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ABSTRACT secondary structure better than a consensus primary sequence, th
. o - accuracy of RNA similarity searching is much improved by
We describe a program, tRNAscan-SE, which identifies including secondary structure elements. A group of generalized
99-100% of transfer RNA genes in DNA sequence RNA gene search tools look for specific combinations of primary
while giving less than one false positive per 15 and secondary structure motifs specified by the use2(),
gigabases. Two previously described tRNA detection although tRNA ‘descriptors’ in these pattern-matching languages
programs are used as fast, first-pass prefilters to have typically under performed custom-written programs.
identify candidate tRNAs, which are then analyzed by tRNAscan 1.3 by Fichant and Burks) is perhaps the most
a highly selective tRNA covariance model. This work widely used tRNA detection program. It identifi®F.5% of true
represents a practical application of RNA covariance tRNA genes and gives 0.37 false positives per million base pairs
models, which are general, probabilistic secondary (Mbp) (12). The algorithm uses a hierarchical, rule-based system
structure profiles based on stochastic context-free in which each potential tRNA must exceed empirically deter-
grammars. tRNAscan-SE searches at  [BO 000 bp/s.  mined similarity thresholds for two intragenic promoters, plus
Additional extensions to tRNAscan-SE detect unusual have the ability to form base pairings present in tRNA stem—loop
tRNA homologues such as selenocysteine tRNAs, structures. The false positive rate of tRNAscan has been
tRNA-derived repetitive elements and tRNA pseudo- acceptable for small genomes, but for larger eukaryotic genomes
genes. it becomes a significant problem. It will produc&l00 false
positive tRNAs for the human genome (0.37 false positives/Mbp
INTRODUCTION for 3000 Mbp); given that there are about 1300 true tRNAs in the

genome, almost half of the tRNAs predicted by tRNAscan will be

Transfer RNA (tRNA) genes are the single largest gene family. false positives.
typical eukaryotic genome contains hundreds of tRNA genes; thePavesi and colleagues have developed a different tRNA
human genome contains an estimated 1300r( a time when detection algorithm1@3) which searches exclusively for linear
complete genomes are being sequenced, one would like to haeguence signals in the form of eukaryotic RNA polymerase I
an accurate means of tRNA gene identification. The tRNAromoters and terminators. The sensitivity and selectivity of this
repertoire of an organism affects the codon bias seen in higldigorithm is roughly comparable to tRNAscan 1.3 in detection of
expressed protein coding genes. In extreme cases, selectuiaryotic tRNAs. Notably, the Pavesi algorithm identifies
pressure for extremely high or low genomic GC content may ha#®NAs not detected by tRNAscan 1.3, and vice verSa The
caused loss of a tRNA, producing an unassigned caijen ( combined sensitivities of these two programs exceed 99%;
Suppressor tRNAs are important genetic loci in many modélowever, the combined false positive rate is about five times that
organisms. In addition to authentic tRNA genes, tRNA-derivedf tRNAscan alone.
short interspersed nuclear elements (SINEs) have been identifieEddy and DurbinZ2) have developed a general RNA structure
in rodents and other mammals as likely mobile genetic elemersisilarity search method employing probabilistic RNA structural
(4,5). Detection and discrimination of these elements from trugrofiles, or ‘covariance models’. Covariance models are able to
tRNAs is a desirable feature of tRNA identification methods. capture both primary consensus and secondary structure informa-

It is commonly believed that the best RNA gene detectiotion through the use of stochastic context-free grammars (SCFGs;
methods are custom-written programs that search for one type2@-24). Much like sequence profileg,26), covariance models
RNA gene exclusivelyg). Numerous tRNA search programs keyare constructed from multiple sequence alignments. Sequences
on primary sequence patterns and/or secondary structure spedfie searched against a given covariance model using a three-
to tRNAs (*—13). Why bother with specialized tRNA-detection dimensional dynamic programming algorithm, similar to a
software instead of using a fast, commonly available similaritgmith—Waterman alignment but including base-pairing terms as
search program such as BLASF) or FASTA (L5)? Since many well. RNA covariance models have the advantages of high
functional RNA genes tend to conserve a common base-paireghsitivity, high specificity and general applicability to any RNA
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sequence family of interest, obviating the need for custom-written
software for each RNA family. However, covariance model
dynamic programming algorithms are almost prohibitively CPU
intensive. A tRNA covariance model identifies >99.98% of true
tRNASs, with a false positive rate of <0.2/MI2), but searching {RNAscan 1.4 EufindtRNA
the human genome with a tRNA covariance model would take (original v1.3 params) {relaxed pararns)
about nine and a half CPU years (based on benchmarks on an SGI .
Indigo2 R4400/200 CPU, 140 SPECIint92).

We describe here a program, tRNAscan-SE, that combines
three tRNA search methods to attain the specificity of covariance

Input Sequence(s)

model analysis with the speed and sensitivities of optimized Each tRNA
versions of tRNAscan 1.3 and the Pavesi search algorithm. ( EufindtRNA SelCys identification? )
tRNAscan-SE detects 99-100% of true tRNAs, giving fewer than
one false positive per fifteen billion nucleotides of random o SelCys tRNA
sequence, at1000-3000 times the speed of searching with tRNA e o (el
covariance models. Additional extensions to tRNAscan-SE allow, general RNA Score >=20 bits 7
detection and accurate secondary structure prediction of unus covariance model <
tRNA species including both prokaryotic and eukaryotic selenoc___*"* No | gsearch (covels), ) ves
cysteine tRNA genes, as well as tRNA-derived repetitive
elements and pseudogenes. ,/Yes

Check for pseudogene

(primary structure component < 10 bits) OR
METHODS (secondary structure component < 5 bits)

tRNAscan-SE input consists of DNA or RNA sequences in
FASTA format. tRNA predictions are output in tabular, ACeDB,
or an extended format including tRNA secondary structure
information. tRNAscan-SE does no tRNA detection itself, but
instead negotiates the flow of information between three indepen-

secondary structure prediction
by global alignment to
tRNA covariance model
(coves)

