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Forkhead transcription factors are targets of signalling by the

proto-oncogene PKB (C-AKT)
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Following the discovery that the proto-oncogene protein kinase B (PKB) functions as a downstream element

in signalling from phosphoinositide 3«-kinase (PI3-kinase) (Burgering & Coffer, 1995), PKB has been shown

to mediate a diverse array of PI3-kinase dependent cellular responses. Most recently PKB-dependent

phosphorylation of 3 members of the family of Forkhead transcription factors has been demonstrated to

play a role in PI3-kinase dependent effects on transcription. This review focuses on this newly discovered

function of PKB in conveying the diversity of PI3-kinase dependent cellular responses.
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Protein kinase B (PKB, also known as c-akt) is a PH

domain-containing serine}threonine kinase that has

transforming capabilities. In mammalian cells, PKB is

activated on treatment with most peptide growth

factors such as insulin and PDGF. Activation of the

receptor for these factors results in the recruitment to

the plasma membrane and activation of phospho-

inositide 3«-kinase (PI3-kinase). Active PI3-kinase

produces 3« phosphorylated inositol lipids that act as

second messengers to recruit PH domain-containing

proteins to the plasma membrane. By this mechanism,

PKB is recruited, activated, and released into the

cytosol (reviewed in Coffer et al. 1998). Once

activated, PKB can phosphorylate a range of proteins

and thereby control several cellular processes. First,

apoptotic signals can be overcome by PKB activity.

This survival signal of PKB is transduced by direct

phosphorylation and inactivation of the pro-apoptotic

factors caspase-9 and BAD (Dudek et al. 1997;

Cardone et al. 1998). Secondly, a role for PKB in

protein translation has been shown. PKB mediates the

phosphorylation of the translational repressor 4E-BP-

1 and PKB can activate the p70S6-kinase that

phosphorylates the S6 ribosomal subunit and stimu-

lates protein synthesis (Burgering & Coffer, 1995;

Gingras et al. 1998). Thirdly, nitric oxide production
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is under the direct control of PKB. By phosphoryl-

ation of eNOS, PKB is able to enhance NO

production and thereby influence processes such as

vascular remodelling and maintenance of blood

glucose levels (Dimmler et al. 1999; Fulton et al.

1999). Fourth, PKB is involved in regulating meta-

bolic processes by directly controlling the activity of

GSK3 and PFK2, enzymes that are involved in

glycogen metabolism (Deprez et al. 1997; van Weeren

et al. 1998). Furthermore, PKB activity affects the

recruitment of glucose transporters to the plasma

membrane, and PKB controls the expression of

certain genes such as PEPCK, fatty acid synthase and

IGFBP-1 (Kohn et al. 1996; Cichy et al. 1998; Liao et

al. 1998; Wang & Sul. 1998). Direct targets of PKB

that can mediate effects on transcription, however,

had yet to be identified. By means of genetic

complementation studies, a pathway was elucidated in

Caenorhabditis elegans that showed control of a

Forkhead-type transcription factor (DAF-16) by a

cascade that consists of insulin receptor or IGFI

receptor-like and PI3 kinase-like proteins (Ogg et al.

1997). Mammalian orthologues of this Forkhead

transcription factor are AFX, FKHR and FKHRL1.

Interestingly, these proteins each contain 3 putative

PKB phosphorylation sites, and therefore we and



Fig. 1. Growth factor-induced phosphorylation of AFX. A14,

Cos-7, Rat1 and PAE cells transiently expressing HA-AFX were

labelled for 3 h with $#P-orthophosphate and treated with EGF (E)

or PDGF (P) for 30 min. Immunoprecipitated HA-AFX was

subsequently analysed for the amount of incorporated radiolabelled

phosphate. Equal expression was verified by western blotting with

the 12CA5 antibody (WB: 12CA5).

others hypothesised that the Forkhead transcription

factors are under direct control of PKB activity.

All 3 Forkheads have now been shown to be

phosphorylated and regulated following addition to

cells of insulin or IGFI (Brunet et al. 1999; Guo et al.

1999; Kops et al. 1999; Rena et al. 1999), but it is

likely that other growth factors can also achieve this.

Figure 1 shows growth factor-induced phosphoryl-

ation of epitope-tagged AFX. PDGF treatment of

Rat1 cells and PAE cells expressing wildtype PDGFR

results in increased phosphorylation of AFX and

treatment of COS-7 cells with EGF and of A14 cells

with EGF or insulin showed a similar effect. This

indicates that phosphorylation of AFX can be

accomplished by a variety of receptor tyrosine kinases,

including those that have been shown to activate

PKB.

