1 10,000 10,000 and all the other variations generated complete solu-
2 10,000 10,000 tions that differ in the numbers of haplotypes used (see
3 10,000 10,000 Figure 4). The genesis of these claims about parsimony
4 10,000 10,000

is unclear; the only parsimony claim in Clark (1990, pp.
117–118) concerns the number of orphaned genotypes.Variation 4b

The results of consensus: In Table 5, we show the1 10,000 2,015
2 10,000 2,022 results of the full consensus and the minimum � 1

consensus calculations for our data. The results of con-
sensus calculations are very consistent across sample
paths of a given variation and we present results fromtypes of solutions are more likely to have a higher num-
only a single sample path.ber of correct inferrals. To generate a second kind of

A consensus solution can be used in two ways. First,consensus prediction we used information on the num-
such a solution provides a single prediction for anyber of haplotypes needed to resolve all of the ambiguous
genotype; without such a synthetic prediction the inves-genotypes or to resolve all of the genotypes.
tigator is left to pick a solution at random from amongA plot of the relationship between the number of
multiple complete solutions that are often of highlydifferent haplotypes used in a solution and the average
variable quality (see Figure 1). The results in Table 6number of correct inferrals is shown in Figure 4. There is
indicate that the average accuracy of complete solutionsa strong negative relationship between the two, implying
was always less than the accuracy of the consensus solu-that smaller lists perform better than larger lists (Spear-
tion (although their difference can be small or substan-man rank correlation corrected for ties, ambiguous ge-
tial). This difference underscores the advantage of usingnotypes, �0.996, 13 d.f., P � 0.001; all genotypes, �1.0,
a consensus prediction, even apart from its necessity13 d.f., P � 0.001). This result occurred for all of our
when dealing with multiple solutions.variations for this data set and in the analysis of two other

The distinction between the average number of cor-phase-known data sets (S. Orzack and D. Gusfield,
rect inferrals and the consensus number of correct in-unpublished results). We surmise that the underlying

reason for the negative relationship between list size ferrals is reflected in the fact that the correlation be-
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Figure 2.—The distribu-
tion of the number of cor-
rectly inferred pairs of hap-
lotypes for a sample path of
variation 2. Only the 47 am-
biguous genotypes are con-
sidered.

tween the two was negative for all five consensus methods 4b tended to correctly predict only a subset of the ambig-
uous genotypes but not the same subset as another itera-(Spearman rank correlation corrected for ties: full, �0.195;

minimum, �0.708; minimum � 1, �0.878; minimum tion; yet the ensemble prediction of such subsets had
good accuracy.(all), �0.192; minimum � 1 (all), �0.169) and the aver-

age correlation is significantly negative (�0.509, 95% The second way in which a consensus prediction can
be used involves the assessment of the consensus valuesconfidence interval: �0.747 to �0.158). These negative

relationships indicate that the variations differed in the themselves so as to distinguish between more and less
reliable inferrals. As shown in Table 5, as the consensusextent to which they explore the solution space. For

example, variation 1 achieved a higher average percent- threshold or number of identical inferrals increases,
there is a threshold value for which all inferrals areage of correct inferrals (�62%) as compared to, say,

variation 4b (�37%), but variation 1 had a poorer mini- correct. One can use this approach to divide the data
into inferrals that are certain or nearly certain as op-mum consensus accuracy (36) as compared to variation

4b (40). This reveals that any given iteration of variation posed to those that are less certain and for which experi-

Figure 3.—The distribu-
tion of the number of cor-
rectly inferred pairs of hap-
lotypes for a sample path of
variation 3. Only the 47 am-
biguous genotypes are con-
sidered.
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TABLE 4

Average number of correctly inferred ambiguous genotypes, �95% confidence interval, and the average
percentage of correctly inferred ambiguous genotypes (47 possible)

Average no. 95% confidence Average %
Variation Sample path correct interval correct

1 1 29.0 28.99–29.10 61.7
2 29.0 28.97–29.08 61.7

2 1 28.7 28.65–28.84 61.1
2 28.7 28.58–28.77 61.1
3 28.8 28.71–28.90 61.3
4 28.8 28.70–28.89 61.3