Note as possible
pseudogene

dent tRNA prediction programs, performs some post-processing /
and outputs the results (FI. :

tRNAscan-SE works in three phases. In the first stage, it runs ( o (RN At e ]
tRNAscan and the Pavesi algorithm on the input sequence. The
first of these two programs is an optimized version of tRNAscan {
1.3 (12). The other is an implementation of the Pavesi search Results output in tabular,
algorithm (L3) which we call EufindtRNA. Results from both [ ACeDB'Drs;fcondarystructure ]
programs are merged into one list of candidate tRNAs. Intron ormat

information from tRNAscan 1.3 is discarded because its intron
predictions are typically unreliable. Analysis with the tRNA
covariance model at a later stage (described below) allowSgure 1.Schematic diagram of tRNAscan-SE algorithm. Steps carried out by
non-ambiguous determination of intron boundaries. tRNAscan-SE are shown in ovals and rounded-edge boxes. tRNA selection and
In the second stage, tRNAscan-SE extracts the candidaggalysis performed by external programs are shown in rectangles.
subsequences and passes these segments to the covariance model
search prograroovels(22). Seven flanking nucleotides on both
sides of the candidate tRNAs are included in the subsequencdivle or more consecutive non-consensus nucleotides within the
case the tRNA was truncated by the initial prediction.cbels  anticodon loop.
search program applies a tRNA covariance model (TRNA2.cm)tRNAscan-SE uses heuristics to try to distinguish pseudogenes
that was made by structurally aligning 1415 tRNAs from the 199Bom true tRNAs, primarily on lack of tRNA-like secondary
Sprinzl database?(). Eighty-seven non-canonical ‘group III' structure. A second tRNA covariance model (TRNA2ns.cm) was
sequences and 509 RNA sequences were removed from timeated from the same alignment, under the constraint that no
complete 2011 sequence database as describetD)inTOo  secondary structure is conserved (this model is effectively just a
improve intron prediction, intron sequences were manuallsequence profile, or hidden Markov model). By subtracting a
inserted into the Sprinzl alignment for 38 intron-containingRNA's similarity score to the primary structure-only model from
tRNAs of known genomic sequence. that using the complete tRNA model, a secondary structure-only
Finally, tRNAscan-SE takes predicted tRNAs that have beestore is obtained. In Bayesian terms, this difference can be
confirmed withcoveldog odds scores of over 20.0 bits, trims theviewed as the evidence for the complete tRNA model, as opposed
tRNA bounds to those predicted lpvels and runs the to a structureless, sequence-only pseudogene model. We ob-
covariance model global structure alignment prograveq22)  served that tRNAs with low scores for either component of the
to get a secondary structure prediction. The tRNA isotype tetal score were often pseudogenes. Thus, tRNAs are marked as
predicted by identifying the anticodon within tuwessecondary  likely pseudogenes if they have either a score of <10 bits for the
structure output. Introns are identified from this output as runs pfimary sequence component of the total score, or a score of <5
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bits for the secondary structure component of the total scomight base pair acceptor stem, a long variable region arm and
Selenocysteine tRNAs are not checked by these rules since tisepstitutions at several well-conserved base positions. These
have atypical primary and secondary structure. Final tRNAifferences make detection and accurate secondary structure
predictions are then saved in tabular, ACeDB or secondapyediction difficult using tRNA search programs geared towards

structure output format. canonical tRNAs. tRNAscan 1.3 fails to detect most selenocys-
teine tRNAs; the Pavesi algorithm incorporates a separate routine
tRNAscan 1.4 specifically for eukaryotic selenocysteines; and the TRNA2.cm

o ) covariance model barely detects selenocysteine tRNAs, giving
tRNAscan-SE uses an optimized version of tRNAscan1P)3 (- scores just over the minimum cutoff of 20 bits, and in two cases,
which we refer to as tRNAscan 1.4. The core algorithm igelow the cutoff. tRNAscan-SE addresses this problem in the
identical to tRNAscan 1.3. tRNAscan versions 1.3 and 1.4 hayigst-pass stage using EufindtRNA modifications, and in the
identical tRNA detection rates except in the case of ambiguodscond stage using selenocysteine tRNA-specific covariance
nucleotides occurring within the input sequence. There afgodels.
implementation errors in tRNAscan 1.3's handling of ambiguous The first-pass scanner EufindtRNA implements a specialized
nucleotide codes. tRNAscan 1.4 conservatively calls ambiguosgbroutine described by Pavessal. (13) for identifying eukaryotic
nucleotides as always forming base pairings in stems, aBglenocysteine tRNAs [based on a B box score with a value between
matching the highest scoring choice in consensus promoteg 2 and —3.6, and the motif GGTC(C/T)G(G/T)GGT appearing 36
matrices. This results in a high false positive rate for sequenggiscleotides upstream of the B box]. To similarly identify prokaryotic
containing a large number of ambiguous nucleotides. For ogglenocysteine tRNAs, a subroutine was added to EufindtRNA
purposes, this is acceptable because the second stage covarigifeh detects tRNAs with B box scores between —2.2 and —4.9, and
model analysis eliminates false positives. Several command liggonserved sequence motif found in the anticodon loop of all known
OptlonS were added to tRNAscan 1.4 for convenience |ﬂ’okaryotic se|enocysteine tRNAs (anticodon in b0|d)
integration with tRNAscan-SE. Additional code changes wergG(A/T)(C/T)TTCAAA(A/T)CC. It is unclear if this motif will
made to increase the robustness and speed of the program. Tligseralize well for new selenocysteine tRNAs, but it is conserved
modifications result in &650-fold increase in search speed anGmong the closely relateBischerichia coli(Y00299), Proteus

no upper limit on input sequence size. vulgaris (X14255), Haemophilus influenzae(U32753) and
Desulfomicrobium baculatué<75790) tRNAs, and in the more
Implementation of EufindtRNA distant Clostridium thermoaceticum(Z26950) tRNA. After

' . . , EufindtRNA has identified a candidate selenocysteine tRNA, it is

EUf'nd.tRNdA W"’I‘IS |mple$mer]|'fﬁd from the pulljllsh_er? algonthfm BYassed to a eukaryotic or prokaryotic selenocysteine-specific
a\gestl)_lan_ co fe_lagL;e eg € StekE)-V\I.ISGRE,i\I%\OfI’It m us.e‘z bour covariance model. These two covariance models were developed by

probabilistic profiles for identifying basic t eatures: AbOX' 4jigning selenocysteine tRNAs with inferred secondary structure

nucleotide composition, ‘B box" composition, nucleotide dis;¢ormation. Another program in the covariance model program

tance between identified A and B boxes and distance betweﬁﬂte coveb was used to build covariance models from the
identified B boxes and RNA polymerase Il termination signal ;

» tive thymi leotid | h Structure-annotated RNA sequence alignments. The five prokaryotic
(four or more consecutive thymine nucleotides). In a search, g\ s noted above were used to build the prokaryotic selenocys-

‘intermediate’ score is obtained by adding scores from identifietgine model. Seven selenocysteine tRNAs f@aenorhabditis

A and B boxes to the score for the nucleotide distance betwe, . -
. , : . . ; D hil ! ter, X |agviisk
them. A final score is obtained by adding the intermediate sco? Bgans, Drosophila melanogaster, Xenopus er, Mouse,

to the score for the distance to the nearest termination signal. ﬁvme and human were used to build the eukaryotic model.
the final score is above a specific cutoff, the tRNA identity and
location are saved. Databases tested

