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ABSTRACT

The potentiation and subsequent initiation of transcrip-
tion are complex biological phenomena. The region of
attachment of the chromatin fiber to the nuclear matrix,
known as the matrix attachment region or scaffold
attachment region (MAR or SAR), are thought to be
requisite for the transcriptional regulation of the euka-
ryotic genome. As expressed sequences should be
contained in these regions, it becomes significant to
answer the following question: can these regions be
identified from the primary sequence data alone and
subsequently used as markers for expressed se-
quences? This paper represents an effort toward
achieving this goal and describes a mathematical
model for the detection of MARs. The location of matrix
associated regions has been linked to a variety of
sequence patterns. Consequently, a list of these pat-
terns is compiled and represented as a set of decision
rules using an AND–OR formulation. The DNA se-
quence was then searched for the presence of these
patterns and a statistical significance was associated
with the frequency of occurrence of the various
patterns. Subsequently, a mathematical potential value,
MAR-Potential , was assigned to a sequence region as
the inverse proportion to the probability that the
observed pattern population occurred at random. Such
a MAR detection process was applied to the analysis of
a variety of known MAR containing sequences. Regions
of matrix association predicted by the software essen-
tially correspond to those determined experimentally.
The human T-cell receptor and the DNA sequence from
the Drosophila bithorax region were also analyzed. This
demonstrates the usefulness of the approach
described as a means to direct experimental resources.

INTRODUCTION

Recent studies have established that human somatic cell chroma-
tin is organized in loops that span ∼50–100 kb (1). The points of
attachment of these chromatin loops serve as specific sequence
landmarks as they anchor the DNA sequence to the fibers of
chromosomal scaffold. These sites of DNA attachment to the

nuclear scaffold are termed scaffold (metaphase) or matrix
(interphase) attachment regions (SAR or MAR). They are known
to facilitate the expression of genes and may function as the
origins of replication.

The matrix or scaffold attachment regions are relatively short
(100–1000 bp long) sequences that anchor the chromatin loops to
the nuclear matrix. MARs often include the origins of replication
(ORI) and can possess a concentrated area of transcription factor
binding sites (2). Approximately 100 000 matrix attachment sites
are believed to exist in the mammalian nucleus of which
∼30 000–40 000 serve as ORIs (3). MARs have been observed to
flank the ends of genic domains encompassing various transcrip-
tional units. It has also been shown that MARs bring together the
transcriptionally active regions of chromatin such that the
transcription is initiated in the region of the chromosome that
coincides with the surface of nuclear matrix (3,4).

Matrix attachment regions have been categorized as constitut-
ive (permanent) or facultative (cell-type specific) (2). The
constitutive MARs occur in all types of cells irrespective of the
tissue in which they are found. In contrast, the presence of a
facultative MAR is tissue specific and its use is governed by that
tissue. MARs have been experimentally defined for several gene
loci, including the chicken lysozyme gene (5), human
interferon-β gene (6), human β-globin gene (7), chicken α-globin
gene (8), p53 (9) and the human protamine gene cluster (10).

It is widely accepted that the next phase of the Human Genome
Project will focus on completing the transcript map. This will
entail the mapping of the transcribed sequences to the appropriate
regions of the chromosomes. To help identify these regions, some
sequence identifiers, such as promoters, enhancers and locus
control regions (LCR) are typically used. One of the clearest
indicators of functional sequences are MARs. In light of the key
role of MARs in genetic processes, and their localization to
functional chromatin domains, a means to model these markers
so that they could be placed on the map from sequencing data was
sought. The results of our studies to computationally define
MARs for experimental validation are presented.

Characterizing the regions of matrix attachment

MARs are polymorphic and appear to be distributed throughout
the genome. There is no known consensus sequence that is
characteristic of a MAR. Biologists have physically identified
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Figure 1. The set of motifs characterizing MARs constitute DNA sequence
signals or predicates upon which rules the defining higher level patterns are
constructed. Note that the IUPAC characters R,Y, W and K are defined as
follows. R = A or G, Y = T or C, W = A or T and K = G or T.

