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ABSTRACT

We describe a program, tRNAscan-SE, which identifies
99–100% of transfer RNA genes in DNA sequence
while giving less than one false positive per 15
gigabases. Two previously described tRNA detection
programs are used as fast, first-pass prefilters to
identify candidate tRNAs, which are then analyzed by
a highly selective tRNA covariance model. This work
represents a practical application of RNA covariance
models, which are general, probabilistic secondary
structure profiles based on stochastic context-free
grammars. tRNAscan-SE searches at ∼30 000 bp/s.
Additional extensions to tRNAscan-SE detect unusual
tRNA homologues such as selenocysteine tRNAs,
tRNA-derived repetitive elements and tRNA pseudo-
genes.

INTRODUCTION

Transfer RNA (tRNA) genes are the single largest gene family. A
typical eukaryotic genome contains hundreds of tRNA genes; the
human genome contains an estimated 1300 (1). In a time when
complete genomes are being sequenced, one would like to have
an accurate means of tRNA gene identification. The tRNA
repertoire of an organism affects the codon bias seen in highly
expressed protein coding genes. In extreme cases, selective
pressure for extremely high or low genomic GC content may have
caused loss of a tRNA, producing an unassigned codon (2,3).
Suppressor tRNAs are important genetic loci in many model
organisms. In addition to authentic tRNA genes, tRNA-derived
short interspersed nuclear elements (SINEs) have been identified
in rodents and other mammals as likely mobile genetic elements
(4,5). Detection and discrimination of these elements from true
tRNAs is a desirable feature of tRNA identification methods.

It is commonly believed that the best RNA gene detection
methods are custom-written programs that search for one type of
RNA gene exclusively (6). Numerous tRNA search programs key
on primary sequence patterns and/or secondary structure specific
to tRNAs (7–13). Why bother with specialized tRNA-detection
software instead of using a fast, commonly available similarity
search program such as BLAST (14) or FASTA (15)? Since many
functional RNA genes tend to conserve a common base-paired

secondary structure better than a consensus primary sequence, the
accuracy of RNA similarity searching is much improved by
including secondary structure elements. A group of generalized
RNA gene search tools look for specific combinations of primary
and secondary structure motifs specified by the user (16–21),
although tRNA ‘descriptors’ in these pattern-matching languages
have typically under performed custom-written programs.

tRNAscan 1.3 by Fichant and Burks (12) is perhaps the most
widely used tRNA detection program. It identifies ∼97.5% of true
tRNA genes and gives 0.37 false positives per million base pairs
(Mbp) (12). The algorithm uses a hierarchical, rule-based system
in which each potential tRNA must exceed empirically deter-
mined similarity thresholds for two intragenic promoters, plus
have the ability to form base pairings present in tRNA stem–loop
structures. The false positive rate of tRNAscan has been
acceptable for small genomes, but for larger eukaryotic genomes
it becomes a significant problem. It will produce ∼1100 false
positive tRNAs for the human genome (0.37 false positives/Mbp
for 3000 Mbp); given that there are about 1300 true tRNAs in the
genome, almost half of the tRNAs predicted by tRNAscan will be
false positives.

Pavesi and colleagues have developed a different tRNA
detection algorithm (13) which searches exclusively for linear
sequence signals in the form of eukaryotic RNA polymerase III
promoters and terminators. The sensitivity and selectivity of this
algorithm is roughly comparable to tRNAscan 1.3 in detection of
eukaryotic tRNAs. Notably, the Pavesi algorithm identifies
tRNAs not detected by tRNAscan 1.3, and vice versa (13). The
combined sensitivities of these two programs exceed 99%;
however, the combined false positive rate is about five times that
of tRNAscan alone.

Eddy and Durbin (22) have developed a general RNA structure
similarity search method employing probabilistic RNA structural
profiles, or ‘covariance models’. Covariance models are able to
capture both primary consensus and secondary structure informa-
tion through the use of stochastic context-free grammars (SCFGs;
22–24). Much like sequence profiles (25,26), covariance models
are constructed from multiple sequence alignments. Sequences
are searched against a given covariance model using a three-
dimensional dynamic programming algorithm, similar to a
Smith–Waterman alignment but including base-pairing terms as
well. RNA covariance models have the advantages of high
sensitivity, high specificity and general applicability to any RNA
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sequence family of interest, obviating the need for custom-written
software for each RNA family. However, covariance model
dynamic programming algorithms are almost prohibitively CPU
intensive. A tRNA covariance model identifies >99.98% of true
tRNAs, with a false positive rate of <0.2/Mbp (22), but searching
the human genome with a tRNA covariance model would take
about nine and a half CPU years (based on benchmarks on an SGI
Indigo2 R4400/200 CPU, 140 SPECint92).

We describe here a program, tRNAscan-SE, that combines
three tRNA search methods to attain the specificity of covariance
model analysis with the speed and sensitivities of optimized
versions of tRNAscan 1.3 and the Pavesi search algorithm.
tRNAscan-SE detects 99–100% of true tRNAs, giving fewer than
one false positive per fifteen billion nucleotides of random
sequence, at ∼1000–3000 times the speed of searching with tRNA
covariance models. Additional extensions to tRNAscan-SE allow
detection and accurate secondary structure prediction of unusual
tRNA species including both prokaryotic and eukaryotic seleno-
cysteine tRNA genes, as well as tRNA-derived repetitive
elements and pseudogenes.

METHODS

tRNAscan-SE input consists of DNA or RNA sequences in
FASTA format. tRNA predictions are output in tabular, ACeDB,
or an extended format including tRNA secondary structure
information. tRNAscan-SE does no tRNA detection itself, but
instead negotiates the flow of information between three indepen-
dent tRNA prediction programs, performs some post-processing
and outputs the results (Fig. 1).

tRNAscan-SE works in three phases. In the first stage, it runs
tRNAscan and the Pavesi algorithm on the input sequence. The
first of these two programs is an optimized version of tRNAscan
1.3 (12). The other is an implementation of the Pavesi search
algorithm (13) which we call EufindtRNA. Results from both
programs are merged into one list of candidate tRNAs. Intron
information from tRNAscan 1.3 is discarded because its intron
predictions are typically unreliable. Analysis with the tRNA
covariance model at a later stage (described below) allows
non-ambiguous determination of intron boundaries.

