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Supporting Materials and Methods 
 
Growth conditions and Media. Cells were grown at 37ºC in M9 minimal media with 
succinate as the main carbon source. Overnight cultures were prepared in the absence of 
TMG or in the presence of 100 µM TMG to yield populations of cells uninduced or fully 
induced for lac expression, respectively. Cells from the overnight cultures were diluted 
into fresh media containing intermediate TMG levels and maintained at low density 
(0.001 < OD600 < 0.005) to prevent TMG depletion throughout the experiment. At 
specified time points, a portion of each culture was removed and prepared for imaging; 
fresh, pre-warmed media with the appropriate TMG level was added to dilute the 
remaining culture so that the cell density of each imaged sample was the same (OD600 = 
0.005) for all time points. Samples were concentrated and prepared for imaging by 
filtration, centrifugation, resuspension in 1.25 µl of the appropriate growth media, and 
placement on a microscope slide. 
 
Bacterial Strains. Dynamic population distributions of lac promoter activity were 
gathered using Escherichia coli MUK21 (1), in which the gfp gene is placed under the 
control of a wild-type lac promoter and chromosomally inserted. Published steady-state 
distributions from the ERT113 strain (1) are further analyzed here for both noise 
measurements and partitioning analysis. Strain ERT113 was constructed by transforming 
MUK21 cells with a plasmid containing the red-fluorescent protein HcRed under the 
control of the gat promoter. 
 
Fluorescence Microscopy. Measurements of GFP fluorescence in dynamic (pre-
steady-state) cell populations were obtained using a Nikon TE300 microscope equipped 
with automatic stage and focus, and a Micromax 1024B CCD camera (Roper Scientific), 
all controlled by MetaMorph software (Universal Imaging). Steady-state measurements 
were gathered as previously described (1). Fluorescence values for cells are corrected by 
subtracting background fluorescence measured in a region of the field of view devoid of 
cells. Cell boundaries were determined by auto-thresholding phase contrast images, and 
GFP intensity was averaged over this area. Mean fluorescence levels are assumed to be 
representative of reporter concentration and are calculated by dividing the total intensity 
of the cell by the area in pixels of the cell in the phase contrast image. These numbers are 
then normalized so the induced population average of the mean fluorescence is 100 for 
both GFP and RFP. 
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Derivation of Deterministic Model. We modify a deterministic model for the lactose 
uptake network (1) as shown below: 
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The fraction of active LacI tetramers (R) as a function of internal TMG (X) is modeled by 
a Hill function with Hill coefficient of two. (Eq. 6). RT is the total concentration of LacI 
tetramers, and X0 represents the half-saturation point. The rate of production of LacY 
molecules (Y) and GFP molecules (G) in the presence of LacI (R) is also a Hill function 
with Hill coefficient of one (Eqs. 7 and 8). Here R0 is the half-saturation concentration of 
active LacI (R) while NLacY and NGFP are the equilibrium number of LacY and GFP 
molecules, respectively, in fully induced cells. Β represents the active uptake of TMG per 
LacY molecule, while Λ represents the passive, LacY-independent uptake of external 
TMG (Eq. 9). Y, G, and X are all assumed to undergo first-order decay with time 
constants τy, τg and τx, respectively. To derive the simplified equations (Eqs. 1-3) shown 
in the main text, Eq. 6 is substituted into Eqs. 7 and 8, and the following new parameters 
(Eq. 10) are defined: 
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Effect of Induction on Doubling Time. It has been suggested that in order to model 
stochastic transitions in the lactose uptake network, one must include effects of TMG 
induction on doubling time (2). We find that induction with TMG has no statistically 
significant change on growth rate; therefore, we ignore this effect in our model. 
 