MARs and have tried to correlate their presence with the
occurrence of several DNA sequence motifs, including the ORI,
curved and/or kinked DNA. A description of some of the motifs
that have been identified within several MARs is as follows.

Origin of replication. It is known that DNA replication is
associated with the nuclear matrix. It has also been demonstrated
that nuclear matrix attachment sites, homeotic protein recognition
and binding sites and the origins of replication share the ATTA,
ATTTA and ATTTTA motifs. This implies that differential
activation of origins of replication (important for development) are
regulated while part of the nuclear matrix (2). ORI motifs m1 . . .
m3 in Figure 1 have been used to formulate Rule 1 in Figure 2.

TG-rich sequences. Some matrix attachment regions have been
characterized by T-G rich spans (2). These regions are abundant in
the 3′ UTR of a number of genes, and may act as signals at the
recombination sites, e.g. immunoglobulin genes. Motifs, m4 . . . m6
in Figure 1 are used to compose Rule 2 (Fig. 2) that identifies the
T-G rich spans.

Curved DNA. Intrinsically curved DNA has been identified at or
near several matrix attachment sites (2,11). Curved DNA is also
considered to play an important role in nuclear processes that
involve the interaction of DNA and proteins, such as recombina-
tion, replication and transcription. Optimal curvature is expected
for sequences with repeats of the motif, AAAAn7AAAn7AAAA as

well as the motif TTTAAA (motifs m7 . . . m9 in Fig. 1). Rule 3 will
identify curved DNA.

Kinked DNA. Kinked DNA has generally been associated with
the presence of copies of the dinucleotide TG, CA or TA that are
separated by 2–4 or 9–12 nt. For example, kinked DNA will be
produced by the motif TAn3TGn3CA, with TA, TG and CA
occurring in any order (motifs m10 . . . m15 in Fig. 1). Rule 4 will
identify kinked DNA.

Topoisomerase II sites. Topoisomerase II binding and cleavage
sites are concentrated at the sites of nuclear attachment. Both
vertebrate and Drosophila topoisomerase II consensus sequences
have been identified (12,13), and are fashioned as Rule 5 in
Figure 2.

AT-rich sequences. Many MARs contain significant stretches of
AT-rich sequences. It has been suggested that the simple
occurrence of isolated AT-rich regions is not sufficient to cause
matrix association. Several such regularly spaced motifs are
required for matrix association. Periodicity was considered while
formulating Rule 6 (2), although consideration of local nucleotide
concentration above a threshold may be required.

Several other characteristics, some of which have not been
included in the current analysis, have been proposed for MARs.
For example, MARs have been shown to contain palindromic
sequences, Z-DNA and DNase I hypersensitive sites (2). A few
Alu elements have also been identified within MARs. Specifi-
cally, Alus with a high AT content may interact with the nuclear
matrix. With the exception of Alu elements, whose role in matrix
attachment is unclear (and their occurrence limited to primates),
the above elements cannot be easily fashioned into a definitive
consensus pattern. Moreover, these elements may not be ap-
propriate or necessary for the mathematical determination of
MAR-potential. For example, many bacterial, viral and mam-
malian ORI sequences, which are characteristic of MARs, are
also palindromic. The occurrence of palindromic sequences at
sites of nuclear matrix attachment may thus reflect the presence
of origins of replication, which are already identified by Rule 1
in Figure 2. DNase I hypersensitivity, while possibly a character-
istic of MARs, is likely a result of the interaction with the nuclear
matrix and not its cause. Thus, DNase I hypersensitivity may
represent a useful method for identifying MARs experimentally
rather than computationally.