In the second stage, tRNAscan-SE extracts the candidate
subsequences and passes these segments to the covariance model
search program covels (22). Seven flanking nucleotides on both
sides of the candidate tRNAs are included in the subsequence in
case the tRNA was truncated by the initial prediction. The covels
search program applies a tRNA covariance model (TRNA2.cm)
that was made by structurally aligning 1415 tRNAs from the 1993
Sprinzl database (27). Eighty-seven non-canonical ‘group III’
sequences and 509 RNA sequences were removed from the
complete 2011 sequence database as described in (22). To
improve intron prediction, intron sequences were manually
inserted into the Sprinzl alignment for 38 intron-containing
tRNAs of known genomic sequence.

Finally, tRNAscan-SE takes predicted tRNAs that have been
confirmed with covels log odds scores of over 20.0 bits, trims the
tRNA bounds to those predicted by covels and runs the
covariance model global structure alignment program coves (22)
to get a secondary structure prediction. The tRNA isotype is
predicted by identifying the anticodon within the coves secondary
structure output. Introns are identified from this output as runs of

Figure 1. Schematic diagram of tRNAscan-SE algorithm. Steps carried out by
tRNAscan-SE are shown in ovals and rounded-edge boxes. tRNA selection and
analysis performed by external programs are shown in rectangles.

five or more consecutive non-consensus nucleotides within the
anticodon loop.

tRNAscan-SE uses heuristics to try to distinguish pseudogenes
from true tRNAs, primarily on lack of tRNA-like secondary
structure. A second tRNA covariance model (TRNA2ns.cm) was
created from the same alignment, under the constraint that no
secondary structure is conserved (this model is effectively just a
sequence profile, or hidden Markov model). By subtracting a
tRNA’s similarity score to the primary structure-only model from
that using the complete tRNA model, a secondary structure-only
score is obtained. In Bayesian terms, this difference can be
viewed as the evidence for the complete tRNA model, as opposed
to a structureless, sequence-only pseudogene model. We ob-
served that tRNAs with low scores for either component of the
total score were often pseudogenes. Thus, tRNAs are marked as
likely pseudogenes if they have either a score of <10 bits for the
primary sequence component of the total score, or a score of <5
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bits for the secondary structure component of the total score.
Selenocysteine tRNAs are not checked by these rules since they
have atypical primary and secondary structure. Final tRNA
predictions are then saved in tabular, ACeDB or secondary
structure output format.

tRNAscan 1.4

tRNAscan-SE uses an optimized version of tRNAscan 1.3 (12)
which we refer to as tRNAscan 1.4. The core algorithm is
identical to tRNAscan 1.3. tRNAscan versions 1.3 and 1.4 have
identical tRNA detection rates except in the case of ambiguous
nucleotides occurring within the input sequence. There are
implementation errors in tRNAscan 1.3’s handling of ambiguous
nucleotide codes. tRNAscan 1.4 conservatively calls ambiguous
nucleotides as always forming base pairings in stems, and
matching the highest scoring choice in consensus promoter
matrices. This results in a high false positive rate for sequences
containing a large number of ambiguous nucleotides. For our
purposes, this is acceptable because the second stage covariance
model analysis eliminates false positives. Several command line
options were added to tRNAscan 1.4 for convenience in
integration with tRNAscan-SE. Additional code changes were
made to increase the robustness and speed of the program. These
modifications result in a ∼650-fold increase in search speed and
no upper limit on input sequence size.

Implementation of EufindtRNA

EufindtRNA was implemented from the published algorithm by
Pavesi and colleagues (13). The step-wise algorithm uses four
probabilistic profiles for identifying basic tRNA features: ‘A box’
nucleotide composition, ‘B box’ composition, nucleotide dis-
tance between identified A and B boxes and distance between
identified B boxes and RNA polymerase III termination signals
(four or more consecutive thymine nucleotides). In a search, an
‘intermediate’ score is obtained by adding scores from identified
A and B boxes to the score for the nucleotide distance between
them. A final score is obtained by adding the intermediate score
to the score for the distance to the nearest termination signal. If
the final score is above a specific cutoff, the tRNA identity and
location are saved.

Scores from over 30 example tRNAs described in the original
publication match our implementation to within 0.1 log odds units.
tRNAscan-SE uses a less selective version of the algorithm
described above which does not search for transcription termination
signals; instead, the intermediate score is used as a final cutoff. Also,
the intermediate score cutoff is loosened slightly to –32.10 relative
to the intermediate cutoff described in the original algorithm, –31.25.
Although the program is designed for eukaryotic tRNA detection,
we found EufindtRNA to be effective at identifying prokaryotic
tRNAs if the intermediate cutoff score is further adjusted.
tRNAscan-SE has a specific option (-P) for scanning prokaryotic
sequences which loosens the intermediate cutoff score to –36.0.
Also, as with tRNAscan 1.4, ambiguous nucleotides are automati-
cally assigned the best of the four non-ambiguous nucleotide scores
at that position in the scoring matrices.

Selenocysteine tRNA identification

The primary and secondary structure of selenocysteine tRNAs
differ from canonical tRNAs in several respects, most notably an

eight base pair acceptor stem, a long variable region arm and
substitutions at several well-conserved base positions. These
differences make detection and accurate secondary structure
prediction difficult using tRNA search programs geared towards
canonical tRNAs. tRNAscan 1.3 fails to detect most selenocys-
teine tRNAs; the Pavesi algorithm incorporates a separate routine
specifically for eukaryotic selenocysteines; and the TRNA2.cm
covariance model barely detects selenocysteine tRNAs, giving
scores just over the minimum cutoff of 20 bits, and in two cases,
below the cutoff. tRNAscan-SE addresses this problem in the
first-pass stage using EufindtRNA modifications, and in the
second stage using selenocysteine tRNA-specific covariance
models.

The first-pass scanner EufindtRNA implements a specialized
subroutine described by Pavesi et al. (13) for identifying eukaryotic
selenocysteine tRNAs [based on a B box score with a value between
–2.2 and –3.6, and the motif GGTC(C/T)G(G/T)GGT appearing 36
nucleotides upstream of the B box]. To similarly identify prokaryotic
selenocysteine tRNAs, a subroutine was added to EufindtRNA
which detects tRNAs with B box scores between –2.2 and –4.9, and
a conserved sequence motif found in the anticodon loop of all known
prokaryotic selenocysteine tRNAs (anticodon in bold):
GG(A/T)(C/T)TTCAAA(A/T)CC. It is unclear if this motif will
generalize well for new selenocysteine tRNAs, but it is conserved
among the closely related Escherichia coli (Y00299), Proteus
vulgaris (X14255), Haemophilus influenzae (U32753) and
Desulfomicrobium baculatus (X75790) tRNAs, and in the more
distant Clostridium thermoaceticum (Z26950) tRNA. After
EufindtRNA has identified a candidate selenocysteine tRNA, it is
passed to a eukaryotic or prokaryotic selenocysteine-specific
covariance model. These two covariance models were developed by
aligning selenocysteine tRNAs with inferred secondary structure
information. Another program in the covariance model program
suite, coveb, was used to build covariance models from the
structure-annotated RNA sequence alignments. The five prokaryotic
tRNAs noted above were used to build the prokaryotic selenocys-
teine model. Seven selenocysteine tRNAs from Caenorhabditis
elegans, Drosophila melanogaster, Xenopus laevis, chicken, mouse,
bovine and human were used to build the eukaryotic model.