Scores from over 30 example tRNAs described in the original . o )
publication match our implementation to within 0.1 log odds unit4RNA detection rates were assessed primarily by searching two
tRNAscan-SE uses a less selective version of the algorithnotated databases: the 1995 release of the Sprinz/ tRNA databas
described above which does not search for transcription terminatiéftrieved from ftp://ftp.ebi.ac.uk/pub/databases/tirg; and a
signals; instead, the intermediate score is used as a final cutoff. ABJNA sequence subset of GenBank (retrieved from the National
the intermediate score cutoff is loosened slightly to —32.10 relatifegnter for Biotechnology Information on 9/24/96). Genomic DNA
to the intermediate cutoff described in the original algorithm, —31.2%/as also searched frofaemophilus influenza. 1.0, from the
Although the program is designed for eukaryotic tRNA detectiofnstitute for Genome Research (TIGR) ftp site at ftp:/ftp.tigr.org/
we found EufindtRNA to be effective at identifying prokaryoticPub/data)Mycoplasma genitaliungrel. 10/9/95, TIGR ftp site),
tRNAs if the intermediate cutoff score is further adjustedViethanococcus jannasclfiietrieved on 8/27/96, TIGR ftp site)
tRNAscan-SE has a specific option (-P) for scanning prokaryotgaccharomyces cerevisigel. 4/24/96 from ftp://mips.embnet.org/
sequences which loosens the intermediate cutoff score to —36/@ast).Schizosaccharomyces ponfbempleted cosmids retrieved
Also, as with tRNAscan 1.4, ambiguous nucleotides are automdfom http:/AMww.sanger.ac.ukfeastpub/svw/pombe.html  on
cally assigned the best of the four non-ambiguous nucleotide scop&30/96), Caenorhabditis elegangcompleted cosmids  retrieved
at that position in the scoring matrices. 11/13/96 from ftp://fftp.sanger.ac.uk/pub/C.elegans_sequesicds)
Human (completed cosmids retrieved 8/28/96 from
ftp:/ftp.sanger.ac.uk/pub/human).

The Sprinzl tRNA database is the most comprehensive tRNA
The primary and secondary structure of selenocysteine tRNAstabase, containing 2700 entries from a wide variety of
differ from canonical tRNAs in several respects, most notably arganisms 7). It provides a set of trusted ‘true positives’ for

Selenocysteine tRNA identification
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evaluating the sensitivity of a detection method. Since tRNAscan-3plementation and online analysis

was optimized for analyzing bacterial, archaeal and eukaryoti NAscan-SE was written in Perl. The implementation of the
genomic DNA, the 1144 tRNAs from species in these groudggavesi algorithmi(3), EufindtRNA, was written in C. A single

were chosen for analysis, excluding mitochondrial, chloroplast .
and viral tRNA sequences. From this set, tRNAs that were usgackage of UNIX-based programs used by tRNAscan-SE is

to train the TRNA2.cm covariance model (553 tRNAs in the 199 vailable at http://genome.wustl.edu/eddy/. All analysis times

release of the database) were removed to increase the inde yen are for a Silicon Graphics Indigo2 R4400 200 Mhz
Ofkstation. A web server is available for online tRNA analysis

dence between training and testing sequence data. Entries Wﬁrﬁttp'//genome wustl.edu/eddy/tRNAscan-SE/
restored to their correct primary sequence by combining the ’ ' ' '

Sprinzl structural alignment with the atypical insertions that are
annotated in a separate file. Introns, not present in the Sprir'fi'lESULTS

sequences or annotation, were not restored. Two prokaryoiGymmary of the overall sensitivity, selectivity and search speed

sequences (DI1950, DR1420) were removed which woulgh the four tRNA search programs tested is shown in Tablee

contain introns over 200 base pairs (bp) long had introns begimper of true positives is based on the percentage of tRNAs

included; none of the current tRNA search programs attempt gtected within a test set taken from the Sprinzl tRNA database

detect tRNA genes containing long group | or group Il introns.(Taple2). The false positive rate is based on analysis of randomly
A broad sample of non-viral, non-organellar GenBanlgenerated sequence data (Tat)leThe search speeds for the

sequences indicating at least one tRNA in their feature tables wagious programs are shown for a scan of the curehegans

also analyzedCaenorhabditis elegar@ndS.cerevisiasequences genomic sequences averaging 30 Kbp per clone. tRNAscan 1.3

were excluded since these genomic sequences were tesiedrch speed decreases approximately linearly with length.

separately. The sequences were retrieved using the IRX quSwarch speed for tRNAscan-SE is approximately constant, but

system at the National Center for Biotechnology Informationaries based on tRNA density within the sequence.

(NCBI). Incomplete or synthetic tRNA sequences were removed,

y|e|d|ng a tOta| Of 1051 II’I the set. GenBank Sequence annotatrﬁuMe 1.0Overall detection rates of tRNA search programs

was not relied upon as a measure of the true number of tRNAs in

the set since annotation quality is highly variable. Instead, tRNA True positives  False positives Search speed
detection by covariance model analysis was used to estimate the (%) (per Mbp) (bpls)
total number of tRNAs. Sequences with no tRNAs detected bysaccan 1.3 951 037 200

covariance model analysis were manually examined to determine

why annotated tRNAs were not detected, and six believed to P findtRNA 8.8 0.23 373000
tRNAs were added to the covariance model-detected set. ThiENA covariance 99.8 <0.002 20
method gave us a reasonable lower bound on the number of trigdel search

positives in the GenBank subset. tRNAscan-SE 99.5 < 0.00007 30 000

True positives are based on detection rates within a non-organellar, non-viral

subset of the Sprinzl tRNA database (Table 2). False positive rates are estimates

based on searches of randomly generated human sequence (Table 4). Searct

speeds are from a search of 58.4 Mb@ @flegan<osmid sequences on a Sili-

con Graphics Indigo2 R4400 200 Mhz workstation.

Two types of random sequence databases were created to al‘l:etg{ndtRNA_is based on the Paves_i search algorithm which was (_1esigned to de-
. . . . tect eukaryotic tRNAs only; searching only eukaryotic tRNAs, EufindtRNA has

false positive rates. The first database is generated by a fifth orgf"%r8

Markov chain based on 6mer frequencies within the first 54 Mbp

of genomic sequence from tleeleganggenome project. Two

thousand cosmid-sized sequences, 50 kilobases (Kbp) each, wegasitivity

generated based on these frequencies, totaling 100 Mbp 8 Ascan-SE was shown to be more sensitive than tRNAscan
random sequence which is tRNA-free. The second randoins p several measures, the first being a search of the Sprinzl and
d_atabase was created to roughly simulate the hun_1an genomesihBank databases subsets (Tablen the Sprinzl test set,

size and GC content. Not enough human genomic sequencelfascan-SE detected 586 of 589 known tRNAS (99.5%),
available to parameterize a fifth order Markov chain model, sgarsys 560 of 589 (95.1%) for tRNAscan 1.3. Of all 1144
human sequence was simulated based on isochore proportion ggfl organellar tRNAs in the complete Sprinzl database, tRNAscan-
%GC content. Ten thousand 300 Kbp sequences were generagdails to recognize seven. One was a eukaryotic sequence from
each one with a GC content approximating one of the fivgrypanosoma bruc¢Sprinzl ID DT6050, GenBank TBTRNA3)
isochore types (L1 or L2, 40% GC; H1, 45% GC; H2, 49% GGihich has been previously noted by Paetsil. (13) as being