There is ample evidence to suggest that transcription factor
binding sites, promoter regions and other regulatory regions of
the genome may be nuclear matrix associated. While there are a
myriad regulatory elements and promoter sequences of known
composition, these have not been utilized in the model presented.
The computational model proposed in this report will most likely

Figure 2. The set of biological rules defining patterns that were used for detecting structural MARs. The table also specifies the relationship between the DNA motif
probabilities, Pr(mi), and the rule probabilities, pj .
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identify constitutive or class 2 MARs, although, when adjusted,
it has been successful in detecting facultative class 3 MARs (10).

The computational model for detecting MARs

Known consensus sequences for eukaryotic transcription factors
and promoters can be identified using algorithms such as
SIGNAL SCAN (14) and PROMOTER SCAN (15). These
programs look for singular patterns, and are thus not very useful
for determining the significance of the co-occurrence of many
patterns. Similarly, ‘gene grammar’ has been utilized (16) to
capture relations between the promoters, introns and exons.
While this approach has its merits for detecting functional units
within a sequence, its application is limited to recognizing
patterns where the relationship between the component motifs is
known  a priori. A neural network can be utilized to recognize
higher level patterns when such a relationship between the
component motifs is not formally defined but learned by the
computational agents. Such a system has been utilized by Grail
where the network was trained to detect genes (≥100 bases in size)
in raw DNA sequence (17). However, the lack of an appropriate
training set (there are very few MAR regions experimentally
mapped) makes neural network an impractical tool for this
problem. Thus, our approach based on assigning a statistical
significance to the co-occurrence of several MAR specific
patterns represents a unique and, as we demonstrate below, viable
solution to the MAR detection problem.

MAR patterns definition

As a first step toward the algorithmic detection of regions of
probable matrix association (MARs), an effective mathematical
framework for representing such patterns must be adopted. In our
approach, the underlying architecture used to represent patterns
is based on an AND–OR Boolean decision tree. As shown in
Figure 3, such a tree represents a disjunction (OR) of the
conjunctions (AND) on motifs detected in the sequence. Thus,
sequence level motifs serve as the lowest level predicates used to
detect the presence of a higher level pattern in the sequence. Note
that the lowest level predicates may be negated before being used
in the AND layer. In such an instance, the absence of motifs is
sought to satisfy the conditions for the occurrence of the higher
level pattern.

As an example, consider a simpler instantiation of such an
AND–OR decision tree. A rule to define the origin of DNA
replication (R1) can be based on an OR or the ∨  operator applied
to the three motifs m1 = ATTA, m2 = ATTTA and m3 = ATTTTA.
The motif detectors bypass the AND layer in this case, and
directly feed into the OR layer.

R1 = m1 ∨  m2 ∨  m3 1

Similarly, the requirement for co-occurrence of multiple motifs
can be specified using the AND or the ∧  operator. In the AND rule
for multiple patterns, an additional parameter is incorporated to
constrain the allowable gap between the two co-occurring motifs.
For example, the AT-richness (R6) rule has been formulated as the
occurrence of two hexanucleotide strings, m18 = WWWWWW
(note: the IUPAC code W denotes an ambiguous base A or T), that
are separated by distance of 8–12 nt. Thus, the AT-richness rule
can be written as:

Figure 3. A rule is defined by utilizing logical connectives on the occurrence
of underlying patterns. The DNA motifs (which may be overlapping) that are
present or absent in the raw sequence serve as the input predicates upon which
rule the logical definition of a rule is based. Such a generalized rule architecture
is modeled after a AND–OR decision tree with the AND or ∧  operator
constraining the motifs separation distance. The highest level of this match
hierarchy entails the OR or ∨  operation applied to the output of the AND layer.
The hypothetical rule represented in the above figure is (A ∧ Y

X B) ∨ (C ∧ V
U D).

R6� m18�
12

8
m18 2

Such a formulation uses an augmented AND operator, �
high
low

,
to define the acceptable distance between the two motifs.