Cotransfection of AFX with active forms of PKB

or its upstream activator PI3-kinase results in growth

factor-independent phosphorylation of AFX (Fig. 2a)

Fig. 2. PKB phosphorylates AFX. A, Growth factor-independent phosphorylation of AFX by active forms of PKB and PI3-kinase. A14

cells were transfected with HA-AFX together with active PKB (gagPKB, myrPKB) or the respective control, or active PI3-kinase (p110caax)

and its control. Phosphorylation of AFX was analysed as in Fig. 1. KD; kinase-dead. B; PKB phosphorylates GST-AFX in vitro.

Bacterially purified GST-AFX was incubated with (­) or without (®) active PKB (bacPKB) in the presence of radioactive phosphate.

Fig. 3. A model for insulin-mediated inhibition of AFX-dependent

transcription. The insulin-induced pathways leading to phosphoryl-

ation and inactivation of AFX are described in the text. DB, DNA-

binding domain; TA, transactivation domain.

and furthermore PKB is able to phosphorylate AFX

in vitro (Fig. 2b). This was also shown for FKHRL1

and FKHR (Brunet et al. 1999; Rena et al. 1999). The

PI3-kinase}PKB pathway is not the only pathway

that leads to phosphorylation of the transcription

factors. For AFX another route has been identified

and was shown to be Ras signalling to the Ral

GTPase (Fig. 3, and Kops et al. 1999). Although not

formally shown, there are data to suggest that

pathways other than PI3-kinase}PKB operate on

FKHR, FKHRL1, and DAF-16.

As in C. elegans, activation of the PI3-kinase}PKB

pathway in mammalian cells antagonises Forkhead

activity. Using a range of reporter constructs that

carry an insulin response element (IRE) it was shown

for all 3 transcription factors that activation of these

reporters by the Forkheads can be inhibited by insulin

signalling to PKB, and for AFX it was shown that

insulin signalling to Ral can do the same thing

(Brunet et al. 1999; Guo et al. 1999; Kops et al. 1999).

572 G. J. P. L. Kops and B. M. T. Burgering



How this inhibition is accomplished, however, is not

clear for all 3 proteins. FKHRL1 is relocalised to the

cytoplasm on phosphorylation by PKB, and we have

observed a similar translocation for AFX, but it is

doubtful whether this is the only way of inhibiting

AFX. Activation of Ral by an active form of its

exchange factor RLF, for instance, inactivates AFX,

but does not cause a change in subcellular distribution.

FKHRL1 has been shown to upregulate the gene

for FasL, a ligand for the death receptor Fas (Brunet

et al. 1999). By inhibiting FKHRL1, PKB can inhibit

FasL expression and thus ensure cellular survival.

Similarly, FKHR overexpression results in apoptosis,

which can be overcome by expression of active PKB,

whereas apoptosis induced by expression of an

unphosphorylatable form of FKHR cannot be in-

hibited by PKB (Tang et al. 1999). Other functions of

the Forkheads may emerge shortly, however. Over-

expression of AFX, for instance, inhibits cell growth

but this does not seem to be via apoptosis. Fur-

thermore, FKHR has been shown to regulate the

promoter of the mouse and human gene for glucose-

6-phosphatase (Fig. 3).

Of the 3 forkhead proteins, 2 have previously been

shown to be involved in tumorigenesis. Chromosomal

translocations that cause leukaemia or rhabdomyo-

sarcoma involve the genes for AFX and FKHR,

respectively, and create highly active chimeric tran-

scription factors, namely MLL-AFX and PAX3-

FKHR (Sublett et al. 1995; Borkhardt et al. 1997).

Another implication of the translocations, however, is

that one allele of the Forkheads is no longer

functional. Since AFX is an X-linked gene, this means

that such a translocation in males results in the

functional loss of AFX activity. Since AFX-like

proteins are involved in the inhibition of cell growth,

loss of AFX function might contribute to oncogenesis.

The translocation therefore might have a dual effect.

On the one hand, it creates a constitutively active

fusion protein and on the other the loss of activity of

a potential tumour suppressor. A similar argument

can be made for FKHR. Cells have 2 FKHR alleles,

so the translocation of 1 allele still leaves 1 functional

gene. However, the created PAX3-FKHR fusion

protein can upregulate the genes encoding MET

receptor (HGF receptor) and PDGF receptor (Epstein

et al. 1998; Ginsberg et al. 1998) which are strong

activators of PKB and therefore inactivators of

FKHR. By upregulating these genes, the translocation

might contribute to the functional inactivation of the

second intact gene. In conclusion, the discovery that

certain Forkhead family members are targets of PKB

signalling provides new insights into the mechanism

not only of PKB-induced oncogenesis, but possibly

also into oncogenesis induced by translocations

involving the Forkhead genes.
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