H3, 53% GC;28). The isochore identities for these randommissed by both tRNAscan 1.3 and the Pavesi search algorithm.
sequences were chosen to approximate the proportion egufe other six tRNAs missed by tRNAscan-SE were from various
isochore represents in the human genome (L1 + L2 60%, H1 208ubacteria (Sprinzl IDs: DA1543, DE2180, DG1351, DG1482,
H2 10%, H3 5%). The remaining 5% of the human genomBS1250 and RG1380). Several of these undetected tRNAs appear
attributed to ALU-type repeat elements were not included singe be irregular in source or function. DE2180 is derived from
ALU sequences were tested separately (the absent 5% viNA from the cyanelle (a photosynthetic organelle) of the
distributed proportionally among the other isochore types).  unicellular eukaryoteCyanophora paradoxaand is thus

‘Random’ sequence data

.6% true positive detection rate (Table 2).
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misclassified as eubacterial in the database. DG1482 and RG1&3fhome analysis
both contain substitutions of four highly conserved bases within
the TWC loop, an indication that the tRNAs are probably used in o . .
synthesis of the peptidoglycan instead of protein transl@@n ( Another measure of sensitivity was derived from searching
All seven of these atypical tRNAs were detected using covariant@MPIete or partial genomic sequence data from eubacterial,
model analysis. The tRNA covariance model search does mii¢haebacterial, yeast acelegansequencing projects (Table
two tRNAs within the 1144-member Sprinzl database subsed- FOr Mycoplasma genitaliumB3 tRNAs were noted in the
both selenocysteine tRNAs (Sprinzl ID DZ1430 and Dz7742§ublished ~ §0) and  online ~ gene identifications
that pass below the 20.0 bit cutoff at 0.60 and 14.19 bit§tP://www.tigr.org/tdb/mdb/mgdb/mgdb.html), whereas 36
respectively. EufindtRNA, designed to search eukaryotiERNAs were detected by three tRNA detec'uon.methods (tRNAscan
sequences exclusively, shows improved sensitivity for eukaryotle3: tRNAscan-SE, covariance model analysis). The three tRNAs
tRNAs (98.6%) over tRNAscan 1.3 (95.0%), but is still slightly"0t appearing in the literature are for Arg (anticodon: CCT,
less sensitive than tRNAscan-SE (100%). Over the thrdunds: 306615-306686, upper strand), Leu (anticodon: CAA,
phylogenetic domains, tRNA covariance model analysis appedt@unds: 448783-448861, upper strand), and Leu (anticodon:
to be the most sensitive detection method, yet tRNAscan-SE trd@é\G, bounds: 446265-446181, reverse strand). For the com-
by as little as one third of one percentage point. pletedH.influenzaggenome, 56 tRNAs are noted in the literature
Searching the GenBank subset sequences which contain [€55 and online gene identifications  (http://www.tigr.org/tdb/
reliable tRNA annotation, tRNAscan-SE detects 98.5% of th@db/hidb/hidb.html). tRNAscan-SE and covariance model
1462 tRNAs verified by either covariance model analysis cnalysis both identify the tRNAs noted in the literature, plus two
visual inspection, whereas tRNAscan 1.3 has a 93.4% detectigptentially novel tRNAs not noted in the literature: SelCys
rate (Table2). All prediction discrepancies were visually (@nticodon: TCA, bounds: 753291-753201, reverse strand) and
inspected. Of the 18 tRNAs that covariance model analysig€u (anticodon: GAG, tRNA bounds: 1576453-1576372, intron
detected but were missed by all three other methods, all hbgunds: 1576419-1576408, reverse strand). The first is a
scores over 36 bits, and were annotated in the GenBank entrigglenocysteine tRNA and the other appears to be either a
The two tRNAs detected by tRNAscan-SE but missed bpseudogene or a true tRNA containing a short intron. The
covariance model analysis were a selenocysteine tRNgglenocysteine tRNA identification is not unexpected; BLAST
(CTTRSEL; same as previously noted Sprinzl DZ1430 tRNA)searches identify two enzymes in the selenocysteine insertion
and a long tRNA fronHaloferax volcani(HALTGW) whose pathway, as well formate dehydrogenase containing a ‘UGA
104 bp intron caused the tRNA to exceed the maximum totaglenocysteine-insertion codon. The evidence for the other
length limit for normal tRNA covariance model analysispotentially novel tRNA is less certain. The short 12 bp ‘intron’
(150 bp). Of the nine sequences annotated as tRNAs but misgeziild presumably require protein splicing to generate a func-
by all four detection methods, four have large group | or group tional tRNA, a feature that would be novel among eubacterial
introns of 241 bp or larger (ANATGL, SSU10482, PHU29955{RNAs. However, the covariance model score of 36.88 bits for the
SYOTRNLUAA), and five appear to have either sequencingRNA is well above the minimum cutoff of 20 bits, indicating that
errors or modified bases which appear in the GenBank annotatiftwe sequence is likely to have evolutionary homology with tRNA.
but not in the sequence (corresponding tRNAs within the Sprinltlis possible that it is a pseudogene. tRNAscan 1.3 identifies 55
database were identified correctly by all four detection methods)f the 56 tRNAs noted in the literature (Gly-B, by TIGR
Because of sequence discrepancies between the GenBaoknenclature, is not detected), and does not detect either of the
sequences and corresponding Sprinzl entries, these five GenBankel tRNAs detected by tRNAscan-SE and covariance model
tRNAs were not included in the 1462-member test set. analysis.

Table 2.tRNA prediction within annotated database subsets

Sequence source Literature tRNAscan 1.3 EufindtRNA tRNA CM tRNAscan-SE
tRNAs Total (%) Total (%) Total (%) Total (%)
Sprinzl db (Archaea) 70 69 (98.6) 43 (61.4p 70 (100) 70 (100)
Sprinzl db (Eubacteria) 240 226 (94.2) 205 (88.4) 239 (99.6) 237 (98.7)
Sprinzl db (Eukarya) 279 265  (95.0) 275 (98.6) 279 (100) 279  (100)
Sprinzl db (total) 589 560 (95.1) 523 (88.8) 588 (99.8) 586 (99.5)
Genbank tRNA subset 1462 1366  (93.4) 760 (52.0) 1456  (99.6) 1440  (98.5)

The detection rates for the Sprinzl tRNA database are broken down by phylogenetic domain. The Sprinzl subset tested contains only non-organellar, non-viral t
which were not used in training of the tRNA covariance model. For the Sprinzl database subset, numbers in parentheses indicate percentage of correct tRNA ic
cations relative to total in the literature. The GenBank subset sequences were selected by retrieving non-organellar, non-viral, full-length tRNA sequences
‘tRNA indicated in the feature field of the entry. Since GenBank tRNA annotation is less reliable, the numbers in parentheses for this row are the percentage of ¢
tRNA identifications relative to all tRNAs verified by either covariance model analysis or visual inspection.

aEufindtRNA is based on the Pavesi search algorithm (13) which was designed specifically to find only cytoplasmic eukaryotic tRNAs.
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Table 3.tRNAs identified in genomic databases by various search methods