2a 1 19.1 18.98–19.31 40.7
2 19.0 18.81–19.14 40.4

2b 1 28.4 28.26–28.53 60.4
2 28.6 28.43–28.70 60.8

2c 1 17.2 16.93–17.38 36.5
2 17.3 17.04–17.49 36.7
3 17.4 17.16–17.61 37.0

3 1 31.8 31.79–31.81 67.7
2 31.8 31.79–31.81 67.7

4a 1 18.3 18.18–18.48 39.0
2 17.5 17.31–17.61 37.1
3 17.6 17.45–17.75 37.4
4 17.6 17.48–17.78 37.5

4b 1 17.2 17.01–17.46 36.7
2 17.5 17.23–17.68 37.1

mental inferral is mandated. For example, a full consen- �50% (25/47). This is a very substantial saving of exper-
imental labor. We note that such consensus calculationssus threshold of 8000 (80%) would reduce the number

of required experimental inferrals by �50% (22/47). did not perform well for variation 3 in that even high
consensus thresholds are associated with a substantialSimilarly, a minimum � 1 consensus threshold of 80%

would reduce the required experimental inferrals by � proportion of incorrect inferrals (not shown). The

Figure 4.—The relationship between the aver-
age number of correctly inferred haplotype pairs
and the number of different haplotypes on the
reference list for a sample path of variation 1. We
distinguish between the list used to resolve only
ambiguous genotypes and the list used to resolve
all genotypes. The latter will be larger if some
haplotypes derived from unambiguous genotypes
are not used to resolve ambiguous genotypes.
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TABLE 5

Consensus calculations for a sample path of variation 1

Full consensus

�1000 �2000 �3000 �4000 �5000 �6000 �7000 �8000 �9000 �9500

C 31 31 31 31 29 26 24 22 14 1
IC 16 16 16 14 7 5 3 0 0 0

Minimum � 1 consensus

�1 �2 �3 �4 �5 �6 �7 �8 �9 �10 �11 �12

C 34 34 34 34 34 34 34 34 34 34 34 34
IC 13 13 13 13 13 13 13 13 12 11 9 8

�13 �14 �15 �16 �17 �18 �19 �20 �21 �22 �23

C 34 34 33 30 28 25 25 25 24 23 22
IC 7 6 7 2 2 2 0 0 0 0 0

The placement of each consensus inferral that surpasses a given threshhold (e.g., 1000 or 16) is determined by whether the
consensus inferral is correct (C) or incorrect (IC). There are 10,000 iterations in the full calculations and 24 iterations in the
minimum � 1 calculations.

strong frequency preference appears to amplify the “sig- Stephens et al. 2001b) and that methods that just have
an expected error rate for an ensemble of inferrals willnal” of both incorrect and correct inferrals.
not prove useful as the basis for the investigation of
possibly weak genotype-phenotype associations. One

DISCUSSION needs as much certainty for inferrals as one can get,
especially if phenotypes tend to be associated with rareWe believe that consensus calculations hold great
genetic variants (see Pritchard 2001) for which thepromise for allowing the investigator to ultimately
inferral process may tend to be more error prone.achieve correct inferrals for all of the genotypes con-

We are developing methods to refine and extendtained in a sample. We are guided here by a belief that
these consensus results. Consensus calculations for an-some measure of the reliability for any given inferral is

an essential element of any inferral method (see also other more complex locus do not perform as well in

TABLE 6

The average number of correctly inferred ambiguous genotypes and the number of ambiguous genotypes
correctly predicted by various consensus methods

Consensus method
Average no.

Variation correct Full Minimum Minimum � 1 Minimum (all) Minimum � 1 (all)

1 29.0 31 36 34 36 39
2 28.7 31 35 35 38 35
2a 19.1 37 33 40 27 41
2b 28.4 31 40 38 40 35
2c 17.2 33 40 40 39 38
3 31.8 32 32 32 32 32
4a 17.5 38 38 42 25 26
4b 17.2 27 40 40 38 38

Average: 32.5 36.8 37.6 34.4 35.5

Full, a consensus prediction based on all iterations. Minimum, a consensus prediction based on those
iterations with the smallest number of haplotypes used in the resolution of ambiguous genotypes. Minimum �
1, a consensus prediction based on those iterations with the smallest or next-smallest number of haplotypes
used in the resolution of ambiguous genotypes. Minimum (all), a consensus prediction based on those iterations
with the smallest number of haplotypes used in the resolution of all genotypes (unambiguous and ambiguous).
Minimum � 1 (all), a consensus prediction based on those iterations with the smallest or next-smallest number
of haplotypes used in the resolution of all genotypes.
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that even some high consensus scores for variation 1 The rule-based approach and the approach of Ste-
phens et al. (2001a): Both the consensus approach de-are associated with some incorrect inferrals, although

