Supplementary material for Hoofnagle *et al.* (2001) *Proc. Natl. Acad. Sci. USA* **98** (3), 956–961. (10.1073/pnas.031562198)

Peptide	BE^b	Amides	A ^c	B ^c	C ^c	\mathbf{k}_1	\mathbf{k}_2	k ₃
2	30	30	20.9 (0.68)	4.1 (0.49)		10.19 (0.76)	0.347 (0.091)	
	30	30	20.9 (0.93)	4.1 (0.76)		10.03 (0.95)	0.582 (0.198)	
3°	23	11	6.0 (0.25)	1.0	2.0	8.46 (0.70)	0.144 (0.064)	0.0243 (0.0049)
	24	11	6.0 (0.25)	2.0	1.0	8.62 (0.70)	0.162 (0.033)	0.0307 (0.0106)
3/4 ^e	20	13	6.0	1.0	2.0	8.46	0.192 (0.095)	0.0313 (0.0072)
	23	13	6.0	2.0	1.0	8.62	0.112 (0.037)	0.0464 (0.0275)
3/4-SY ^e	26	11	6.0 (0.26)		1.0	9.60 (0.83)		0.0243
	28	11	6.0 (0.29)		1.0	8.23 (0.74)		0.0307
4/5	37	5			3.0 (0.20)			0.0071 (0.0011)
	41	5			3.0 (0.17)			0.0091 (0.0015)
$6^{\rm f}$	20	23	7.5 (0.73)		2.5 (0.49)	2.50		0.0166
	22	23	7.7 (0.61)		2.3 (0.41)	2.50 (0.42)		0.0166 (0.0081)
7/8	25	16	2.4 (0.28)		3.6 (0.20)	1.82 (0.53)		0.0219 (0.0038)
	29	16	2.5 (0.26)		3.5 (0.18)	2.29 (0.53)		0.0166 (0.0024)
8	19	11	1.7 (0.17)		2.3 (0.13)	1.78 (0.45)		0.0210 (0.0036)
	18	11	1.9 (0.14)		2.1 (0.10)	1.85 (0.34)		0.0166 (0.0024)
L/8	17	12	1.9 (0.19)		2.1 (0.15)	1.59 (0.41)		0.0290 (0.0057)
	14	12	1.8 (0.17)		2.2 (0.13)	1.64 (0.37)		0.0171 (0.0027)
9	19	3	2.0 (0.12)			11.53 (1.53)		
	17	3	2.0 (0.07)			10.36 (1.27)		
9/10 ^g	18	10	4.1 (0.69)	3.9 (0.65)	2.0 (0.22)	3.61 (0.86)	0.449 (0.124)	0.0147 (0.0052)
	17	10	4.1 (0.32)	3.8 (0.25)	2.2 (0.16)	3.61	0.449	0.0147
9/11 ^g	19	12	3.9 (0.26)	3.9 (0.21)	2.2 (0.14)	3.62	0.449	0.0147
	19	12	3.9	3.9	2.2	3.66 (0.40)	0.673 (0.070)	0.0189 (0.0036)
9/12 ^g	15	17	3.6 (0.38)	4.7 (0.31)	2.6 (0.20)	3.62	0.449	0.0147
	16	17	3.6	4.7	2.6	4.41 (0.79)	0.473 (0.066)	0.0179 (0.0047)
$11/12^{d}$	14	6		1.0	1.0		0.277 (0.067)	0.0350 (0.0080)
	19	6			2.0 (0.10)			0.0291 (0.0046)
12 ^d	19	4		1.0	1.0		0.207 (0.021)	0.0293 (0.0027)
L	22	4			2.0 (0.07)			0.0345 (0.0036)
$12/ME^{h}$	21	6	2.0	1.0	1.0	5.18 (0.88)	0.207	0.0293
	22	6	2.0 (0.15)		2.0	4.16 (0.58)		0.0345
13 ⁱ	23	4	1.0		1.0	1.17 (0.25)		0.0130 (0.0027)
	23	4	1.0		1.0	1.35 (0.27)		0.0605 (0.0137)
13/14	23	20	4.4 (0.31)		2.6 (0.18)	4.86 (0.66)		0.0150 (0.0036)
	23	20	4.5 (0.34)		2.5 (0.19)	4.16 (0.61)		0.0160 (0.0036)
14	11	15	3.0 (0.30)		2.0 (0.26)	5.59 (1.04)		0.0093 (0.0038)
	10	15	3.1 (0.28)		1.9 (0.19)	5.48 (0.96)		0.0110 (0.0032)
LL/17	18	6	2.7 (0.22)		1.3 (0.11)	9.61 (1.72)		0.0630 (0.0150)
T /1 i	21	6	2.9 (0.18)		1.1 (0.08)	8.26 (1.06)		0.0455 (0.0105)
L/17/L ^J	34	6	3.6		1.4 (0.20)	7.05 (1.44)		0.0312
00/00	31	6	3.5 (0.19)		1.5 (0.12)	6.98 (1.03)		0.0312 (0.0074)
20/23	18	19	7.3 (0.80)	5.7 (0.60)	3 0 (0 10)	10.82 (2.72)	0.437 (0.095)	0.0501 (0.0150
22	16	19	10.1 (0.36)		2.9 (0.18)	8.28 (0.60)		0.0791 (0.0156)
23	21	5	1.8 (0.26)		2.2 (0.26)	0.62 (0.20)		0.0255 (0.0065)