Databases tested

tRNA detection rates were assessed primarily by searching two
annotated databases: the 1995 release of the Sprinzl tRNA database
(retrieved from ftp://ftp.ebi.ac.uk/pub/databases/trna; 27), and a
tRNA sequence subset of GenBank (retrieved from the National
Center for Biotechnology Information on 9/24/96). Genomic DNA
was also searched from Haemophilus influenzae (v. 1.0, from the
Institute for Genome Research (TIGR) ftp site at ftp://ftp.tigr.org/
pub/data), Mycoplasma genitalium (rel. 10/9/95, TIGR ftp site),
Methanococcus jannaschii (retrieved on 8/27/96, TIGR ftp site),
Saccharomyces cerevisiae (rel. 4/24/96 from ftp://mips.embnet.org/
yeast), Schizosaccharomyces pombe (completed cosmids retrieved
from http://www.sanger.ac.uk/∼yeastpub/svw/pombe.html on
9/30/96), Caenorhabditis elegans (completed cosmids retrieved
11/13/96 from ftp://ftp.sanger.ac.uk/pub/C.elegans_sequences), and
Human (completed cosmids retrieved 8/28/96 from
ftp://ftp.sanger.ac.uk/pub/human).

The Sprinzl tRNA database is the most comprehensive tRNA
database, containing 2700 entries from a wide variety of
organisms (27). It provides a set of trusted ‘true positives’ for
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evaluating the sensitivity of a detection method. Since tRNAscan-SE
was optimized for analyzing bacterial, archaeal and eukaryotic
genomic DNA, the 1144 tRNAs from species in these groups
were chosen for analysis, excluding mitochondrial, chloroplast
and viral tRNA sequences. From this set, tRNAs that were used
to train the TRNA2.cm covariance model (553 tRNAs in the 1993
release of the database) were removed to increase the indepen-
dence between training and testing sequence data. Entries were
restored to their correct primary sequence by combining the
Sprinzl structural alignment with the atypical insertions that are
annotated in a separate file. Introns, not present in the Sprinzl
sequences or annotation, were not restored. Two prokaryotic
sequences (DI1950, DR1420) were removed which would
contain introns over 200 base pairs (bp) long had introns been
included; none of the current tRNA search programs attempt to
detect tRNA genes containing long group I or group II introns.

A broad sample of non-viral, non-organellar GenBank
sequences indicating at least one tRNA in their feature tables was
also analyzed. Caenorhabditis elegans and S.cerevisiae sequences
were excluded since these genomic sequences were tested
separately. The sequences were retrieved using the IRX query
system at the National Center for Biotechnology Information
(NCBI). Incomplete or synthetic tRNA sequences were removed,
yielding a total of 1051 in the set. GenBank sequence annotation
was not relied upon as a measure of the true number of tRNAs in
the set since annotation quality is highly variable. Instead, tRNA
detection by covariance model analysis was used to estimate the
total number of tRNAs. Sequences with no tRNAs detected by
covariance model analysis were manually examined to determine
why annotated tRNAs were not detected, and six believed to be
tRNAs were added to the covariance model-detected set. This
method gave us a reasonable lower bound on the number of true
positives in the GenBank subset.

‘Random’ sequence data

Two types of random sequence databases were created to test
false positive rates. The first database is generated by a fifth order
Markov chain based on 6mer frequencies within the first 54 Mbp
of genomic sequence from the C.elegans genome project. Two
thousand cosmid-sized sequences, 50 kilobases (Kbp) each, were
generated based on these frequencies, totaling 100 Mbp of
random sequence which is tRNA-free. The second random
database was created to roughly simulate the human genome in
size and GC content. Not enough human genomic sequence is
available to parameterize a fifth order Markov chain model, so
human sequence was simulated based on isochore proportion and
%GC content. Ten thousand 300 Kbp sequences were generated,
each one with a GC content approximating one of the five
isochore types (L1 or L2, 40% GC; H1, 45% GC; H2, 49% GC;
H3, 53% GC; 28). The isochore identities for these random
sequences were chosen to approximate the proportion each
isochore represents in the human genome (L1 + L2 60%, H1 20%,
H2 10%, H3 5%). The remaining 5% of the human genome
attributed to ALU-type repeat elements were not included since
ALU sequences were tested separately (the absent 5% was
distributed proportionally among the other isochore types).

Implementation and online analysis

tRNAscan-SE was written in Perl. The implementation of the
Pavesi algorithm (13), EufindtRNA, was written in C. A single
package of UNIX-based programs used by tRNAscan-SE is
available at http://genome.wustl.edu/eddy/. All analysis times
given are for a Silicon Graphics Indigo2 R4400 200 Mhz
workstation. A web server is available for online tRNA analysis
at http://genome.wustl.edu/eddy/tRNAscan-SE/.

RESULTS

A summary of the overall sensitivity, selectivity and search speed
for the four tRNA search programs tested is shown in Table 1. The
number of true positives is based on the percentage of tRNAs
detected within a test set taken from the Sprinzl tRNA database
(Table 2). The false positive rate is based on analysis of randomly
generated sequence data (Table 4). The search speeds for the
various programs are shown for a scan of the current C.elegans
genomic sequences averaging 30 Kbp per clone. tRNAscan 1.3
search speed decreases approximately linearly with length.
Search speed for tRNAscan-SE is approximately constant, but
varies based on tRNA density within the sequence.

Table 1. Overall detection rates of tRNA search programs

True positives False positives Search speed
(%) (per Mbp) (bp/s)

tRNAscan 1.3 95.1  0.37  400

EufindtRNA 88.8a  0.23 373 000

tRNA covariance
model search

99.8 < 0.002  20

tRNAscan-SE 99.5 < 0.00007 30 000

True positives are based on detection rates within a non-organellar, non-viral
subset of the Sprinzl tRNA database (Table 2). False positive rates are estimates
based on searches of randomly generated human sequence (Table 4). Search
speeds are from a search of 58.4 Mbp of C.elegans cosmid sequences on a Sili-
con Graphics Indigo2 R4400 200 Mhz workstation.
aEufindtRNA is based on the Pavesi search algorithm which was designed to de-
tect eukaryotic tRNAs only; searching only eukaryotic tRNAs, EufindtRNA has
a 98.6% true positive detection rate (Table 2).

