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Cytochrome P450 monooxygenases
(P450s) are a supergene family of enzymes
involved in the biotransformation of a wide
range of both endogenous and exogenous
compounds. P450s play important roles in
the metabolism of many drugs and in the
activation of a variety of chemical toxicants
and carcinogens in both humans and ani-
mals (1,2). High levels of P450s exist prin-
cipally in the liver (1), and studies using
immunohistochemical techniques (3-6)
and in situ hybridization (7) have demon-
strated differences in the regional distribu-
tion and region-specific induction of several
P450s within the liver.

Constitutive activities and inducibility
of different P450 isozymes are important in
dictating species and individual differences
in susceptibility to toxicants. The ability to
assess gene expression and resulting enzyme
activity without tissue disruption on an
individual cell basis would further our abili-
ty to identify linkages between P450 expres-
sion and the zonal distribution of hepatic
lesions caused by different toxicants.

Recently, we reported on the use of
alkoxyresorufin homologues in combina-
tion with noninvasive scanning laser cytom-
etry as a method for directly determining
CYPlAl functional activity in hepatoma
cell lines (8). In the present study, we used

precision-cut, viable rat liver slices and
confocal laser cytometry to determine the
regional activities of P450 isozymes in situ.
A slice perfusion chamber that mounts

on the cytometer stage was developed to
allow for successive measurement of
region-specific, P450-dependent 0-dealky-
lation of 7-ethoxy-, 7-pentoxy-, and 7-ben-
zyloxyresorufin (EROD, PROD, and
BROD activity, respectively) in the same
liver slice. EROD activity in rat liver has
been shown to be specific to CYPIA
isozymes and is inducible by ,-naph-
thoflavone (,NF) and other polycyclic aro-
matic hydrocarbon-type inducing agents
(8,9). BROD and PROD activities have
been shown to be specific to CYP2B and
CYP3A isozymes and are inducible by phe-
nobarbital (9,10). The perfusion system
ensures a constant concentration of sub-
strate and limits the extracellular accumu-
lation of the fluorescent product, resorufin
(9). In addition, the slice perfusion cham-
ber allows for residual substrate and prod-
uct to be washed away between successive
perfusion assays.

Materials and Methods
Chemicals. Earle's balanced salt solution
(EBSS) and Williams' E medium were
purchased from Gibco BRL (Grand Island,

New York). fiNF, factor II- and factor VII-
deficient rat plasma, rat thrombin, and
dicumarol were purchased from Sigma (St.
Louis, Missouri). 7-Ethoxy-, 7-pentoxy-,
and 7-benzyoloxyresorufin (ER, PR, and
BR, respectively) were purchased from
Boehringer Mannheim Corp. (Indianapolis,
Indiana), and resorufin was purchased from
Aldrich Chemical Co. (Milwaukee,
Wisconsin).

Animals and slice preparation. Adult,
male Sprague-Dawley rats (150-200 g)
were purchased from Simenson Labs
(Gilroy, California) and were fed Wayne
Lablox and given water ad libitum. PNF-
treated rats were administered 65 mg/kg
body weight ,3NF in corn oil by intraperi-
toneal injection for 2 consecutive days
before sacrifice. Control rats were untreat-
ed. The perfusion technique and methods
for measurement of alkoxyresorufin 0-
dealkylase activities by scanning confocal
laser cytometry were developed during a
number of preliminary experiments.
Immunocytochemical, microsomal, and
dynamic organ culture (DOC) data were
obtained from the caudate lobes of a con-
trol and a ,NF-treated rat. Fluorescence
images and slice perfusion data were
obtained from the caudate lobes of separate
control and ,NF-treated rats.

Precision-cut, viable liver slices used in
laser cytometry experiments and in DOC
experiments were prepared as described by
Krumdieck et al. (11) using the Krumdieck
tissue slicer (K & F Research Co.,
Birmingham, Alabama). Briefly, animals
were killed by ether anesthetization/cervical
dislocation. Livers were excised and immedi-
ately placed in Williams' E medium con-
taining 10 mM HEPES (pH 7.4; referred to
as WEM from this point). An 8-mm metal
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biopsy corer was used to prepare tissue cores
from the liver lobes. Cores were then placed
in the Krumdieck slicer while submerged in
WEM. Optimal slice thickness was previ-
ously shown to be 250 pim (11). The first
and last slices containing the liver capsule
were discarded. Liver slices were then
placed in DOC vials (2 slices/vial) contain-
ing 2 ml ofWEM as described by Smith et
al. (12). Slices were allowed to preincubate
for at least 2 hr before use in subsequent
perfusion assays or DOC EROD assays.