 Table 1. Amide hydrogen exchange rates^a

23/L ⁱ	30 14	5 6	2.0		3.0 (0.12) 3.0	1.20 (0.34)		0.0350 (0.0044) 0.0255 (0.0051)
	19	6			4.0 (0.15)			0.0435 (0.0056)
24 ^k	17	10	4.8 (0.55)		2.2 (0.27)	10.85		0.0194
	17	10	4.4 (0.53)		2.6 (0.39)	3.30		0.0098
24/25	25	14	5.2 (0.23)		1.8 (0.11)	10.85 (1.05)		0.0194 (0.0041)
	29	14	5.2 (0.25)		1.8 (0.21)	3.30 (0.31)		0.0098 (0.0033)
27^{1}	26	25	9.4 (0.87)	5.6 (0.50)	1.0	4.50 (0.83)	0.049 (0.012)	0.0017
	28	25	9.7 (0.78)	5.3 (0.45)		3.84 (0.62)	0.049	
$27/DL^1$	25	27	9.5 (0.84)	6.5 (0.47)	1.0	3.67 (0.68)	0.053 (0.010)	0.0057
	27	27	9.1 (0.55)	6.9 (0.33)		3.79 (0.48)	0.058 (0.008)	
$27/28^{1}$	22	29	11.5 (0.73)	6.5 (0.35)	1.0	4.61 (0.59)	0.039 (0.006)	0.0069
	22	29	11.5 (0.62)	6.5 (0.33)		4.45 (0.46)	0.039	
$29/30^{m}$	10	9	4.0 (0.32)	2.4	1.6	6.46 (0.94)	1.646	0.0253
	10	9	4.6 (0.29)	2.6	1.9	8.65 (1.03)	1.646	0.0253
$30^{1,n}$	18	5	2.4 (0.28)	1.6 (0.20)		1.65	0.025	
	20	5	2.3 (0.32)	1.7 (0.23)	1.0	1.65 (0.55)	0.025 (0.007)	0.0019
31	28	21	8.3 (0.50)		5.7 (0.25)	8.57 (1.04)		0.0259 (0.0035)
	26	21	8.2 (0.55)		5.8 (0.26)	8.83 (1.21)		0.0282 (0.0037)
32	26	23	3.5 (0.45)	7.5 (0.29)		4.81 (1.24)	0.101 (0.010)	
	25	23	3.7 (0.47)	7.3 (0.31)		3.56 (0.96)	0.090 (0.001)	
33	18	12	6.2 (0.37)	3.8 (0.29)		13.81 (2.26)	0.647 (0.091)	
	18	12	6.3 (0.46)	3.7 (0.37)		9.87 (1.54)	0.546 (0.104)	
33/34	24	15	9.2 (0.48)	3.8 (0.35)		11.69 (1.49)	0.439 (0.085)	
	25	15	9.2 (0.46)	3.8 (0.30)		9.15 (0.99)	0.277 (0.060)	
33/34/L	23	16	10.3 (0.45)	3.7 (0.35)		14.10 (1.65)	0.643 (0.114)	
	22	16	10.3 (0.38)	3.7 (0.27)		9.99 (0.82)	0.368 (0.065)	
35 ¹	28	11	3.2 (0.16)	1.4 (0.22)	2.5 (0.20)	7.60 (0.81)	0.178 (0.060)	0.0139 (0.0029)
	29	11	3.0 (0.22)	1.5 (0.16)	2.5 (0.23)	7.26 (1.08)	0.112 (0.033)	0.0064
35/36 ¹	16	22	8.4 (0.91)	5.9 (0.39)	1.8	14.13 (4.19)	0.078 (0.016)	0.0139
	17	22	8.9 (0.50)	5.4 (0.23)	1.8	8.74 (1.03)	0.066 (0.009)	0.0019
36	15	10	6.0 (0.45)	3.0 (0.25)		13.81 (2.74)	0.149 (0.035)	
	16	10	6.0 (0.18)	3.0 (0.09)		13.28 (1.10)	0.128 (0.013)	