Sensitivity

tRNAscan-SE was shown to be more sensitive than tRNAscan
1.3 by several measures, the first being a search of the Sprinzl and
GenBank databases subsets (Table 2). In the Sprinzl test set,
tRNAscan-SE detected 586 of 589 known tRNAs (99.5%),
versus 560 of 589 (95.1%) for tRNAscan 1.3. Of all 1144
non-organellar tRNAs in the complete Sprinzl database, tRNAscan-
SE fails to recognize seven. One was a eukaryotic sequence from
Trypanosoma brucei (Sprinzl ID DT6050, GenBank TBTRNA3)
which has been previously noted by Pavesi et al. (13) as being
missed by both tRNAscan 1.3 and the Pavesi search algorithm.
The other six tRNAs missed by tRNAscan-SE were from various
eubacteria (Sprinzl IDs: DA1543, DE2180, DG1351, DG1482,
DS1250 and RG1380). Several of these undetected tRNAs appear
to be irregular in source or function. DE2180 is derived from
DNA from the cyanelle (a photosynthetic organelle) of the
unicellular eukaryote Cyanophora paradoxa and is thus
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misclassified as eubacterial in the database. DG1482 and RG1380
both contain substitutions of four highly conserved bases within
the TΨC loop, an indication that the tRNAs are probably used in
synthesis of the peptidoglycan instead of protein translation (29).
All seven of these atypical tRNAs were detected using covariance
model analysis. The tRNA covariance model search does miss
two tRNAs within the 1144-member Sprinzl database subset,
both selenocysteine tRNAs (Sprinzl ID DZ1430 and DZ7742)
that pass below the 20.0 bit cutoff at 0.60 and 14.19 bits,
respectively. EufindtRNA, designed to search eukaryotic
sequences exclusively, shows improved sensitivity for eukaryotic
tRNAs (98.6%) over tRNAscan 1.3 (95.0%), but is still slightly
less sensitive than tRNAscan-SE (100%). Over the three
phylogenetic domains, tRNA covariance model analysis appears
to be the most sensitive detection method, yet tRNAscan-SE trails
by as little as one third of one percentage point.

Searching the GenBank subset sequences which contain less
reliable tRNA annotation, tRNAscan-SE detects 98.5% of the
1462 tRNAs verified by either covariance model analysis or
visual inspection, whereas tRNAscan 1.3 has a 93.4% detection
rate (Table 2). All prediction discrepancies were visually
inspected. Of the 18 tRNAs that covariance model analysis
detected but were missed by all three other methods, all had
scores over 36 bits, and were annotated in the GenBank entries.
The two tRNAs detected by tRNAscan-SE but missed by
covariance model analysis were a selenocysteine tRNA
(CTTRSEL; same as previously noted Sprinzl DZ1430 tRNA),
and a long tRNA from Haloferax volcanii (HALTGW) whose
104 bp intron caused the tRNA to exceed the maximum total
length limit for normal tRNA covariance model analysis
(150 bp). Of the nine sequences annotated as tRNAs but missed
by all four detection methods, four have large group I or group II
introns of 241 bp or larger (ANATGL, SSU10482, PHU29955,
SYOTRNLUAA), and five appear to have either sequencing
errors or modified bases which appear in the GenBank annotation
but not in the sequence (corresponding tRNAs within the Sprinzl
database were identified correctly by all four detection methods).
Because of sequence discrepancies between the GenBank
sequences and corresponding Sprinzl entries, these five GenBank
tRNAs were not included in the 1462-member test set.

Genome analysis

Another measure of sensitivity was derived from searching
complete or partial genomic sequence data from eubacterial,
archaebacterial, yeast and C.elegans sequencing projects (Table
3). For Mycoplasma genitalium, 33 tRNAs were noted in the
published (30) and online gene identifications
(http://www.tigr.org/tdb/mdb/mgdb/mgdb.html), whereas 36
tRNAs were detected by three tRNA detection methods (tRNAscan
1.3, tRNAscan-SE, covariance model analysis). The three tRNAs
not appearing in the literature are for Arg (anticodon: CCT,
bounds: 306615–306686, upper strand), Leu (anticodon: CAA,
bounds: 448783–448861, upper strand), and Leu (anticodon:
GAG, bounds: 446265–446181, reverse strand). For the com-
pleted H.influenzae genome, 56 tRNAs are noted in the literature
(31) and online gene identifications (http://www.tigr.org/tdb/
mdb/hidb/hidb.html). tRNAscan-SE and covariance model
analysis both identify the tRNAs noted in the literature, plus two
potentially novel tRNAs not noted in the literature: SelCys
(anticodon: TCA, bounds: 753291–753201, reverse strand) and
Leu (anticodon: GAG, tRNA bounds: 1576453–1576372, intron
bounds: 1576419–1576408, reverse strand). The first is a
selenocysteine tRNA and the other appears to be either a
pseudogene or a true tRNA containing a short intron. The
selenocysteine tRNA identification is not unexpected; BLAST
searches identify two enzymes in the selenocysteine insertion
pathway, as well formate dehydrogenase containing a ‘UGA’
selenocysteine-insertion codon. The evidence for the other
potentially novel tRNA is less certain. The short 12 bp ‘intron’
would presumably require protein splicing to generate a func-
tional tRNA, a feature that would be novel among eubacterial
tRNAs. However, the covariance model score of 36.88 bits for the
tRNA is well above the minimum cutoff of 20 bits, indicating that
the sequence is likely to have evolutionary homology with tRNA.
It is possible that it is a pseudogene. tRNAscan 1.3 identifies 55
of the 56 tRNAs noted in the literature (Gly-B, by TIGR
nomenclature, is not detected), and does not detect either of the
novel tRNAs detected by tRNAscan-SE and covariance model
analysis.