Slice perfusion. The slice perfusion
apparatus shown in Figure 1 was used to
successively measure region-specific
EROD, PROD, and BROD activities in
precision-cut liver slices. A plasma clot sim-
ilar to that described by Gahwiler (13) was
formed by evenly distributing 25 pl of
reconstituted rat plasma (50 mg/ml PBS,
pH 7.4) on a 22-mm square glass cover
slip. We then added 10 p1 of reconstituted
thrombin (117 U/ml in 0.15 M NaCl and
0.05 M sodium citrate, pH 6.5) to the cen-
ter of the plasma-coated cover slip. The
liver slice was then placed on the rapidly
formed plasma clot. A cover glass perfusion
chamber similar to that described by
Forscher et al. (14) was formed by sus-
pending the cover slip holding the liver
slice over a microscope slide on two 720-
pm thick plastic spacers. The spacers and
cover slip were held in place by coating
spacers with a thin film of silicone grease.

The microscope slide portion of the
perfusion chamber was fixed to the
cytometer stage by a custom-designed stage
mount. The mount positioned the slide
over the microscope objective and held
reagent supply and vacuum lines in posi-
tion. Reagent was supplied via 0.58-mm
ID polyethylene tubing attached to a 25-
ml reservoir positioned approximately 30
cm above the perfusion chamber. A trian-
gular piece of filter paper attached to the
vacuum line was positioned on the outlet
side of the chamber, as shown in Figure 1,
to wick away reagent and provide for a
laminar flow of reagent through the cham-
ber. Vacuum and reservoir height were
adjusted to establish a flow rate of 0.5
ml/min. Slice perfusion experiments were
carried out at room temperature.

EBSS (phenol-red-free, supplemented
with 10 mM HEPES, 5 mM MgCl2 and
2.5 mM CaCI2, pH 7.5), gassed with 95%
02/5% CO2 and containing 25 pM
dicumarol, was used as the perfusion
buffer. Dicumarol is a specific inhibitor of
quinone oxidoreductase (DT-diaphorase)
(15), a cytosolic enzyme involved in the
reduction of resorufin to a nonfluorescent
product. Dicumarol is therefore required in
reaction buffers to measure maximum

Figure 1. Liver slice perfusion chamber.

alkoxyresorufin O-dealkylase activities in
hepatic subcellular fractions and hepatocyte
homogenates (16). We used 25 pM
dicumarol in our assays with liver slices, as
this concentration was previously found to
be optimal for measuring CYPlAl func-
tional activity in hepatoma cell lines by
scanning laser cytometry (8). Sulfate anion
was omitted from the reaction buffer to
minimize conjugation via sulfation (17), as
previously described (8).

We determined region-specific EROD,
BROD, and PROD activities by adding
the appropriate alkoxyresorufin substrate to
the perfusion buffer to a final concentra-
tion of 5 piM. EBSS without substrate was
used to remove residual substrate and prod-
uct between successive perfusions. Slices
were washed with EBSS until fluorescence
returned to baseline levels and was moni-
tored by continuously scanning the liver
slice.

Laser cytometry. Alkoxyresorufin 0-
dealkylase activity was assessed directly in
liver slices using an ACAS (adherent cell
analysis and sorting) Ultima Laser
Cytometer (Meridian Instruments,
Okemos, Michigan) equipped with an
argon ion laser and image analysis software.
Initial focusing was carried out by examin-
ing the slice with normal transmitted light

using a lOx objective. The same objective
was used for laser illumination of the slice
in confocal mode (pinhole setting of 100
pm). Maximum fluorescence response
occurred within the first two to three cell
layers from the surface of the slice and
could be optimized by scanning in the Z.
direction upon addition of substrate.
Fluorescence due to resorufin formation
was monitored using an excitation wave-
length of 514 nm and an emission wave-
length of >570 nm (using a long-pass
dichroic filter). The photomultiplier tube
voltage was held constant and data were
collected using the kinetics software pack-
age supplied with the instrument. Data
were analyzed on a DASY 9000 workstation
(Meridian Instruments). EROD, BROD,
and PROD activities were measured as
increases in fluorescence intensity (arbitrary
scale) within user-defined polygon regions
of the liver slice exhibiting maximum
EROD activity. Representative fluorescence
pseudocolor images were saved as tagged
image file format (TIFF) files and imported
into a MacIntosh IIci personal computer.
These images were then printed using
PowerPoint software (Microsoft Corp.,
Redmond, Washington) and a Tektronix
Phaser II SDX dye sublimation printer
(Tektronix Corp., Beaverton, Oregon).
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In vitro assays. We measured EROD
activity in liver slices isolated from control
and ,NF-treated rats in DOC as follows.
Slices were preincubated for 2 hr in WEM
as described above. Slices were then rinsed
with EBSS, then incubated in 2 ml EBSS
containing 5 pM ethoxyresorufin (ER) and
25 pM dicumarol. After the specified incu-
bation time, the concentration of fluores-
cent resorufin product in the culture medi-
um was determined by fluorescence spec-
trometry. We determined resorufin concen-
trations by comparing fluorescence intensity
with a standard curve prepared from
resorufin standards. All fluorescence mea-
surements were made on a Perkin-Elmer
LS-50 Luminescence Spectrofluorometer
(Beaconsfield, UK) using an excitation
wavelength of 530 nm and an emission
wavelength of 580 nm.