Estimating deterministic parameters: τx and λ .   To estimate τx, the time constant 
of internal TMG decay, we examine a population of cells that has been grown for 24 
hours in media containing 50 µM TMG, which is sufficient to force all cells into the fully 
induced state of high GFP expression. These cells were then transferred into media 
lacking TMG at t = 0. GFP measurements were made at t = 4, 6, 8 and 10 hours (Fig. 5a), 
and the average concentration of GFP was measured at each time point with an error 
estimated from the population standard deviation. Because there is no external TMG in 
the media, the cells will cease production of GFP when the internal concentration of 
TMG becomes sufficiently dilute. Given that GFP is not actively degraded, its level 
should fall exponentially based on the doubling time. Therefore, we fit an exponential 
curve to the mean GFP concentration at each time point, using the least-squares method. 
The resulting best-fit curve was extrapolated to t = 0 and used to determine the 
approximate time at which GFP production ceased (Fig. 5c). Our extrapolation indicates 
that GFP production in induced cells begins to decay within 10-20 minutes following 
removal of external TMG, suggesting that τx << τ1/2. Thus, we assume Eq. 1 is in 
equilibrium when compared to Eqs. 2 and 3.  

We expect that uninduced cells switched into media with a high TMG 
concentration will transition quickly to the induced state, minimizing stochastic effects. 
In this situation the deterministic model should provide a reasonable estimate of this 
behavior at the population level. Therefore, we arrive at an estimate of λ, the rate of 
TMG leakage, by fitting the deterministic model to experimental data in which we 
observed cells transitioning from an uninduced state to a fully induced state. Cells 
initially grown in absence of TMG were switched into media containing 55 µM of TMG, 
and measurements were taken at t = 1, 2, 3 and 4 hours (Fig. 5b). The population average 
GFP level was determined from this distribution with error bars set by the standard 
deviation. The parameter λ was then varied from 0 to 1.0 in 0.0025 intervals, and the χ2 
between the predictions of the deterministic model and the population average was 
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calculated at each point (Fig. 5d). The best-fit value was found to be λ = 0.06, with an 
80% confidence range of (0.03, 0.12). Because α, β, and ρ were determined with λ = 0, a 
non-zero value of λ will change the position of the monostable-bistable transition and in 
principle require the refitting of all other parameters. However, we find that the lower 
monostable-bistable boundary shifts only from 3.5 to 3.4 µM TMG, which is smaller than 
the precision at which the boundary was originally determined. The position of the upper 
monostable-bistable boundary is changed as well, but the behavior of the stochastic 
model still matches the experiments in this region indicating that refitting is unnecessary. 
 
Measurement of Noise around Steady State. We show the main sources of noise 
in Fig. 1b. Each gene has a source of intrinsic noise, which is related to mRNA burst size, 

b, and protein number, N, by the relation 
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! . Because GFP expression and RFP 

expression share one source of noise, the correlation between the levels of these 
molecules will depend on this noise source and no others. To derive this relation, we can 
use the Langevin formalism in the same manner in which Pedraza et al. (3) have applied 
it to noise propagation in a synthetic gene cascade. Here we treat the rate of change of 
each molecule as having two components: continuous terms due to rates in the 
deterministic model and stochastic terms due to intrinsic noise. This is made more precise 
by writing the corresponding Langevin equations for the two extrinsic sources and the 
two reporters in induced cells, where LacI and LacY noise is not transmitted. 
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Here E represents the collective effect of global noise factors (for example, CRP, 
ribosome and RNA polymerase concentrations) and is scaled to an equilibrium value of 
one. G and R are the number of GFP and RFP molecules, while αG and αR represent the 
equilibrium amount of GFP and RFP in induced cells. We assume that observed drops in 
the levels of these molecules result from cell division, so τ is the characteristic decay time 
due to dilution. The following relations define the noise terms accounting for intrinsic 
fluctuations of proteins. 

 
0>=<

RG,
µ   

)()1(2)()( RFPGFP,RG,RG,RG, tbttt !+>=!+< "#$µµ  [12] 



 5 

 
We include a term µP to account for noise introduced by fluctuations in plasmid number, 
which we assume is uncorrelated with other sources of noise. Fluctuations of the global 
factors may be defined in a manner similar to that for intrinsic protein noise, but we do 
not a priori know the magnitude of these fluctuations: 
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We want to use Eq. 11 to derive the noise properties of our fluorescent reporters, which 
can be accomplished by calculating deviations from steady state values: 