partitioning the locus so that separate inferrals occur scribed here and the inferral method of Stephens et al.
(2001a) allow one to distinguish between more and lessfor regions with different recombination rates improves

consensus performance (S. Orzack and D. Gusfield, certain inferrals and to thereby more efficiently allocate
experimental effort. We regard such a discriminationunpublished results). We hope to develop metrics so

that an estimate of linkage disequilibrium can be used to be essential for any haplotype inferral method.
These two methods differ in important ways. The rule-to select a consensus threshold that will be reliable at

providing correct inferrals with certainty or near cer- based approach is simpler to understand, to program
oneself, and to modify. In addition, it is quicker sincetainty. Our motivation is the belief that inferral methods

should not be viewed as statistical machines competing multiple iterations and associated consensus predictions
can be obtained in a few minutes using typical micropro-against one another. Instead, they compete against ex-

perimental inferral, which can be viewed in the present cessors currently available. The approach of Stephens
et al. (2001a) may often require much more CPU time.context as being error free (or at least as having a much

smaller error rate than that of algorithmic inferral). To One reason is that the calculation of the posterior distri-
bution needed for the identification of more and lessthis extent, the role of algorithmic inferral should be

to guide the expenditure of experimental effort to certain inferrals in any given run is computationally
intensive. Another reason is the need for multiple inde-achieve a correct solution.

The nature of mistaken inferrals and a guide to the pendent runs so that the consistency of haplotype in-
ferrals can be assessed (see Stephens et al. 2001a, p.investigator: The variations of the rule-based approach

described here differ substantially in their algorithmic 985, and Stephens et al. 2002, p. 7).
We stress that we regard Stephens et al.’s approachstructure and population-genetic assumptions. It is es-

sential to understand the basis for their differences in to be an important inferral tool. In the present analysis,
the performance of their program matches the bestperformance so that the potential user can compare

the inferral capabilities of particular variations. consensus performance of the rule-based approach (42
correctly inferred genotypes out of 47 possible); theseTable 7 contains a breakdown of the inferrals for

a single sample path for each of the eight variations. best solutions differ (only 2 of the 5 incorrectly inferred
genotypes are the same).Consider the results concerning full consensus calcula-

tions. The distribution of correct and incorrect inferrals In our opinion, the performance of these methods
is surprisingly good. After all, the vagaries of naturaldoes not differ across the variations for either two-

ambiguous-site genotypes (uncorrected �2 � 10.46, 7 selection, genetic drift, and sampling biases, and the
absence of assumptions about the genetic details of thed.f., P � 0.05) or three-ambiguous-site genotypes (un-

corrected �2 � 4.12, 7 d.f., P � 0.05). These results APOE locus all combine to make haplotype inferral a
formidably complex problem in an a priori sense. How-suggest that consensus inferral of haplotypes with two

and three ambiguous sites can be performed with any ever, this performance does not mean that these meth-
ods can now be applied to most loci with the confidenceof the variations. However, the variations differ signifi-

cantly (� � 0.05) in regard to their inferral success for that they will work well. Such a conclusion must await
additional studies like the present one in which realmore complex genotypes as indicated by the significant

�2 values for four- and five-ambiguous-site genotypes phase-known genotypic data are analyzed.
Tests of haplotype inferral accuracy: Our results and(see Table 7). Inspection of the results indicates that

variations 2a and 4a perform best in regard to the cor- those of Xu et al. (2002) and Niu et al. (2002) are the
only studies in which the accuracy of a haplotype inferralrect prediction of these more complex genotypes.

The breakdowns of correct inferrals for restricted method has been assessed by comparing real and in-
ferred haplotype pairs. While praiseworthy in this re-consensus predictions are shown in Table 7. The �2

values for minimum consensus predictions indicate that gard, the Xu et al. (2002) study of N-acetyltransferase 2
genotypes is lacking because their results are based onthe variations do not differ in their ability to correctly

infer haplotypes involving up to five ambiguous sites. one iteration of Clark’s algorithm (C. Xu, personal com-
munication); this iteration resolved 64 individuals andIn contrast, the �2 values for minimum � 1 consensus

predictions indicate that the variations do differ in their left 17 unresolved. Our results indicate that the results
of a single iteration of a rule-based algorithm can bepredictive ability for four- and five-site genotypes, with