Rule database and probability assignment

As depicted in Figure 1, sequence motifs serve as predicates in the
modeling of the MAR-detection rules. These predicates essential-
ly represent the various sequence motifs that have been known to
occur in the vicinity of MARs. With the motif indices thus
defined, a set of rules for detecting higher level MAR patterns
were developed and shown in Figure 2. This rule database
represents the core set of rules needed to identify MARs in a DNA
sequence. The core set of MAR pattern rules are considerably
simpler than what can be represented by the general rule format
(18,19). However, as the experimental determination of some
additional regions of matrix association continues, other related
patterns are likely to emerge. The more generalized framework
for pattern representation will facilitate the incorporation of new
(and potentially complex) pattern rules.

Associated with each of the motifs is a probability of its random
occurrence. This is derived using the base composition of the
sequence being analyzed (20). For example, the probability of
finding the motif ATTA in a sequence with composition
{A,C,G,T} = (0.2, 0.2, 0.3, 0.3) is equal to (0.22·0.32) = 3.6 × 10–3.

In order to calculate the random probability of occurrence of a
rule, the motif probabilities are multiplied across an AND layer
when the motifs are independent, and added across an OR layer
when their occurrence is mutually exclusive. Furthermore,
assuming a Poisson density function for motif occurrences, the
probability of finding at least one motif within an acceptable
distance from the reference motif can be computed. Thus, the
random occurrence probabilities for rules R1 and R6 in Equations
1 and 2 will be given by:
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Pr(R1) = Pr(m1) + Pr(m2) + Pr(m3)
Pr(R6) = Pr(m18) × {1 – exp[–(12 – 8 + 1) · Pr(m18)]} 3

= Pr(m18) · {1 – exp[–5 · Pr(m18)]} 4

As we demonstrate, these probability values for random
occurrences of the various rules can be used for assigning
statistical significance to the set of complex patterns that are
detected in a given region of the sequence.

Statistical significance of MAR motifs

The task of detecting regions of matrix association is modeled as
a problem of hypothesis testing. Since matrix association is a
property of a span of the sequence, a sliding window algorithm
was considered appropriate for detecting MARs. The sliding
window algorithm uses two parameters, W and δ to measure a
local property of the DNA sequence. The statistic of interest is
measured in a window of size W centered at location x along that
sequence. Successive window measurements are then made by
sliding the window in increments of δ nucleotides. If δ is small,
linear interpolation can be used to join the individual window
statistics gathered at x, x + δ, . . . , x + kδ. In this manner, a
continuous distribution of the parameter of interest is obtained as
a function of x.

The null hypothesis, H0, tested in each window is as follows,
H0: the frequency of the MAR patterns observed is not
significantly different from the frequency expected in a random
W nt sequence of the same composition as the sequence being
analyzed.

Thus, large deviation from the expected frequency of patterns
in a window will force the rejection of H0, which in turn will
imply the presence of a MAR. Under H0, the cumulative
probability, p, of observing a frequency vector with each of its
components greater than or equal to fi is essentially the probability
that the null hypothesis will be erroneously rejected. In other
words, a small value for p signifies that the observed event would
be a rare occurrence under the null hypothesis and hence qualify
the window sample as a candidate for containing a site for matrix
attachment.

In order to quantify the significance of this deviation, the
statistic measured for each window is [–log(p)]. The value
[–log(p)] is also referred to as MAR-potential, and denoted as ρ.
The value of ρ is computed for both the forward and the reverse
strands of the DNA sequence and the average of the two values
is considered to be the potential at a given location. We now
describe the mathematical model for calculating the value of ρ.

Let us assume that we are searching for k distinct types of MAR
patterns within a given window of the sequence. Typically, these
patterns are defined as rules R1, R2, . . . , Rk. Using the probability
formulation defined in Equation 3, the random probability of the
occurrence of the various rules is calculated. Let these values be
p1, p2, . . . , pk.