1!" EE# , 
G

!" #$ GG , 
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!" #$ RR . Substituting these calculations in Eq. 11, Fourier 

transforming, squaring, and inverse Fourier transforming yields the following result for 
the second moment of δG and the correlation between δG and δR: 
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Eq. 14 relates the total fluctuations around steady state in GFP to a contribution from 
intrinsic fluctuations and a contribution from global fluctuations, meaning that we can 
separate the total noise in GFP )( totalg!"  into intrinsic )( intg!"  and global )( global!  

components by the relation  
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Here, the individual noise contributions are related to the reporter fluctuations: 
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The biochemical parameters αG and bGFP can be obtained from 
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By assuming the mean fluorescence in a single cell is proportional to the concentration of 
molecules in that cell, we can measure total and extrinsic noise for a population using Eq. 
16, and the intrinsic noise is given by Eq. 17. Surprisingly, we find that even in fully 
induced cells the fluctuations in GFP are coming almost entirely from intrinsic noise (Fig. 
4b). 
 
Measurement of the Number of Molecules. Decomposing the noise in a gene into 
intrinsic and extrinsic components still does not characterize fluctuations with sufficient 
detail to build a microscopic simulation; the numbers of relevant proteins in each cell is 
still needed. We estimate this number using a method similar to that introduced by 
Rosenfeld et al. (4), where GFP fluorescence is compared between dividing cells.  
 The process of cell division can be viewed as a binomial process where each 
molecule of GFP is randomly and independently assigned to one of the two daughter 
cells. Letting N1 and N2 be the number of molecules in the first and second daughter, 
respectively, we assume that the following relations fully determine the statistics of this 

process: 
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taken over the cell population. Furthermore, we assume that the mean fluorescence 
values, gfp1 and gfp2, in both daughter cells are directly proportional to the number of 
GFP molecules. Based on these assumptions, NGFP can be estimated as shown below from 
the fluctuations of intensity between dividing cells without requiring details of photon 
flux or quantum efficiency.  
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Eq. 18 relates the distribution of cellular fluorescence values in the daughter cells to the 
total number of molecules present in the mother. Because the fluorescence of an average 
cell is somewhere between the undivided cell (NPair) and the daughter cells (NPair/2), we 
assume that NGFP = 3/4NPair. Finally we measure gfp1 and gfp2 for a population of 70 pairs 
of fully induced cells in 30 µM TMG and find that NGFP=790±210 molecules with error 
bars estimated by bootstrapping. 
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Stochastic Model Details. Because mRNA production is a large source of noise, we 
build a model where noisy events are dominated by mRNA processes and use protein 
levels to determine the instantaneous state of the system. The three main events in the 
model are mRNA production/degradation, protein degradation, and global noise. 

We assume the number of proteins produced from an individual mRNA to be 
chosen from an exponential distribution by treating the decay of mRNA as a random 
Poisson process and assuming that the number of proteins translated is proportional to the 
lifetime. Because the lifetime of an mRNA is very short in relation to the timescales 
associated with fluctuations in protein level (τ1/2) we condense the three events 
(production, translation and degradation) into a single ‘burst’ event. We model this 
process by production and immediate decay of an mRNA whose net effect was the 
addition of a random number of new proteins to the system. We quantify the rate at 
which these bursts occur by dividing the rate of protein production by the mean number 
of proteins produced from an mRNA. 

We model the loss of protein levels by random Poisson decay of individual 
proteins at a rate commensurate with that caused by dilution. This adds noise to the 
system that is not inherent in cell growth and ignores noise due to the partitioning 
process. However, the noise difference between the decay and dilution processes should 
not be important because the noise from mRNA bursts is dominant in our experiments. 
This could become relevant for dynamics that are heavily influenced by decay processes 
when there are few if any mRNA burst events. 

Global noise is included as a multiplicative term on the production of GFP and 
LacY. To include this effect, the random walk process E(t), described in Eqs. 11 and 13, 
is simulated and included in the relevant mRNA production rates. Here the value <µE

2> is 
chosen so that the simulated value of ηglobal matches that measured experimentally. The 

statistics on the process are thus given by 1=E  and 

( )2/1
2

global /exp2)()( !"## tttEtE $%=$+ . This is then numerically simulated by a 

discrete random walk, and the mRNA production rates of relevant proteins are multiplied 
by the resultant factor Ε(t). 
 
