Supplement Figure 1-4

Supple. Figure 1 p53-dependent survival and apoptosis in thymocytes. (**A**) Viability of thymocytes from 3 month old wild type, $Brca1^{\Delta 11/\Delta 11}$, $Brca1^{\Delta 11/\Delta 11}Chk2^{-/-}$ and $Brca1^{\Delta 11/\Delta 11}p53^{-/-}$ male mice measured after they were cultured for 24 hr (n=4 of each). (**B**) Viability of thymocytes from 3 month old wild type, $Brca1^{\Delta 11/\Delta 11}$, $Brca1^{\Delta 11/\Delta 11}Chk2^{-/-}$ and $Brca1^{\Delta 11/\Delta 11}p53^{-/-}$ male mice 24 hrs after 2.5 Gy γ -irradiation (n=4). (**C**) Western blot analysis of thymocytes of Chk2 and p53 expression 4 hrs after 10 Gy γ -irradiation (n=3).

Supple. Figure 2 Brca1 mutant embryos showed normal DNA replication and increased apoptosis. (**A-D**) BrdU-labeling on brain tissues of wild type, $Brca1^{AIII/AII}$ and $Brca1^{AIII/AII}$ $Chk2^{-I-}$ E12.5 embryos (n=3) (**A-C**). No obvious differences were observed (**D**). (**E,F**) PCNA (**E**, red) and ATR (**F**, green) staining on brain tissues of wild type and $Brca1^{AIII/AII}$ E12.5 embryos. No significant differences in PCNA foci were detected between wild type and $Brca1^{AIII/AII}$ cells. ATR staining was negative in brain tissues. To provide a positive control for ATR antibody, we stained HCF-7 cell prior to and after they were treated with 2mM Hydroxyurea (HU) for 1 hour (**G**). Significant increased ATR levels were detected after HU treatment in these cells. (**H**) Western-blot analysis of MEF cells from wild type and $Brca1^{AIII/AII}$ E14.5 embryos for Chk1 and Chk2 expression. (**I-L**) TUNEL assay of brain tissues from wild type, $Brca1^{AIII/AII}$ and $Brca1^{AIII/AII}$ Chk2^{-/-} E12.5 embryos (n=4).

Supple. Figure 3 G1/S cell cycle checkpoint, cell proliferation and tumorigenesis in Brca1 mutant mice. (A) Tumor types of $Brca1^{\Delta III/\Delta II}Chk2^{-I-}$ mice. (B,C) Analysis of G1/S checkpoint of passage 1 MEF cells of wild type, $Brca1^{\Delta III/\Delta III}$, $Brca1^{\Delta III/\Delta II}Chk2^{-I-}$, $Chk2^{-I-}$, $Brca1^{\Delta III/\Delta II}p53^{-I-}$ and $p53^{-I-}$ upon 10 Gy γ -IR. % BrdU-positive cells were shown (n=3). (D) BrdU labeling of passage 1 MEF cells from wild type, $Brca1^{\Delta III/\Delta II}$, $Chk2^{-I-}$ and $Brca1^{\Delta III/\Delta II}Chk2^{-I-}$. (E) Profiles of Brca1 associated thymic lymphoma in $Brca1^{+I/\Delta II}Chk2^{-I-}$, $Brca1^{\Delta III/\Delta II}Chk2^{-I-}$, $Brca1^{\Delta III/\Delta II}p53^{+I-}$, and $Brca1^{\Delta II/\Delta II}p53^{-I-}$ mice. Number of animals for each genotype was indicated.

Supple. Figure 4 Cytogenetic analysis of tumors from $Brca1^{\Delta II/\Delta II}p53^{+/-}$ and $Brca1^{\Delta II/\Delta II}Chk2^{-/-}$ mice ^{/-} mice. (**A**, **B**) Chromosome spreads of $Brca1^{\Delta II/\Delta II}p53^{+/-}$ and $Brca1^{\Delta II/\Delta II}Chk2^{-/-}$ mice mammary tumors. Primary tumors of each genotype were cultured briefly (passage 2) before chromosome spreads were prepared. Most of the cells (94%) from $Brca1^{\Delta II/\Delta II}p53^{+/-}$ tumors (n=4) were aneuploid (from 17 spreads, 1 spread has 40 chromosomes, 8 have >100, 2 have 80-99, and 6 have 41-79 chromosomes), while much less aneuploid cells (7.1%) were found from $Brca1^{\Delta II/\Delta II}Chk2^{-/-}$ tumors (n=3) (from 28 spreads, 26 have 40 chromosomes and 2 have 40-50 chromosomes). (**C**, **D**) Cyclin D1 stained mammary tumors from $Brca1^{\Delta II/\Delta II}p53^{+/-}$ and $Brca1^{\Delta II/\Delta II}Chk2^{-/-}$ mice. (**E**, **F**) C-myc stained in mammary tumors from $Brca1^{\Delta II/\Delta II}p53^{+/-}$ and $Brca1^{\Delta II/\Delta II}Chk2^{-/-}$ mice. (**G**) Western-blot analysis of mammary tumor from $Brca1^{\Delta II/\Delta II}p53^{+/-}$ and $Brca1^{\Delta II/\Delta II}p53^{+/-}$ mice for cyclin D1 and C-myc expression. (**H**) RT-PCR analysis of mammary tumor from $Brca1^{\Delta II/\Delta II}p53^{+/-}$ mice for cyclin D1 and C-myc expression.