Table 2. tRNA prediction within annotated database subsets

Sequence source Literature tRNAscan 1.3 EufindtRNA tRNA CM tRNAscan-SE

tRNAs Total (%) Total (%) Total (%) Total (%)

Sprinzl db (Archaea) 70 69 (98.6) 43 (61.4)a 70 (100) 70 (100)

Sprinzl db (Eubacteria) 240 226 (94.2) 205 (85.4)a 239 (99.6) 237 (98.7)

Sprinzl db (Eukarya) 279 265 (95.0) 275 (98.6) 279 (100) 279 (100)

Sprinzl db (total) 589 560 (95.1) 523 (88.8) 588 (99.8) 586 (99.5)

Genbank tRNA subset 1462 1366 (93.4) 760 (52.0) 1456 (99.6) 1440 (98.5)

The detection rates for the Sprinzl tRNA database are broken down by phylogenetic domain. The Sprinzl subset tested contains only non-organellar, non-viral tRNAs
which were not used in training of the tRNA covariance model. For the Sprinzl database subset, numbers in parentheses indicate percentage of correct tRNA identifi-
cations relative to total in the literature. The GenBank subset sequences were selected by retrieving non-organellar, non-viral, full-length tRNA sequences with
‘tRNA’ indicated in the feature field of the entry. Since GenBank tRNA annotation is less reliable, the numbers in parentheses for this row are the percentage of correct
tRNA  identifications relative to all tRNAs verified by either covariance model analysis or visual inspection.
aEufindtRNA is based on the Pavesi search algorithm (13) which was designed specifically to find only cytoplasmic eukaryotic tRNAs.
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Table 3. tRNAs identified in genomic databases by various search methods

Sequence source Size Literature tRNAscan 1.3 EufindtRNAa tRNA CM tRNAscan-SE

(Kbp) tRNAs Total (%) Total (%) Total (%) Total (%)

M.genitalium 580 33 36 (100) 19 (52.8) 36 (100) 36 (100)

+1 FP

H.influenzae 1830 56 55 (98.2) 42 (73.7) 58 (103.6) 58 (103.6)

+2 FP

M.jannaschii 1730 37 36 (97.3) 20 (54.0) 37 (100) 37 (100)

+1 FP

S.pombe (through 9/96) 4176 – 45 (93.7)  46 (95.8) 48 48 (100)

+4 FP +1 FP

S.cerevisiae 12 057 273 270 (98.5) 274 (100) 274 274 (100)

+4 FP +10 FP

+1 pseudo +1 pseudo +1 pseudo

C.elegans (through 11/13/96) 58 402 – 389 (96.5) 400 (99.2) 403 403 (100)

16 FP +29 FP +355 FP +11 id pseudo

+19 pseudo +23 pseudo +8 pseudo

P.anserina mitochondrion 100 27 18 (66.7) 11 (40.7) 27 (100) 22 (81.5)

‘Literature’ column represents the published number of tRNAs found within genomes. ‘Total’ columns indicate total number of tRNAs found in searches for each
program. Numbers in parentheses in (%) columns indicate percentage of tRNAs detected relative to literature (H.influenzae, M.jannaschii, P.anserina), or when
published tRNA annotation is incomplete or uncertain (M.genitalium, S.pombe, S.cerevisiae, C.elegans), detection percentages are relative to total tRNAs found
by tRNA covariance model analysis and supported by manual inspection. ‘FP’, false positives determined by covariance model analysis and manual inspection (these
do not include pseudogenes that have strong similarity to known tRNAs). ‘pseudo’, tRNA identifications which appear to be pseudogenes containing 5′ truncations
of 3–16 bp, large insertions or deletions elsewhere, or other characteristics of tRNA-derived repetitive elements. ‘id pseudo’, tRNAs automatically identified by
tRNAscan-SE as likely pseudogenes which have qualities similar to manually detected pseudogenes described above.
aEufindtRNA is based on an algorithm (13) which was designed specifically to find only cytoplasmic eukaryotic tRNAs.

The genomic sequence of the archaebacterium M.jannaschii
was also analyzed. Both tRNAscan-SE and covariance model
analysis identified all 37 tRNAs as given in the literature (32).
tRNAscan 1.3 identified 36 of the 37 tRNAs, missing the single
selenocysteine tRNA in the set. We also scanned the recently
completed genomic sequence of the budding yeast Saccharo-
myces cerevisiae (12 Mbp). The covariance model search took 14
days to complete, and produced 275 tRNAs. Based either on
inspection for ability to form correct tRNA secondary structure,
or exact identity with previously characterized yeast tRNAs, we
believe 274 predicted tRNAs are true tRNAs, and one is a
pseudogene with a 7 bp 5′ truncation. One of these 274 tRNAs
was missing from the yeast genome project web site annotation
(http://speedy.mips.biochem.mpg.de/mips/yeast), but this is
probably an oversight since a tRNA of identical sequence is
correctly annotated elsewhere in the genome [tRNA_i_S
(GCT)LR2]. tRNAscan-SE took 19 min and detected the same
275 tRNAs found by covariance model analysis. EufindtRNA
found the same 275 tRNAs in just over 1 min. tRNAscan 1.3 took
∼10 h to complete, and missed four (two pairs identical in
sequence) of the 274 true tRNAs found by the other three
methods. Four Mbp of available genomic sequence from S.pombe
(fission yeast) was also analyzed. tRNAscan-SE and covariance
model analysis both predict 48 tRNAs. tRNAscan 1.3 identifies
45 of the 48 predicted by covariance model analysis (two out of
three missed were identical in sequence), whereas EufindtRNA
identifies 46 of the 48 total tRNAs.

Finally, we scanned the largest set of genomic sequence
currently available, 58.4 Mbp from the C.elegans genome
project. Since only a handful of the tRNAs detected have been

previously published in the literature, we again relied on
covariance model detection of tRNAs as our best measure for
‘true’ tRNAs. Conflicts in tRNA predictions between tRNAscan
1.3, tRNAscan-SE and covariance model analysis were all
examined manually for highly conserved primary sequence
motifs and proper secondary structure. As most tRNA species are
multicopy in eukaryotes, BLAST similarity searches were used
to help discern ‘false positives’ from pseudogenes. We define
false positives as predicted tRNAs which do not appear to be
evolutionarily derived from true tRNAs. These false positives are
assessed by failure to form recognizable tRNA secondary
structure and the lack of related tRNAs elsewhere in the genome.
Pseudogenes, on the other hand, usually have at least partial
tRNA secondary structure, plus clear deletions or insertions
relative to at least one related, intact tRNA elsewhere in the
genome. tRNA-derived mobile elements also have recognizable
primary sequence similarity to tRNAs, although most have poor
tRNA secondary structure similarity. Of the 403 complete tRNAs
detected by covariance model analysis, tRNAscan-SE detected
all 403 tRNAs (100%), whereas tRNAscan 1.3 detected 389
(96.5%) and EufindtRNA found 400 (99.2%).