Sequence source Size Literature tRNAscan 1.3 EufindtRNA2 tRNA CM tRNAscan-SE
(Kbp) tRNAs Total (%) Total (%) Total (%) Total (%)
M.genitalium 580 33 36 (100) 19 (52.8) 36 (100) 36 (100)
+1FP
H.influenzae 1830 56 55 (98.2) 42 (73.7) 58 (103.6) 58 (103.6)
+2 FP
M.jannaschii 1730 37 36 (97.3) 20 (54.0) 37 (100) 37 (100)
+1 FP
S.pombéthrough 9/96) 4176 - 45 (93.7) 46 (95.8) 48 48 (100)
+4 FP +1FP
S.cerevisiae 12 057 273 270 (98.5) 274 (100) 274 274 (100)
+4 FP +10 FP
+1 pseudo +1 pseudo +1 pseudo
C.elegangthrough 11/13/96) 58 402 - 389 (96.5) 400 (99.2) 403 403 (100)
16 FP +29 FP +355 FP +11 id pseudo
+19 pseudo +23 pseudo +8 pseudo
P.anserinamitochondrion 100 27 18 (66.7) 11 (40.7) 27 (100) 22 (81.5)

‘Literature’ column represents the published number of tRNAs found within genomes. ‘Total’ columns indicate total number of tRNAs found in searches for e
program. Numbers in parentheses in (%) columns indicate percentage of tRNAs detected relative to litendlueagae, M.jannaschii, P.anserinay when
published tRNA annotation is incomplete or uncertdmeénitalium S.pombe, S.cerevisiae, C.elegadgtection percentages are relative to total tRNAs found

by tRNA covariance model analysis and supported by manual inspection. ‘FP’, false positives determined by covariance model analysis and manual inspection
do not include pseudogenes that have strong similarity to known tRNAS). ‘pseudo’, tRNA identifications which appear to be pseudogenes tameations

of 3-16 bp, large insertions or deletions elsewhere, or other characteristics of tRNA-derived repetitive elements. ‘id pseudo’, tRNAs automatically identifiec
tRNAscan-SE as likely pseudogenes which have qualities similar to manually detected pseudogenes described above.

aeufindtRNA is based on an algorithm (13) which was designed specifically to find only cytoplasmic eukaryotic tRNAs.

The genomic sequence of the archaebactekjannaschii  previously published in the literature, we again relied on
was also analyzed. Both tRNAscan-SE and covariance modgivariance model detection of tRNAs as our best measure for
analysis identified all 37 tRNAs as given in the literatG®.( ‘true’ tRNAs. Conflicts in tRNA predictions between tRNAscan
tRNAscan 1.3 identified 36 of the 37 tRNAs, missing the singl¢.3, tRNAscan-SE and covariance model analysis were all
selenocysteine tRNA in the set. We also scanned the recendlyamined manually for highly conserved primary sequence
completed genomic sequence of the budding y@astharo-  motifs and proper secondary structure. As most tRNA species are
myces cerevisigd2 Mbp). The covariance model search took 14nylticopy in eukaryotes, BLAST similarity searches were used
days to complete, and produced 275 tRNAs. Based either @ihelp discern ‘false positives’ from pseudogenes. We define
inspection for ability to form correct tRNA secondary structureggise positives as predicted tRNAs which do not appear to be
or exact identity with previously characterized yeast tRNAS, wg,olytionarily derived from true tRNAs. These false positives are
believe 274 predicted tRNAs are true tRNAs, and one is &qessed by failure to form recognizable tRNA secondary
pseudogene with a 7 bp tuncation. One of these 274 tRNAS g;cyre and the lack of related tRNAs elsewhere in the genome.
was missing fror_n the_ yeast genome project web site annotati geudogenes, on the other hand, usually have at least partial
(http://speedy.mips.biochem.mpg.de/mips/yeast), but this {RNA secondary structure, plus clear deletions or insertions

probably an oversight since a tRNA of identical sequence Ig%lative to at least one related, intact tRNA elsewhere in the

correctly annotated elsewhere in the genome [tRNA—Iﬁ%enome. tRNA-derived mobile elements also have recognizable

(GCTLR2]. tRNAscan-SE took 19 min and detected the sa rimary sequence similarity to tRNAs, although most have poor
275 tRNAs found i del lysis. EufindtRN el
s found by covariance model analysis, Eufin j@NA secondary structure similarity. Of the 403 complete tRNAs

found the same 275 tRNAs in just over 1 min. tRNAscan 1.3 tod ; .
(10 h to complete, and missed four (two pairs identical i etected by covariance model analysis, tRNAscan-SE detected

sequence) of the 274 true tRNAs found by the other thréll 403 tRNAs (100%), whereas tRNAscan 1.3 detected 389

methods. Four Mbp of available genomic sequenceSipombe  (96.5%) and EufindtRNA found 400 (99.2%). o

(fission yeast) was also analyzed. tRNAscan-SE and covariancdaken together, the data analyzed from Kheenitalium,

model analysis both predict 48 tRNAs. tRNAscan 1.3 identifiel-influenzae, M.jannaschii, S.cerevisiae, S.pcanb€.elegans

45 of the 48 predicted by covariance model analysis (two out 8enomes, 100% of the 856 tRNAs detected by covariance model

three missed were identical in sequence), whereas EufindtRNaalysis were found by tRNAscan-SE. tRNAscan 1.3 detected

identifies 46 of the 48 total tRNAs. 831, missing 25 tRNAs identified by covariance models, a 97.1%
Finally, we scanned the largest set of genomic sequendetection rate. EufindtRNA detects 93.5% of the 856 tRNA set,

currently available, 58.4 Mbp from th€.elegansgenome but if only eukaryotic genomes are considered, the program finds

project. Since only a handful of the tRNAs detected have be&20 of 725 (99.3%).
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Table 4.False positive rates for actual and simulated genomes

Size (Mbp) tRNAscan 1.8 EufindtRNA tRNA CM tRNAscan-SE

FP FP/Mbp FP FP/Mbp FP FP/Mbp FP FP/Mbp
S.cerevisiae
Actual FP (completed genome) 12.0 4 0.33 10 0.83 0 <0.08 0 <0.08
C.elegans
Actual FP (portion completed) 58.4 29 0.50 355 6.08 0 <0.03 0 <0.03
Simulated FP (total genome) 100 42.5 0.42 26 0.26 0 <0.01 0 <0.001
Human
Actual FP (portion completed) 5.32 3 0.56 5 0.94 0 <0.19 0 <0.19
Simulated FP (total genome) 3000 1118 0.37 684 0.23 ND - 0 < 0.00007

a8Searches performed with tRNAscan 1.4, but all false positives verified with unaltered tRNAscan 1.3.

‘Actual FP’ rows contain false positives detected in actual genomic sequence. ‘Simulated FP’ rows contain the false positives found in whole-genome scale ra
sequence simulations (10 trials @elegansfive for human). For tRNA covariance model searches (tRNA CM), only one radgédegansnd no human genome
simulations were performed due to extreme CPU demands (ND, not done).