Next, a random vector of pattern frequencies, F, is constructed.
F is a k-dimensional vector with components, F = {x1, x2, . . . , xk},
where each component xi is a random variable representing the
frequency of the pattern Ri in the W nt window. Furthermore, the
component random variables xi are assumed to be independently
distributed Poisson processes, each with the parameter λi . The
joint probability of observing a frequency vector Fobs = {f1, f2, .
. . , fk} purely by chance is given by Equation 5.

P(Fobs) � �
k

i�1

exp–�i�i
fi

fi!
where�i � pi �W 5

The steps required for computation of the p, the cumulative
probability that the observation satisfies H0, is given by Equation
6 below.

p� Pr(x1 � f1, x2 � f2, ���, xk � fk)
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6

The p-value in Equation 6 is next utilized to compute the value
of ρ or the MAR-potential as given by Equation 7 below.

�� ln 1.0
p � – ln(p)

�
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7

It is not surprising that a pattern’s contribution to the overall
MAR-potential is strongest when its observed frequency is high
while its probability of random occurrence is low. The infinite
summation term in Equation 7 quickly converges and thus can be
adaptively calculated to the precision desired. For small values of
λi , the series may be truncated such that the last term satisfies the
following condition:

[
�t

i

(fi � 1)(fi � 2)���(fi � t)
] � � 8

Depending upon the level of accuracy desired, the value of �
is typically set to a small positive number. In our implementation,
� was set at 10–4.

Inferring MAR locations

After computing the values for ρ, the next task requires the
interpretation of the statistical potential values to infer the
location of matrix attachment sites. The following provides a
discussion of the basis for selecting some key parameters that can
influence the determination of these sites.

Run length. A true MAR will be characterized by a run-length of
high potential values. In other words, if the average span of a
MAR is Mspan bases, we should expect to see successive high
potential values in an average run length of:

rL �
W�Mspan� �	2

�
9

Thus, if W = 1000 bp and δ =100 bp, and if Mspan is assumed
to be ∼600 bp, an average run-length of three high potential values
is expected.

The use of this parameter is illustrated in Figure 4. The top
panel shows the analysis of the sequence using a window size
W = 1000 bp, while the lower panel shows the same analysis done
with W = 2000 bp. In both these cases, however, the windows
were stepped by δ = 100 bp. Using the formula in Equation 9, the
expected value for rL is 3 in the first case and 13 in the second.

The rL cut-offs specified above were used in establishing the
locations of the various MARs. Although, locations of MARs are
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Figure 4. Detection of MARs in a 338 234 bp bithorax complex of Drosophila (U31961). MAR predictions are done with (a) W = 1 kb and (b) W = 2 kb. A window
step size of δ = 100 bp was used in both the cases.

only plotted on Figure 4b, the values were identical in both cases.
It may be noted that in general, the larger window size tends to
smooth the potential values and widen any peaks. This is to be
expected since a larger value of λi  shifts the Poisson density
function to the right and increases the probability of observing a
high fi  under the null hypothesis.

Normalization. From the formulation of ρ in Equation 7, it is clear
that value for MAR-potential is unbounded, i.e. 0 ≤ ρ ≤ ∞. This
warrants that the raw potential be normalized in some manner. A
linear normalization technique is to scale every value by
[1.0/ρmax]. After such a scaling, the value of ρ is restricted to fall
between [0..1] interval. However, there is a concern when using
this simple procedure. If the value of ρmax happens to be
extremely high, it will tend to attenuate the other, albeit
statistically significant, potential values. This becomes apparent
from observing the very high value in the potential graph shown
in Figure 5a, where the potential value at location ∼438 kb is
substantially higher than the other peaks. In order to avoid this
scenario, a saturation value can be set on ρmax. Such a saturation
value can either be pre-set to an absolute value based on statistical
constraints, or be dynamically chosen based on the peaks
observed in the sequence. In our implementation, a hybrid
approach was adopted. If ρmax was larger than a specified
threshold, a saturation value equal to a fraction of the largest peak
potential is used. In the potential graph shown in Figure 5b, the
peaks were saturated to 0.4 × ρmax.