Taken together, the data analyzed from the M.genitalium,
H.influenzae, M.jannaschii, S.cerevisiae, S.pombe and C.elegans
genomes, 100% of the 856 tRNAs detected by covariance model
analysis were found by tRNAscan-SE. tRNAscan 1.3 detected
831, missing 25 tRNAs identified by covariance models, a 97.1%
detection rate. EufindtRNA detects 93.5% of the 856 tRNA set,
but if only eukaryotic genomes are considered, the program finds
720 of 725 (99.3%).
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Table 4. False positive rates for actual and simulated genomes

Size (Mbp) tRNAscan 1.3a EufindtRNA tRNA CM tRNAscan-SE

FP FP/Mbp FP FP/Mbp FP FP/Mbp FP FP/Mbp

S.cerevisiae 

Actual FP (completed genome)  12.0 4 0.33 10 0.83 0 <0.08 0 < 0.08

C.elegans

Actual FP (portion completed)  58.4 29 0.50 355 6.08 0 <0.03 0 < 0.03

Simulated FP (total genome) 100  42.5 0.42 26 0.26 0 <0.01 0 < 0.001

Human

Actual FP (portion completed)  5.32 3 0.56 5 0.94 0 <0.19 0 < 0.19

Simulated FP (total genome) 3000 1118 0.37 684 0.23 ND – 0 < 0.00007

aSearches performed with tRNAscan 1.4, but all false positives verified with unaltered tRNAscan 1.3.
‘Actual FP’ rows contain false positives detected in actual genomic sequence. ‘Simulated FP’ rows contain the false positives found in whole-genome scale random
sequence simulations (10 trials for C.elegans, five for human). For tRNA covariance model searches (tRNA CM), only one random C.elegans and no human genome
simulations were performed due to extreme CPU demands (ND, not done).

Table 5. Analysis time in hours required for various complete genomes and tRNA search algorithms

Complete Size tRNAscan 1.3 EufindtRNA tRNA CM tRNAscan-SE

genome (Mbp)  (CPU hours) (CPU hours) (CPU hours) (CPU hours)

P.anserina mitochondrion 0.1 0.14 <0.001  2.8 0.019

H.influenzae 1.8 2.54 <0.001  51 0.069

S.cerevisiae 12 16.7 0.02  333 0.33

C.elegans 100 139 0.15  2780 1.8

Human 3000 >4170 7.1 83 300 36.6

Actual genome scan times are given for tRNAscan-SE and EufindtRNA (genome simulation times used for human). Estimated scan times are given for tRNAscan
1.3 (400 bp/s) and tRNA covariance model analysis (tRNA CM; 20 bp/s).

Selectivity

While the ‘sensitivity’ of an algorithm is measured by the
proportion of true positives identified in reference sequences, a
method’s ‘selectivity’ is measured by its ability to avoid
misidentifying unrelated sequences as true tRNAs. Increased
sensitivity is usually gained at the expense of an increased false
positive rate. A rate of one false positive per five to ten million
bases of sequence has, in the past, been acceptable since the total
amount of uncharacterized or non-protein coding sequence in the
databases has been relatively small. However, with the advent of
whole-genome sequencing projects on the megabase scale, this
false positive rate is of much greater concern.

Assessing the ability of an algorithm to discriminate between
true and false positives using biological sequence data can be
difficult. At false positive rates of less than one per million bases,
there is not enough well annotated sequence in the public databases
to give a reliable indication of an algorithm’s true performance.
Even for the data that is available, it is uncertain whether or not an
accurate prediction has been made in the absence of biochemical
experimental evidence. An alternative strategy is to generate
random nucleotide sequence which is known to have no
biologically-derived genes. An unlimited amount of random
sequence can be generated based on a general or species-specific
genomic nucleotide frequency. Each identification of a tRNA gene
in this random sequence can then be confidently counted as a false

positive. False positives due to biologically-derived repetitive
elements or pseudogenes are not taken into account in these
synthetic test sequences, and must be addressed separately.

We generated two types of random sequence sets to simulate the
size and GC content of the C.elegans and human genomes (100
million and 3 billion bases of random sequence, respectively, as
described in the Methods). The number of false positives found with
each algorithm appear in Table 4 along with false positive rates from
actual genomic sequence (discussed below). Analysis of the
simulated genomes gave consistent false positive rates between the
various trials, at ∼0.40 false positives per million bases for
tRNAscan 1.3, a little more than half that for EufindtRNA, and zero
for both tRNAscan-SE and covariance model analysis. In 10
independent C.elegans genome simulations, an average of 42.5
tRNAs were identified by tRNAscan 1.4. The sequences for the false
positive tRNAs were saved and analyzed with the original
tRNAscan 1.3 program to confirm that false positives were due to
the tRNAscan 1.3 algorithm, not the modifications introduced in
tRNAscan 1.4. EufindtRNA misidentified an average of 26 false
positives per simulated C.elegans genome. Both tRNAscan-SE and
the tRNA covariance model searches found zero positives for every
trial (only one genome simulation was searched with the tRNA
covariance model due to the extreme CPU demands). As seen in
Table 5, minor differences among analysis times for the various
methods for microbial genomes become substantial when analyzing
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larger eukaryotic genomes. Analysis of the single C.elegans genome
simulation with covariance models required almost four CPU
months.

For the five human genome simulations, tRNAscan 1.4
produced an average of 1118 false positives per genome (had
tRNAscan 1.3 been used, it would have taken almost half a CPU
year per trial). EufindtRNA searched the simulated genomes in
just over 7 h per trial, giving an average of 684 falsely predicted
tRNAs for each. Had we searched the entire 3 billion nucleotide
human genome simulation with tRNA covariance model analy-
sis, it would have taken over nine CPU years for each trial (Table
5). Based on the histogram of covariance model scores against
500 million bases of simulated human sequence data (not shown),
we estimate that the tRNA covariance model search of the
simulated human genome would have produced zero false
positives. tRNAscan-SE required an average of 1.5 days to scan
each of the three billion nucleotide test sets, and produced no false
positives in any of the five trials (the exact same sequences were
used as in the trials described above for tRNAscan 1.4 and
EufindtRNA).