Table 5. Analysis time in hours required for various complete genomes and tRNA search algorithms

Complete Size tRNAscan 1.3 EufindtRNA tRNA CM tRNAscan-SE
genome (Mbp) (CPU hours) (CPU hours) (CPU hours) (CPU hours)
P.anserinamitochondrion 0.1 0.14 <0.001 2.8 0.019
H.influenzae 18 2.54 <0.001 51 0.069
S.cerevisiae 12 16.7 0.02 333 0.33
C.elegans 100 139 0.15 2780 1.8

Human 3000 >4170 7.1 83 300 36.6

Actual genome scan times are given for tRNAscan-SE and EufindtRNA (genome simulation times used for human). Estimated scan times are given for tRN/
1.3 (400 bp/s) and tRNA covariance model analysis (tRNA CM; 20 bp/s).

Selectivity positive. False positives due to biologically-derived repetitive
. ) e . : lements or pseudogenes are not taken into account in these
While the ‘sensitivity’ of an algorithm is measured by the. :
proportion of true positives identified in reference sequences,S nthetic test sdequences, ar]:d m(l;St be addressed sepa(atelly. h
method’s ‘selectivity’ is measured by its ability to avoid . € generated two typfeso Iran om sdecr]]uence sets to simulate the
misidentifying unrelated sequences as true tRNAs. Increasdg’ and GC content o tieelegansand human genomes_(lOO
sensitivity is usually gained at the expense of an increased fa I|on anq 3 billion bases of random sequence, _rgspectlvely, as
positive rate. A rate of one false positive per five to ten millio escribed n the Methods). The numbgr of false positves found with
bases of sequence has, in the past, been acceptable since the§@3i2g0rithm appear in Taklalong with false positive rates from

ual genomic sequence (discussed below). Analysis of the

amount of uncharacterized or non-protein coding sequence in : .
databases has been relatively small. However, with the advemsgpulated genomes gave consistent false positive rates between the

whole-genome sequencing projects on the megabase scale, YREOUS trials, atftD.40 false positives per million bases for
false positive rate is of much greater concern. tRNAscan 1.3, a litttle more than half'that for EufindtRNA, and zero
Assessing the ability of an algorithm to discriminate betweefer both tRNAscan-SE and covariance model analysis. In 10
true and false positives using biological sequence data can iBdependentC.elegansgenome simulations, an average of 42.5
difficult. At false positive rates of less than one per million base§XNAs were identified by tRNAscan 1.4. The sequences for the false
there is not enough well annotated sequence in the public databagsitive tRNAs were saved and analyzed with the original
to give a reliable indication of an algorithm’s true performancdRNAscan 1.3 program to confirm that false positives were due to
Even for the data that is available, it is uncertain whether or not #i¢ tRNAscan 1.3 algorithm, not the modifications introduced in
accurate prediction has been made in the absence of biochemiBi§Ascan 1.4. EufindtRNA misidentified an average of 26 false
experimental evidence. An alternative strategy is to genergdesitives per simulated.elegangenome. Both tRNAscan-SE and
random nucleotide sequence which is known to have ribe tRNA covariance model searches found zero positives for every
biologically-derived gnes. An unlimited amount of random trial (only one genome simulation was searched with the tRNA
sequence can be generated based on a general or species-specifiriance model due to the extreme CPU demands). As seen in
genomic nucleotide frequency. Each identification of a tRNA gengable 5, minor differences among analysis times for the various
in this random sequence can then be confidently counted as a fatsgthods for microbial genomes become substantial when analyzing
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larger eukaryotic genomes. Analysis of the si@gidegangenome  additional confidence to the estimates based on simulated
simulation with covariance models required almost four CPWequence data.
months. tRNAscan-SE produced no obvious false positives in the

For the five human genome simulations, tRNAscan 1.€.elegangienomic sequence, but did identify eight tRNAs that
produced an average of 1118 false positives per genome (hagre judged to be possible pseudogenes by manual inspection
tRNAscan 1.3 been used, it would have taken almost half a CFUTable3). Eleven other tRNAs were automatically identified as
year per trial). EufindtRNA searched the simulated genomes jiseudogenes via primary or secondary structure scores that fell
just over 7 h per trial, giving an average of 684 falsely predictdzelow minimum values described in the methods. All 19
tRNAs for each. Had we searched the entire 3 billion nucleotigeseudogenes had strong similarity to other tRNAs within the
human genome simulation with tRNA covariance model analygenome, and contained unusual features such as 3-16 bp
sis, it would have taken over nine CPU years for each trial (Taldieincations of the'send of the gene, or other large insertions or
5). Based on the histogram of covariance model scores agaidstetions within the sequence. One could consider detection of
500 million bases of simulated human sequence data (not showhgse possible pseudogenes a desirable feature of tRNAscan-SE’
we estimate that the tRNA covariance model search of tlsensitivity. Further studies of these unusual tRNAs may help
simulated human genome would have produced zero falbetter elucidate aspects of genome dynamics, genetic element
positives. tRNAscan-SE required an average of 1.5 days to scaability and evolution.
each of the three billion nucleotide test sets, and produced no false
positives in any of the five trials (the exact same sequences wey;
used as in the trials described above for tRNAscan 1.4 an
EufindtRNA). There are not enough selenocysteine tRNA sequences to properly

A concern not addressed by the random sequence genogwaluate tRNAscan-SE’'s selenocysteine detection accuracy.
simulations is the ‘false positive’ rate caused by certain classesTifree selenocysteine tRNAs (one each frbhinfluenzae
SINEs that are suspected to be derived from tRNA gérig)s ( M.jannaschiiand C.elegank were detected in recent genome
These elements have similarity to known tRNA genes and contaisquence data. Theinfluenza¢RNA, previously unrecognized
well conserved RNA polymerase Il internal A and B boxin the literature, was detected by the prokaryotic selenocysteine-
promoters. To assess tRNAscan-SE’s ability to identify anspecific routines and covariance model. The tRNA from the
exclude these types of pseudo-tRNAs, the repeat elemaetligtantly relatedV.jannaschii however, was detected by the
database Repbase maintained by Jerzy Jurka standard EufindtRNA algorithm and general tRNA covariance
(ftp://ncbi.nim.nih.gov/repository/repbase) was scanned. Of thmodel. The failure of the specialized routines may have been due
reference sequences searched, tRNAscan-SE did not produceianyart to the fact that this is the first and only archaebacterial
false positive tRNA identifications. Covariance model analysiselenocysteine tRNA available to date. For the remaining
however, did misidentify 12 of 775 rodent B2 SINE sequenca®on-archaeal selenocysteine tRNAs, use of the specialized
and two ALU-like sequences (bovine ALU-like repetitive models boosts covariance model scores from the 20—40 bit range
element and rat ALU type lll-like repetitive element), all withto 45—72 bits. Since accurate tRNA secondary structure predic-
scores between 20 and 28 bits. Rat identifier (ID or R.dre.1ipn relies on correct alignment of the tRNA sequence to the
sequences, also known to have high similarity to alanine, prolitevariance model, use of selenocysteine-specific models for
and other tRNAs, were searched within GenBank and dbESfiese tRNAs improves the accuracy of structure predictions. A
(database of expressed sequence &8)stRNAscan-SE mis- search of the non-redundant database (nrdb) maintained at NCBI
identified four rat ID element sequences total, one from GenBangvealed no new selenocysteine tRNAs from species for which
(RATRSIDH) and three from dbEST (R46943, R46943 anthere was no previously noted sequence.