Liver microsome samples were prepared
by standard procedures. Microsomal pro-
tein concentrations were determined by the
bicinchoninic acid method described by
Smith et al. (18). Microsomal (alkoxyre-
sorufin-O-dealkylase activity assays were
performed essentially as described by Burke
and Mayer (19) and Lubet et al. (20).
Microsomes were allowed to preincubate
for 2 min in 2 ml of 100 mM Tris-HCL
(pH 7.5) containing 5 mM MgCl2 and 5
pM alkoxyresorufin substrate. Reactions
were initiated by adding 10 pl of 100 mM
NADPH (final concentration of 500 pM
NADPH) and were carried out at 370C.
Maximum EROD activities were obtained
using 148 pig of control microsomal pro-
tein and 14 pg of PNF-treated microsomal
protein. Maximum BROD and PROD
activities were obtained using 148 pg of
control microsomal protein and 140 pg of
3NF-treated microsomal protein. We
monitored reaction kinetics on the lumi-
nescence spectrofluorometer described
above using the kinetics software package
supplied with the instrument.

Slice viability. We used control rat liver
slices to determine the effect of culture
method (DOC versus perfusion) and the
effect of treatment (EBSS control versus
EBSS containing 5 pM ER and 25 pM
dicumarol) on slice viability. Intracellular
K+ concentrations were measured in three
slices before preincubation began (0 hr), in
three slices that had been preincubated 2 hr
in WEM, and in three slices from each of
the culture and treatment groups at two
time points (30 and 60 min). Intracellular
K+ determinations were performed as
described by Fisher et al. (21).

Immunocytochemistry. Immunocyto-
chemical staining of rat liver sections was
performed by the method of Farin et al.
(22) using a Vectastain ABC kit (Vector

Laboratories, Burlingame, California).
Briefly, acetone-fixed, 5-pm thick, paraffin
sections of control and PNF-treated rat
liver on poly-L-lysine coated slides were
deparaffinized and rehydrated. Tissue sec-
tions were sequentially exposed to normal
goat serum for 30 min to decrease nonspe-
cific binding, previously prepared anti-
CYPlAl primary antibody for 90 min,
biotinylated goat-anti-rabbit IgG sec-
ondary antibody for 60 min, avidin-conju-
gated horseradish peroxidase complex for
60 min, 3,3'-diaminobenzidine in Tris-
saline containing H202 for 10 min, and
1% osmium tetroxide for 2 min. Between
each of these components, the tissue sec-
tions were washed extensively with phos-
phate-buffered saline. The tissue sections
were counterstained with 2% methyl green,

and dehydrated, and cover slips were
placed on top of the tissue sections with a
drop of mounting fluid. We confirmed the
specificity of the CYPlAI antibody by
Western blot analysis of control and ,BNF-
treated HepG2 cells and rat liver (23). The
antibody bound only to a single microso-
mal protein isolated from PNF-treated
HepG2 cells, indicating that the antibody
does not cross-react with CYP1A2 [see
Farin et al. (22) for details of antibody
preparation and specificity].

Statistical analysis. Intracellular K+
concentrations for preincubated slices and
slices that were perfused or incubated by
DOC both with and without substrate at
30 and 60 min were compared by analysis
of variance. EROD, PROD, and BROD
activities measured by slice perfusion were

BNF Treated

II~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Control

Figure 2. Comparison of ethoxyresorufin-O-deethylase (EROD) activity in liver slices isolated from P-naph-
thoflavone (I3NF)-treated and control rats. Fluorescence images were acquired by confocal laser cytome-
try of liver slices perfused on the cytometer stage with 5 pM ethoxyresorufin (ER) as described in
Materials and Methods. Numbers in the upper left-hand corner of each frame represent the time course
of perfusion with ER in seconds. fNF-induced increases in CYPlAl-associated EROD activity are seen as
increases from violet to red as depicted on the fluorescence intensity scale bar shown on the right.
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compared by regression analysis. We used
the StatView statistics program (Brain-
Power Inc., Calabasas, California) for sta-
tistical analyses. Scheffe's F-test was used to
establish significant differences.