A concern not addressed by the random sequence genome
simulations is the ‘false positive’ rate caused by certain classes of
SINEs that are suspected to be derived from tRNA genes (4,5).
These elements have similarity to known tRNA genes and contain
well conserved RNA polymerase III internal A and B box
promoters. To assess tRNAscan-SE’s ability to identify and
exclude these types of pseudo-tRNAs, the repeat element
database Repbase maintained by Jerzy Jurka
(ftp://ncbi.nlm.nih.gov/repository/repbase) was scanned. Of the
reference sequences searched, tRNAscan-SE did not produce any
false positive tRNA identifications. Covariance model analysis,
however, did misidentify 12 of 775 rodent B2 SINE sequences
and two ALU-like sequences (bovine ALU-like repetitive
element and rat ALU type III-like repetitive element), all with
scores between 20 and 28 bits. Rat identifier (ID or R.dre.1)
sequences, also known to have high similarity to alanine, proline
and other tRNAs, were searched within GenBank and dbEST
(database of expressed sequence tags, 33). tRNAscan-SE mis-
identified four rat ID element sequences total, one from GenBank
(RATRSIDH) and three from dbEST (R46943, R46943 and
R82886). The extreme sensitivity of covariance model analysis is
also unable to distinguish between these SINEs and true tRNAs,
giving bit scores between 24.5 and 33.1 bits. tRNAscan 1.3
requires strong adherence to secondary structure rules, thus does
not call any of these pseudogenes as tRNAs. The rest of Repbase,
including consensus and database collections of ALU, L1, THE,
MIR, MIR2, THR and B1 repetitive elements, were also searched
with tRNAscan-SE, giving no other false positives.

The selectivity of tRNAscan has already affected genome
sequence annotation detrimentally. In 58.4 Mbp of C.elegans
genomic sequence, tRNAscan 1.3 produced 29 tRNAs which
were judged to be false positives (0.50 FP/Mbp) based on
searching with the tRNA covariance model, visual inspection of
secondary structure and lack of primary sequence similarity to
any other tRNAs within the genome. Since both the Washington
University Genome Sequencing Center (St Louis) and the Sanger
Center (Cambridge, UK) used tRNAscan 1.3 in semi-automated
sequence annotation until very recently, 16 of these 29 false
positives are annotated as tRNAs in finished, submitted GenBank
entries. This false positive rate is very close to that seen in the
random C.elegans genome simulation (0.42 FP/Mbp), giving

additional confidence to the estimates based on simulated
sequence data.

tRNAscan-SE produced no obvious false positives in the
C.elegans genomic sequence, but did identify eight tRNAs that
were judged to be possible pseudogenes by manual inspection
(Table 3). Eleven other tRNAs were automatically identified as
pseudogenes via primary or secondary structure scores that fell
below minimum values described in the methods. All 19
pseudogenes had strong similarity to other tRNAs within the
genome, and contained unusual features such as 3–16 bp
truncations of the 5′-end of the gene, or other large insertions or
deletions within the sequence. One could consider detection of
these possible pseudogenes a desirable feature of tRNAscan-SE’s
sensitivity. Further studies of these unusual tRNAs may help
better elucidate aspects of genome dynamics, genetic element
mobility and evolution.

Selenocysteine tRNA detection

There are not enough selenocysteine tRNA sequences to properly
evaluate tRNAscan-SE’s selenocysteine detection accuracy.
Three selenocysteine tRNAs (one each from H.influenzae,
M.jannaschii and C.elegans) were detected in recent genome
sequence data. The H.influenzae tRNA, previously unrecognized
in the literature, was detected by the prokaryotic selenocysteine-
specific routines and covariance model. The tRNA from the
distantly related M.jannaschii, however, was detected by the
standard EufindtRNA algorithm and general tRNA covariance
model. The failure of the specialized routines may have been due
in part to the fact that this is the first and only archaebacterial
selenocysteine tRNA available to date. For the remaining
non-archaeal selenocysteine tRNAs, use of the specialized
models boosts covariance model scores from the 20–40 bit range
to 45–72 bits. Since accurate tRNA secondary structure predic-
tion relies on correct alignment of the tRNA sequence to the
covariance model, use of selenocysteine-specific models for
these tRNAs improves the accuracy of structure predictions. A
search of the non-redundant database (nrdb) maintained at NCBI
revealed no new selenocysteine tRNAs from species for which
there was no previously noted sequence.

Intron detection

tRNAscan-SE correctly predicted the introns for the 13 species of
intron-containing tRNAs in the S.cerevisiae genome (34).
tRNAscan 1.3 often gives multiple intron predictions for each
tRNA, making correct placement uncertain. EufindtRNA does
not attempt to predict intron boundaries at all (13).

Detection of tRNAs containing long introns, usually group I or
group II, is problematic. The default maximum tRNA length for
tRNAscan-SE is 192 bp, but this can be increased (option -L
<max length>) to allow searches with no practical limit on tRNA
length. In the first phase of tRNAscan-SE, EufindtRNA searches
for A and B boxes of the specified maximum distance apart, and
passes only the 5′ and 3′ tRNA ends to covariance model analysis
for confirmation (removing the bulk of long intervening
sequences). Using this option, tRNAscan-SE was able to detect
three of the four long tRNAs initially missed by all four methods
in the GenBank tRNA subset search (the fourth tRNA was
undetectable with EufindtRNA even with the intron removed
before analysis). Group I or II introns in tRNAs tend to occur in
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positions other than the canonical position of protein-spliced
introns, so tRNAscan-SE mispredicts the intron bounds and
anticodon sequence for these cases. 5′ and 3′ tRNA bounds were
correct for all three unusual tRNAs.

Performance on mitochondrial tRNAs

Although tRNAscan-SE was designed with non-organellar tRNA
detection in mind, we also tested it on a complete mitochondrial
genome, that of Podospora anserina (GenBank ID PANMTPAC-
GA). tRNAscan-SE detected 22 of the 27 annotated tRNAs
(81.5%), tRNAscan 1.3 detected 18 of 27 (66.7%) and covariance
model analysis detected all 27 tRNAs (Table 3). Since organellar
genomes are usually small, the computational demand of
covariance model analysis alone (without the use of fast first-pass
scanners) is not prohibitive. For this reason, tRNAscan-SE can be
run in covariance model analysis-only mode (-C option) for
maximum sensitivity, bypassing dependence on tRNAscan 1.4
and EufindtRNA. This mode gives the same results as would be
obtained by running the covariance model search program alone,
but in addition, produces annotated tRNA output identical in
format to that found in the default tRNAscan-SE search mode.