R82886). The extreme sensitivity of covariance model analysis is
also unable to distinguish between these SINEs and true tRN
giving bit scores between 24.5 and 33.1 bits. tRNAscan 1.
requires strong adherence to secondary structure rules, thus dg@$Ascan-SE correctly predicted the introns for the 13 species of
not call any of these pseudogenes as tRNAs. The iRepbaise  intron-containing tRNAs in theS.cerevisiaegenome &4).
including consensus and database collections of ALU, L1, THERNAscan 1.3 often gives multiple intron predictions for each
MIR, MIR2, THR and B1 repetitive elements, were also searcheRNA, making correct placement uncertain. EufindtRNA does
with tRNAscan-SE, giving no other false positives. not attempt to predict intron boundaries at &) (

The selectivity of tRNAscan has already affected genome Detection of tRNAs containing long introns, usually group | or
sequence annotation detrimentally. In 58.4 MbiC@flegans group I, is problematic. The default maximum tRNA length for
genomic sequence, tRNAscan 1.3 produced 29 tRNAs whi¢RNAscan-SE is 192 bp, but this can be increased (option -L
were judged to be false positives (0.50 FP/Mbp) based amax length>) to allow searches with no practical limit on tRNA
searching with the tRNA covariance model, visual inspection déngth. In the first phase of tRNAscan-SE, EufindtRNA searches
secondary structure and lack of primary sequence similarity for A and B boxes of the specified maximum distance apart, and
any other tRNAs within the genome. Since both the Washingtgasses only the &nd 3tRNA ends to covariance model analysis
University Genome Sequencing Center (St Louis) and the Sander confirmation (removing the bulk of long intervening
Center (Cambridge, UK) used tRNAscan 1.3 in semi-automategquences). Using this option, tRNAscan-SE was able to detect
sequence annotation until very recently, 16 of these 29 fal#free of the four long tRNAs initially missed by all four methods
positives are annotated as tRNAs in finished, submitted GenBainkthe GenBank tRNA subset search (the fourth tRNA was
entries. This false positive rate is very close to that seen in thadetectable with EufindtRNA even with the intron removed
randomC.elegansgenome simulation (0.42 FP/Mbp), giving before analysis). Group | or Il introns in tRNAs tend to occur in

enocysteine tRNA detection

ron detection
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positions other than the canonical position of protein-spliceplus three detected with the -L option) whose introns, ranging
introns, so tRNAscan-SE mispredicts the intron bounds arfcbm 104 to 850 bp, exceeded the normal length limit for
anticodon sequence for these casemn® 3tRNA bounds were covariance model detection.

correct for all three unusual tRNAs.

Performance on mitochondrial tRNAs tRNA false positives and pseudogenes

Although tRNAscan-SE was designed with non-organellar tRN

detection in mind, we also tested it on a complete mitochondr lgabases of simulated human sequence (F3bie only six
genome, that ¢?odospora anseringGenBank ID PANMTPAC- iggtances did it agree with EufindtIgNA (relaxed arar>r/1eters) in
GA). tRNAscan-SE detected 22 of the 27 annotated tRNﬁE 9 P

(81.5%), tRNAscan 1.3 detected 18 of 27 (66.7%) and covarianocly identifying a sequence as a tRNA. The majority of false

: : ositives found by tRNAscan 1.4 seem to have tRNA-like
model analysis detected all 27 tRNAs (Taél)leSince organellar P O
genomes are usually small, the computational demand %(f,condary structure but lack similarity to conserved tRNA

covariance model analysis alone (without the use offastfirst-pa%rémary sequence. EUfindtRNA, on the other hand, identifies

scanners) is not prohibitive. For this reason, tRNAscan-SE can %%rrectly spaced primary sequence promoter elements, yet tends

run in covariance model analysis-only mode (-C option) foﬁs'0 Szcrtrulraeecause it does not check for proper tRNA secondary

maximum sensitivity, bypassing dependence on t(RNAscan I. hese observations hold up on examination of false positives
and EufindtRNA. This mode gives the same results as would . P P
m actual genomic sequence fr@relegansMost of the 29

e
obtained by running the covariance model search program alo o . o ;
but in addition, produces annotated tRNA output identical i é])Se positives identified by tRNAscan 1.3 were discarded by

covariance model analysis because of the lack of primary

format to that found in the default tRNAscan-SE search mOdesequence similarity to the general tRNA model. EufindtRNA, on
the other hand, more commonly identifies pseudogene tRNA
DISCUSSION fragments, SINE-like repetitive elements or other tRNA-like
Speed, sensitivity and selectivity sequences cor!taining A and B boxes (Ta)_Jléseudo_ge;nes are
recognizable since part of the sequence is very similar to other
The most sensitive and selective tRNA detection method that weact tRNAs, in spite of truncations or large insertions elsewhere
are aware of utilizes probabilistic RNA covariance modlys ( in the pseudogene. However, tRNA secondary structure in
which are based on stochastic context-free grammar techniqueseudogenes and SINE-like elements tends to be lost more
However, searching with covariance models has two drawbackgiickly than primary sequence promoter elements. This may not
First, it is extremely CPU intensive, requiring days to weeks dfe surprising in light of the observation that portions of tRNA
processor time to scan megabase-size genomic data from higbeguences are thought to help provide mobility for some
eukaryotes. Second, the general nature of the approach hampeidA-derived repetitive elements3g). Since EufindtRNA
output of tRNA-specific feature information such as anticodor(relaxed parameters) only looks for canonical promoter regions,
isotype and intron position. Our goal in the development dfis prone to finding these instances of pseudogenes and repetitive
tRNAscan-SE was to produce a practical (i.e. fast) application efements with tRNA promoters in the absence of structural tRNA
stochastic context-free grammar-based RNA analysis metho@stures.
with sensitivity and selectivity as close as possible to using nativeTo some extent, covariance model analysis is also apt to
covariance model searches. tRNAscan-SE achieves this goalidentify truncated tRNAs and other tRNA-derived sequence
tRNAscan-SE increases tRNA covariance model search spesldments. The minimum cutoff score of 20 bits has been set to
by 1000-3000-fold while offering nearly equal sensitivity andnclude outlying tRNAs with low overall homology to the general
slightly improved selectivity. Selenocysteine tRNA detectiotRNA model. However, if a part of a high-scoring tRNA is
features are built into tRNAscan-SE, including modifications téruncated, the score may be much lower, but still exceed the 20 bit
EufindtRNA and the use of selenocysteine tRNA covariancéareshold. The most extreme example of this occurs with a tRNA
models. With these additions, tRNAscan-SE correctly identifiés the C.elegansosmid WO3A3. The tRNA has 100% identity
both of the selenocysteine tRNAs in the Sprinzl database nwith tRNAS on at least four other cosmids, except for a truncation
detected by normal covariance model analysis. The GenBaokthe first 16 bases that removes thai@le of the aminoacyl
version of one of these two selenocysteine tRNA sequencesceptor stem and the first half of the A box promoter sequence
CTTRSEL fromC.thermoaceticunwas also detected within the (part of the D-loop). tRNAscan 1.3 did not detect this pseudogene
GenBank tRNA subset (the other selenocysteine tRNA was no¢cause of the lost base pairings in the D-loop and aminoacyl
in the GenBank subset). stems, whereas EufindtRNA could not locate the A box promoter
tRNAscan-SE also extends the maximum length of tRNAsequence. Covariance model analysis similarly identified three
detectable to almost any length. In covariance model analysigher pseudogenes that neither tRNAscan 1.3 nor EufindtRNA
search time increases as the square of the maximum tRNA lendtiynd: one appears to have a 13 bp truncation relative to tRNAs
so the search window has typically been limited to 150 bp. lin two other cosmids; one has a peculiar 21 bp insertion in the
tRNAscan-SE, the first-pass scanners define the approximateddle of the A box promoter sequence that makes three
bounds of a tRNA, and for tRNAs with very long introns,near-perfect repeats of the 7mer ‘GTCGCGA; and one cosmid
intervening sequences can be cut out based on the first-phss a pseudo tRNA containing a 55 bp insert in the anticodon loop
analysis. This allows detection of rare, abnormally long tRNA#hat does not appear to be a true intron. Since none of these were
without greatly increasing the overall average search time. In tigentified by either tRNAscan 1.3 or EufindtRNA, tRNAscan-SE
GenBank subset, tRNAscan-SE detected four tRNAs (HALTGWecessarily does not detect them.