variations 2a and 4a again performing best. very misleading. Niu et al. (2002) also appear to have
used a single iteration in their analysis of the 121 	2-The results shown in Tables 6 and 7 also indicate that

restricted consensus calculations based on the number adrenergic genotypes shown in Table 2 of Drysdale et
al. (2000) since they wrote (p. 161) that “Clark’s algo-of haplotypes used to solve only ambiguous genotypes

result in higher average numbers of correct inferrals rithm made two mistakes (i.e., predicted two individuals’
phases incorrectly).” We believe that both of these stud-than do restricted consensus calculations based on the

number needed to solve all genotypes. ies should be regarded as giving an incomplete assess-
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TABLE 7

The number of correctly inferred genotypes arranged by number of SNPs

Full consensus prediction
No. of No. of
SNPs individuals Variation: 1 2 2a 2b 2c 3 4a 4b �2

2 17 17 17 16 17 16 17 16 14 10.46
3 20 14 14 15 14 13 15 14 10 4.12
4 6 0 0 3 0 4 0 5 3 23.95
5 4 0 0 3 0 0 0 3 0 22.15

Minimum consensus prediction

No. of No. of Variations: 1 2 2a 2b 2c 3 4a 4b
SNPs individuals No. of solutions: 5 5 1 5 4 8290 5 4 �2

2 17 17 17 17 17 17 17 16 17 7.05
3 20 14 14 14 16 16 15 15 16 1.60
4 6 3 3 1 4 4 0 4 4 11.27
5 4 2 1 1 3 3 0 3 3 10.00

Minimum � 1 consensus prediction

No. of No. of Variations: 1 2 2a 2b 2c 3 4a 4b
SNPs individuals No. of solutions: 24 109 30 15 33 10000 55 16 �2

2 17 14 17 16 17 17 17 16 17 13.08
3 20 12 14 14 15 16 15 16 16 3.49
4 6 3 3 6 3 4 0 6 4 18.03
5 4 0 1 4 3 3 0 4 3 19.81

Minimum consensus prediction (all)

No. of No. of Variations: 1 2 2a 2b 2c 3 4a 4b
SNPs individuals No. of solutions: 1 6 6 5 28 10000 5 17 �2

2 17 16 16 3 17 17 17 3 16 91.88
3 20 16 15 16 16 15 15 15 15 0.53
4 6 2 5 6 4 4 0 6 4 21.04
5 4 2 2 2 3 3 0 1 3 8.00

Minimum � 1 consensus prediction (all)

No. of No. of Variations: 1 2 2a 2b 2c 3 4a 4b
SNPs individuals No. of solutions: 16 112 35 75 166 10000 37 137 �2

2 17 16 16 16 15 15 17 3 15 60.65
3 20 18 15 17 13 15 15 13 15 5.66
4 6 4 3 6 4 5 0 6 5 20.85
5 4 1 1 2 3 3 0 4 3 12.93

Critical �2 values for 7 d.f. are P � 0.10 (12.02), P � 0.05 (14.07), P � 0.01 (18.48), and P � 0.005 (20.28).

ment of the usefulness of the rule-based approach to and fully accurate solution while a threshhold of, say,
80%, results in 75 correct inferrals and no incorrecthaplotype inferral.

We have analyzed the Drysdale et al. (2000) data ones. Similarly, the minimum � 1 consensus calcula-
tions shown indicate that a consensus threshold of 50%using the rule-based variations presented here. For ex-

ample, the distribution of numbers of haplotype pairs results in a complete and fully accurate solution while
a threshhold of 80% results in 78 correct inferrals andcorrectly inferred by variation 1 is shown in Figure 5.

All 10,000 iterations resolve all 79 ambiguous genotypes; no incorrect ones. There is also a negative relationship
between the number of haplotypes used in a solution andthere are 8480 different solutions. A total of 170 itera-

tions make all of the inferrals correctly. The results of the inferral accuracy (not shown). These results suggest
that the success of our APOE analyses is not somehow aconsensus calculations are shown in Table 8. A thresh-

old for full consensus of, say, 50%, results in a complete consequence of features peculiar to that locus.
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Figure 5.—The distribution of the num-
ber of correctly inferred pairs of haplotypes
for a sample path of variation 1 applied to
the data of Drysdale et al. (2000). Only
the 79 ambiguous genotypes are consid-
ered.