DISCUSSION

Speed, sensitivity and selectivity

The most sensitive and selective tRNA detection method that we
are aware of utilizes probabilistic RNA covariance models (22),
which are based on stochastic context-free grammar techniques.
However, searching with covariance models has two drawbacks.
First, it is extremely CPU intensive, requiring days to weeks of
processor time to scan megabase-size genomic data from higher
eukaryotes. Second, the general nature of the approach hampers
output of tRNA-specific feature information such as anticodon,
isotype and intron position. Our goal in the development of
tRNAscan-SE was to produce a practical (i.e. fast) application of
stochastic context-free grammar-based RNA analysis methods
with sensitivity and selectivity as close as possible to using native
covariance model searches. tRNAscan-SE achieves this goal.

tRNAscan-SE increases tRNA covariance model search speed
by 1000–3000-fold while offering nearly equal sensitivity and
slightly improved selectivity. Selenocysteine tRNA detection
features are built into tRNAscan-SE, including modifications to
EufindtRNA and the use of selenocysteine tRNA covariance
models. With these additions, tRNAscan-SE correctly identifies
both of the selenocysteine tRNAs in the Sprinzl database not
detected by normal covariance model analysis. The GenBank
version of one of these two selenocysteine tRNA sequences,
CTTRSEL from C.thermoaceticum, was also detected within the
GenBank tRNA subset (the other selenocysteine tRNA was not
in the GenBank subset).

tRNAscan-SE also extends the maximum length of tRNAs
detectable to almost any length. In covariance model analysis,
search time increases as the square of the maximum tRNA length,
so the search window has typically been limited to 150 bp. In
tRNAscan-SE, the first-pass scanners define the approximate
bounds of a tRNA, and for tRNAs with very long introns,
intervening sequences can be cut out based on the first-pass
analysis. This allows detection of rare, abnormally long tRNAs
without greatly increasing the overall average search time. In the
GenBank subset, tRNAscan-SE detected four tRNAs (HALTGW

plus three detected with the -L option) whose introns, ranging
from 104 to 850 bp, exceeded the normal length limit for
covariance model detection.

tRNA false positives and pseudogenes 

Of the 5591 total false positives identified by tRNAscan 1.4 in 15
gigabases of simulated human sequence (Table 4), in only six
instances did it agree with EufindtRNA (relaxed parameters) in
falsely identifying a sequence as a tRNA. The majority of false
positives found by tRNAscan 1.4 seem to have tRNA-like
secondary structure but lack similarity to conserved tRNA
primary sequence. EufindtRNA, on the other hand, identifies
correctly spaced primary sequence promoter elements, yet tends
to err because it does not check for proper tRNA secondary
structure.

These observations hold up on examination of false positives
from actual genomic sequence from C.elegans. Most of the 29
false positives identified by tRNAscan 1.3 were discarded by
covariance model analysis because of the lack of primary
sequence similarity to the general tRNA model. EufindtRNA, on
the other hand, more commonly identifies pseudogene tRNA
fragments, SINE-like repetitive elements or other tRNA-like
sequences containing A and B boxes (Table 3). Pseudogenes are
recognizable since part of the sequence is very similar to other
intact tRNAs, in spite of truncations or large insertions elsewhere
in the pseudogene. However, tRNA secondary structure in
pseudogenes and SINE-like elements tends to be lost more
quickly than primary sequence promoter elements. This may not
be surprising in light of the observation that portions of tRNA
sequences are thought to help provide mobility for some
tRNA-derived repetitive elements (35). Since EufindtRNA
(relaxed parameters) only looks for canonical promoter regions,
it is prone to finding these instances of pseudogenes and repetitive
elements with tRNA promoters in the absence of structural tRNA
features.

To some extent, covariance model analysis is also apt to
identify truncated tRNAs and other tRNA-derived sequence
elements. The minimum cutoff score of 20 bits has been set to
include outlying tRNAs with low overall homology to the general
tRNA model. However, if a part of a high-scoring tRNA is
truncated, the score may be much lower, but still exceed the 20 bit
threshold. The most extreme example of this occurs with a tRNA
in the C.elegans cosmid W03A3. The tRNA has 100% identity
with tRNAs on at least four other cosmids, except for a truncation
of the first 16 bases that removes the 5′ side of the aminoacyl
acceptor stem and the first half of the A box promoter sequence
(part of the D-loop). tRNAscan 1.3 did not detect this pseudogene
because of the lost base pairings in the D-loop and aminoacyl
stems, whereas EufindtRNA could not locate the A box promoter
sequence. Covariance model analysis similarly identified three
other pseudogenes that neither tRNAscan 1.3 nor EufindtRNA
found: one appears to have a 13 bp truncation relative to tRNAs
in two other cosmids; one has a peculiar 21 bp insertion in the
middle of the A box promoter sequence that makes three
near-perfect repeats of the 7mer ‘GTCGCGA’; and one cosmid
has a pseudo tRNA containing a 55 bp insert in the anticodon loop
that does not appear to be a true intron. Since none of these were
identified by either tRNAscan 1.3 or EufindtRNA, tRNAscan-SE
necessarily does not detect them.
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tRNAscan-SE does, however, detect 19 other tRNA-like
sequences that are identified by EufindtRNA and ‘confirmed’ by
covariance model analysis (scores greater than 20 bits). These
may or may not be pseudogenes. Nine of these involve 5′
truncations of 3–15 nucleotides relative to other tRNAs in the
nematode. It is impossible to determine by computational
analysis alone if these are functional tRNAs or inactive pseudo-
genes. In either case, it is important to be aware of these possible
tRNA pseudogenes for possible further experimental and/or
computational study. Elucidating a common transpositional
mechanism for preferential loss of the 5′-end of these tRNAs is
a question of interest.

Conclusion

tRNAscan-SE has been designed with the demands of human
genome analysis in mind, but can be used for any DNA sequence.
We estimate that tRNAscan-SE will detect ∼99.5% of the true
tRNAs in the human genome, give zero false positives (except for
tRNA-derived SINEs and tRNA pseudogenes), and take ∼36 h.

tRNAscan-SE demonstrates that general RNA structural pro-
files, covariance models, can be used as the basis for very
sensitive RNA similarity searching. The primary limitation is
speed. Although the strategy of using fast first-pass tRNA
scanners in combination with second-stage covariance model
analysis is effective here, this is not an attractive general strategy
for searching for other RNA gene family members. Except for
group I introns (36), there are no fast, specialized algorithms for
detection of other RNA gene families, and much effort is required
for creating these highly specialized new programs. Further work
will focus on algorithmic development of covariance model
search methods that will reduce both time and memory require-
ments, allowing faster searches for larger RNA genes without the
need for first-pass screens.
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