@f the 5591 total false positives identified by tRNAscan 1.4 in 15
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tRNAscan-SE does, however, detect 19 other tRNA-like8 Paolella,G. and Russo,T. (19&gmput. Appl. Biosgil, 149-151.

sequences that are identified by EufindtRNA and ‘confirmed’ by® ?hfégildge,R.D., Pirtle,l.L. and Pirtle,R.M. (19&8)mput. Appl. Biosgi.
covariance model analysis (scores greater than 20 bits). Thegey el c.c. (1986)ucleic Acids Resl4, 431-435.

may or may not be pseudogenes. Nine of these invdlve & wozniak,P. and Makalowski,W. (199Ddmput. Appl. Biosci6, 49-50.

truncations of 3-15 nucleotides relative to other tRNAs in the Fichant,G.A. and Burks,C. (1991)Mol. Biol, 220 659-671. _

nematode. It is impossib|e to determine by Computaﬂonéﬁ Pa\éesLA.,Conterlo,F., Bolchi,A., Dieci,G. and Ottonello,S. (1884)eic
- ; : . ; _ Acids Res22, 1247-1256.

analysis alone if these are functional tRNAs or inactive pseud% Altschul,S.F., Gish,W., Miller,W., Myers,E.W. and Lipman,D.J. (1990)

genes. In either case, it is important to be aware of these possible; vl Biol, 215 403-410.

tRNA pseudogenes for possible further experimental and/@s Pearson,W.R. and Lipman,D.J. (19B8&)c. Natl. Acad. Sci. USRS,

computational study. Elucidating a common transpositional 2444-2448.

mechanism for preferential loss of tHeeBd of these tRNAs is 16 Saurin,W. and Marliere,P. (198zomput. Appl. Biosi3, 115-120.
17 Staden,R. (198&omput. Appl. Biosgi4, 53-60.

a question of interest. 18 Gautheret,D., Major,F. and Cedergren,R.J. (188&)put. Appl. Biosci6,
325-331.

Conclusion 19 Sibbald,P.R., Sommerfeldt,H. and Argos,P. (1822hput. Appl. Biosgi
8, 45-48.

tRNAscan-SE has been designed with the demands of hunn Laferrire,A., Gautheret,D. and Cedergren,R.J. (188#)put. Appl.
genome analysis in mind, but can be used for any DNA sequence. Biosci, 10, 211-212.

We estimate that tRNAscan-SE will detéB0.5% of the true 2% f;'g%“dl’%sm”“c"\"' and Viari,A. (1998)ucleic Acids Res24,

tRNAs in the human genome, give zero false posmves(exceptfpg Eddy,S.R. and Durbin,R. (1994jicleic Acids Res22, 2079-2088.
tRNA-derived SINEs and tRNA pseudogenes), and[fBken. 23 Grate,L., Herbster,M., Hughey,R., Haussler,D., Mian,|.S. and Noller,H.
tRNAscan-SE demonstrates that general RNA structural pro- (1994)Pr0ceedingsSecor_1d International Conference on Intelligent
files, covariance models, can be used as the basis for very gﬁ:&?;a‘;‘;fyoéiguw'ﬁfﬁ'oﬁﬁhtﬁglﬁé LS. SjolanderK
sensitive RNA similarity searching. T_he primary limitation is Underwood R.C. and Hahssler,D.'(léM)cléic Acids Re22,
speed. Although the strategy of using fast first-pass tRNA 5112_5120.
scanners in combination with second-stage covariance model Gribskov,M., Luthy,R. and Eisenberg,D. (198@thods Enzymol183
analysis is effective here, this is not an attractive general strategy 146-159.

; ; Krogh,A., Brown,M., Mian,l.S., Sjolander,K. and Haussler,D. (1994)
for searching for other RNA gene family members. Except fi 3. Mol. Biol, 235 15011531,

group | introns §6), there are no fast, specialized algorithms f0b; syeinperg 3., Misch,A. and Sprinzl,M. (198Bcleic Acids Res21,

detection of other RNA gene families, and much effortis required 3011-3015.

for creating these highly specialized new programs. Further wo?R Bernardi,G. (1993pene 135 57-66.

will focus on algorithmic development of covariance mode?g Erfaesee”rgfw aﬁ;"o‘c’g'dﬁsfb(l?,vgﬁﬁageﬂg 1nz g ,3'031—05'23%” RA

search meth_ods that will reduce both time and memory reqwr%- Fleisch’manﬁ,RD.,yBuI’t,C.J,., Kerla’vag']e,A.R., Sutton.G.. Ke”'y,ew’

ments, allowing faster searches for larger RNA genes without the (1995)science27q 397-403.

need for first-pass screens. 31 Fleischmann,R.D., Adams,M.D., White,O., Clayton,R.A., Kirkness,E.F.,
Kerlavage,A.R., Bult,C.J., Tomb,J.F., Dougherty,B.A., Merrick,J2Wg).
(1995)Science269, 496-512.
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