Finally, we note that Drysdale et al. (2000, p. 10,485) inferrals generated by the program of Niu et al. (2002).
Their stochastic approach can also generate multiplecommented in regard to a data set that includes the

121 aforementioned 	2-adrenergic genotypes that “as- solutions, as illustrated in Figure 6, which depicts the
distribution of the number of correct inferrals for thesigning haplotypes from unphased genotype data from

200 individuals by using an extension [of Clark’s algo- APOE data from 1000 independent iterations of their
program (Htyperv2). Two iterations of the program canrithm] gave the same results as molecular haplotyping,

except in a single subject because of a discrepancy at differ at least twofold in the number of incorrect in-
ferrals; multiple solutions also occur for another phase-one SNP position.” Since the authors did not describe

this “extension,” the significance of their claim cannot unknown data set that we analyzed with their program
(S. Orzack and D. Gusfield, unpublished results). Onebe assessed.

The general utility of consensus calculations: Con- can construct, say, a full consensus solution to make
sense of these multiple solutions; it has 42 correct in-sider the application of the consensus approach to the

TABLE 8

Consensus calculations for a sample path of variation 1 applied to the data of Drysdale et al. (2000)

Full consensus

�1000 �2000 �3000 �4000 �5000 �6000 �7000 �8000 �9000 �9500

C 79 79 79 79 79 77 76 75 75 65
IC 0 0 0 0 0 0 0 0 0 0

Minimum � 1 consensus

�20 �40 �60 �80 �100 �120 �140 �160

C 79 79 79 79 79 79 79 79
IC 0 0 0 0 0 0 0 0

�180 �200 �220 �240 �260 �280 �300 �320

C 79 79 78 78 78 78 78 73
IC 0 0 0 0 0 0 0 0

The placement of each consensus inferral that surpasses a given threshhold (e.g., 10,000 or 240) is determined
by whether the consensus inferral is correct (C) or incorrect (IC). There are 10,000 iterations in the full
calculations and 328 iterations in the minimum � 1 calculations.
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Figure 6.—The distribution of the number of
correctly inferred pairs of haplotypes for 1000
independent iterations of the program Htyperv2
created by Niu et al. (2002). Only the 47 ambigu-
ous genotypes are considered.

ferrals, making it slightly less accurate than the best The future development of rule-based algorithms and
consensus calculations: If one has genotypes with knownsolution found (43), but it allows one to avoid choosing

randomly from among competing solutions. We note haplotype pairs, one advantage of the rule-based ap-
proach is that one can assess, using an integer program-in passing that Htyperv2 also infers haplotype pairs that
ming analysis, whether a given variation could result indo not generate the observed genotype; in 1000 inde-
perfect prediction (see Gusfield 2001). Such knowl-pendent iterations, 290 iterations had one such “bad”
edge has an obvious relevance when deciding whethergenotype, 159 iterations had two, and three iterations
to attempt to improve the variation. At present, if otherhad three.
methods fail to produce a perfect solution, there is noConsensus methods can also be applied to the results
such framework for determining whether they couldgenerated by the method of Stephens et al. (2001a).
do so.We analyzed the APOE data with several thousand inde-

Such an analysis shows that such a perfect solutionpendent runs (n � 2303) of their program (each with
exists for variation 1. However, the best result we ob-10,000 steps in the Markov chain, a thinning interval of
tained for a single iteration was 40 correct resolutions100, and a burn-in of 10,000). In this case, we found
out of a possible 47. Hence, even with a large numberonly one solution (as described above). Of course, this
of iterations, this variation failed to achieve optimal per-monomorphism could not be expected a priori. Multiple
formance. This failure motivates ongoing research onruns with their program of other data sets with real or
how to best implement particular variations to achieveartificial haplotype pairs reveal multiple solutions for
optimal performance and on techniques that forcewhich consensus calculations allow one to construct a
these algorithms to do so (S. Orzack and D. Gusfield,single solution (S. Orzack, L. Subrahmanyan and D.
unpublished results).Gusfield, unpublished results; S. M. Fullerton, per-

sonal communication). We thank Anne Ferentz, Alan Templeton, David Posada, Carsten
Wiuf, and three reviewers for critical comments. This work was partiallyAny algorithmic inferral method has the potential to
supported by National Science Foundation (NSF) awards SES-9906997,generate different solutions. This is as it should be,
DBI-9723346, and EIA-0220154 and by Variagenics.given that many genotypic configurations can support
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