Further Experimental Verification of Model. To verify that the model is 
functioning properly, growth of cells from both ON and OFF histories is simulated for 
the equivalent of 20 h in a range of external concentrations of TMG. As can be seen in 
Fig. 6 the cells largely remain in their original states through the shaded region, whereas 
transitions between the two states occur more frequently past the edges of this region. 
The hysteretic effect is similar to published measurements of single cells (1), indicating 
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that the model is capturing many of the essential properties of the biological network.  
The greater than expected transition rate from OFF-to-ON in the deterministically 
bistable region could be due to increased sensitivity to parameter error in this region, or 
an overestimation of LacY noise.  In Fig. 7 we compare the model results to experimental 
data for cells grown in 6 µM and 9 µM TMG, both in the deterministically bistable 
region, and we find reasonable agreement between these data. 

To further test our model in the bistable region, we calculate the OFF-to-ON 
transition rate when cells are switching stochastically. This can be done by fitting the 
equation f0e-γt to the fraction of cells remaining in the OFF state at time t, fOFF(t).  The 
results for the switching rate γ(TMG) from this fitting are shown in Fig. 8 for both 
experimental data and simulations in the range of 3 - 60 µM TMG.  The transition rate 
for both curves is near or equal to zero until approximately 9 µM TMG, which coincides 
with the upper boundary of the deterministically bistable region.  Above 9µM TMG, the 
model and experimental transition rates rise together as extracellular TMG increases. 

 
 
Parameter Robustness. In order to quantify the sensitivity of the model’s output to 
variations in the deterministic and noise parameters, we construct a cost function that 
compares two population distributions. The cost function should return small values for 
nearly identical distributions and large values for very different distributions. We set 
H(G, T, t) to be the fraction of initially uninduced cells in the bin centered at G units of 
GFP fluorescence after t hours of growth in T µM TMG. This is similar to the curves 
shown in Fig. 2. We define a cost function, X, similar to a χ2 error, and evaluate it on the 
logarithmic-normalized histograms: 

 
X  = ΣT Σt ΣG log2(Hexperiment(G,T,t)/ Hmodel(G,T,t))   

 
The sums are confined to the histograms shown in Figs. 3 b-d, and any terms with H = 0 
were ignored in the sum. To estimate the sensitivity of the model to parameter error, each 
parameter was individually varied, and the cost between the model predictions and 
experimental measurements was calculated. We vary α, β, ρ, λ, NGFP and bGFP by the 
calculated errors shown in Table 2, while NLacY, bLacY, NLacI and bLacI are each varied by a 
factor of two because these parameter values were not measured directly. Xhigh and Xlow 
represent the cost functions generated from simulations in which individual parameters 
are set to the upper and lower error boundaries, respectively.  These calculations are 
shown for each parameter in Table 3. When all parameters are given by the values 
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indicated in Table 1 the cost is found to be X0 = 67.02, which is close to the cost between 
two histograms generated from replicates of the same experiment: XExperimental = 45.50. 
 Error on the parameters α, λ, and τ1/2 has the greatest impact on the model’s 
predictions when compared to experiments. Even though the highest value of X is more 
than twice as large as the lowest, the qualitative predictions remain similar throughout the 
range of parameters. Variations in each parameter slightly change the shape of the 
simulated histograms. For example, increased (decreased) values of λ created a higher 
(lower) rate of OFF to ON transitions. While the shapes of each peak in the bimodal 
histogram of transitioning cells remains similar, the relative magnitudes of the peaks are 
changed. For changes in α, however, the peak of OFF cells decays with a rate similar to 
experiments, but the simulated transitioning cells either produce GFP too quickly or too 
slowly for the histogram to closely match experiments. The noise parameters N and b 
seem to affect prediction accuracy the least. Decreasing bLacY even causes better 
agreement than the value estimated through GFP noise, suggesting that noise in the LacY 
levels might have been over-estimated. 
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