Intelligent zoom. While processing a large sequence, caution must
be exercised in the interpretation of a graphical plot of the
potential values. Specifically, if a large number of bases are
packed into a single pixel location, multiple peaks will have the

tendency to overlap one another. This could possibly leave one
with a false impression that the results are noisy.

To visualize the locations of these MARs, the analysis window
can be zoomed to the area of interest. This is illustrated in Figure
5c where the displayed region spans locations 360 kb through 460
kb. The process is referred to as being intelligent since the
normalization of the potential values occurs only on the basis of
the potential values present in the zoomed region. That is, the
saturation values for the entire sequence may be different than
that used in the viewing window.

RESULTS

The ability of the MAR prediction algorithm described above to
identify MARs is shown in Figure 6. When physical evidence is
available, as in the human-globin and PRM1→PRM2→TNP2
domains, the matrix attachment regions predicted by the software
closely match those established experimentally (18). This
analysis also successfully identified the MAR at the 5′ end of the
human apolipoprotein B locus (18,19). Based on these analyses,
a normalized MAR-potential value of 0.6–0.75 was considered to
yield reasonable results. The higher value is generally used for
smaller window size.

The algorithm was then applied to identify candidate MARs in
the Drosophila melanogaster bithorax region and the human
T-cell receptor beta locus, for which the location of MARs are not
known. The results for the Drosophila bithorax region are shown
in Figure 4 while Figure 5 shows the analysis for the human β T
cell receptor locus. Potential MARs spaced ∼60–100 kb apart
were identified, which is in accord with data suggesting that
MARs in somatic nuclei occur at intervals of 60 kb to >100 kb (1).
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Figure 5. The MARs detected in the 684 973 bp sequence of the human β T cell receptor locus (21). (a) The normalized plot of potential values without any saturation,
(b) The MAR-potential with a saturation value of 0.4 × ρmax, (c) A zoomed view of the 360–460 kb region.

This suggests that reasonable candidate regions of interest for
physical analysis were identified.

To the best of our knowledge, there is no data to define the
spacing of MARs in the Drosophila genome. It is reasonable to
assume that the spacing would be similar to that seen in other
eukaryotic nuclei. The ∼338 kb region queried in Figure 4
constitutes a region of the Drosophila genome that contains
several homeotic genes. This has been suggested to be rich in
constitutive type MARs. The regions identified by this analysis
need to be verified experimentally, as they may represent
characteristic constitutive or class 2 MARs (10).

Conclusion

The method of analysis described above has successfully
identified known MARs in several well characterized loci.
Furthermore, it has determined MAR candidates in a reasonable
fashion in large sequences where sites of attachment to the

nuclear matrix are unknown. This is despite the lack of a clear
consensus sequence for MARs. However, care should be taken
when applying this approach, as the results can vary when
different combinations of rules are applied. This may reflect the
beginning of the mathematical resolution of the four classes of
MARs. The algorithm described should be readily applicable for
the identification of any functional element for which a consensus
sequence is unclear or unknown. The utility of this approach is
immediately obvious for the identification of regulatory regions
of locus control, which may contain multiple individual sequence
motifs. Such regulatory motifs, which may occur at random
throughout the genome, would be in close association with other
regulatory and promoter motifs at regions of locus control, like
the well characterized locus control region of the multigenic
β-globin domain. Use of this algorithm in conjunction with a
database containing known regulatory motifs should enable the
identification of potential regions of locus control in large
sequences, just as the current analysis identified MARs.
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Figure 6. Veracity of MAR prediction: (a) MARs detected in the human β-globin locus. (b) Predicted and experimental MARs: comparison of the MAR locations predicted
and those determined experimentally. *Note that all MARs predicted for the protamine locus excluded the AT-richness rule, R6, and all were experimentally verified.

Software

A beta-version of the software described in this paper may be
obtained by sending an e-mail message to gbs@acm.org.
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