^a Listed are values of non-linear least squares fitted parameters for each peptide with standard errors in parentheses. Inactive ERK is listed above ppERK for each peptide. Numbers in bold indicate significant differences between ERK and ppERK samples. Where errors are not given, values were constrained as described below.

^b Estimates of back-exchange calculated as in Resing, *et al* (16). For peptides 2, 4/5, L/17/L, 20/23, 31, 35/36, and 36, back-exchange values were chosen to agree with those calculated from primary structure effects using the program HXpep (see methods) (23).

^c Values of A, B, and C are corrected for back-exchange and 100% D₂O as described in Methods.

^d Values of B and C were fixed to integral values in order to obtain good fits to the other parameters.

^e Peptides 3/4 and 3/4-SY were fit using parameters constrained to values in peptide 3 in order to enable comparison between overlapping peptides.

^f Rate constants for peptide 6 in ERK were constrained to fitted values for ppERK.

^g Fitted parameters from peptide 9/10 in inactive ERK were used to fit peptides 9/10 in ppERK, peptide 9/11, and peptide 9/12 in order to enable comparison between overlapping peptides. For peptides 9/11 and 9/12, values of A, B and C for ppERK were constrained values obtained in the fit to ERK.

^h Values of B, C, k_2 and k_3 for ERK and ppERK were constrained to fitted values from peptide 12. The value of A in ERK was constrained to the value derived from the fit to 12/ME, ppERK.

ⁱ Values of A and C were fixed to integral values in order to obtain good fits to the other parameters.

^j The parameters k₃ and A for the peptide in ERK were constrained to fitted values for ppERK.

^k Rate constants for peptide 24 were constrained to values obtained for peptide 24/25.

¹Late time points in peptide time courses were fit by linear least squares in order to obtain estimates of k_3 and C. Values of other parameters were then obtained from nonlinear least squares fitting to the same data set. In peptide 35, only k_3 was obtained by linear least squares.

^m Values of parameters in peptide 29/30 were constrained to values in peptide 30. Not shown is a slow amide that exchanges with rate 0.0019 min⁻¹.

ⁿ For peptide 30, k_1 and k_2 in ERK were constrained to values obtained for ppERK.