Results
Liver slice intracellular K+ concentrations
increased from 35.4 ± 5.0 pmol K+/g liver
(mean ± SD) to 56.6 ± 5.0 pmol K+/g liver
during the 2-hr preincubation period (data
not shown). Recovery of intracellular K+
during the preincubation period is charac-
teristic of viable liver slices (12).
Preincubated slices that were then incubat-

ed with or without ER for 30 and 60 min
by DOC at 370C maintained 94-103% of
the intracellular K+ measured in preincu-
bated slices. Intracellular K+ concentrations
in liver slices perfused at room temperature
appeared to decrease after a 30-min perfu-
sion (42.9 ± 7.8 and 42.4 ± 8.1 in control
and ER-treated slices, respectively), then
increase after a 60-min perfusion (50.0 ±
5.8 and 44.9 ± 4.1 in control and EROD-
treated slices, respectively). However, when
the mean intracellular K+ values for all
treatment groups (DOC versus perfusion
and EBSS control versus EBSS containing
5 pM ER and 25 pM dicumarol) and

Figure 3. Comparison of CYPlAl expression in liver sections isolated from (top) ,-naphthoflavone (BNF)-
treated and (bottom) control rats. Sections were subjected to immunocytochemical staining for CYPlAl as
described in Materials and Methods. PNF-induced increases in centrilobular expression of CYPlAl are
shown as dark-staining regions surrounding central veins in sections isolated from a pNF-treated rat. C,
central vein; P, portal vein. x40.

preincubated slices were compared, the dif-
ferences were not significant (p = 0.05).

The fluorescence images in Figure 2
were collected over a period of minutes in
a typical experiment in which liver slices
isolated from control and PNF-treated rats
were perfused on the laser cytometer stage
with EBSS containing 5 pM ER. Areas of
increased fluorescence are due to the for-
mation of the fluorescent resorufin prod-
uct and are indicative of high EROD
activity. Whole-slice scans (data not
shown) revealed a heterogeneous pattern
of EROD activity, suggesting differential
induction of CYP IAl activity across
regions of the liver lobule. The time
elapsed during whole-slice scans made it
impractical for kinetic analyses of entire
slices, as fluorescence intensity increased
substantially during the time required to
stage-scan an entire slice (10 mm x 10
mm). Based on these kinetic considera-
tions, we chose to scan smaller fields (1
mm x 1 mm, requiring <30 sec/scan using
the fast-scanning mirror option on the
ACAS). These fields contained vascular
structures that appeared to be central
veins. These structures were visible by light
microscopy and could be targeted during
initial focusing by manually positioning
the slice with the computer-controlled X,Y
stage. Areas of the slice where vascular
structures appeared to be circular, indicat-
ing they were cut perpendicular to the slice
surface, were suitable fields for resolution
of the liver lobule. The size of the areas
scanned by confocal laser cytometry
roughly corresponds to the size of areas of
distinct zonal immunocytochemical stain-
ing of CYPlAI shown in the photomicro-
graph of the liver section isolated from a
,BNF-pretreated rat (Fig. 3).

The fluorescence images in Figure 2
show areas of intense fluorescence response
in a liver slice isolated from a fNF-treated
rat. The fluorescence level attained after
1275 sec of scanning in these areas is
approximately 600-800 fluorescence inten-
sity uniis (FIU), which is at least twofold
higher than that observed in less-intense
adjacent areas. Immunocytochemical data
showing high levels of CYPlAI in cen-
trilobular areas suggest that these images
depict high EROD activity in centrilobular
regions of the liver slice containing what
appear to be small central veins.

Perfusion of control rat liver slices with
ER resulted in a low fluorescence response
and reflects the relatively low EROD activi-
ty in uninduced rat liver (9,10,16,24). The
control rat liver section in Figure 3 reveals a
low, constitutive level of GYPlAl expres-
sion that is homogenous across the different
zonal regions of the liver. In contrast, the
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Figure 4. Sequential perfusion of liver slices isolated from ,B-naphthoflavone (PNF)-treated and control
rats with selected alkoxyresorufin substrates (5 pM). Slices were sequentially perfused on the laser
cytometer stage as described in Materials and Methods. ER , BR, and PR represent time point at which
ethoxy-, benzyloxy-, or pentoxyresorufin were added to the perfusion buffer, respectively. WO (washout)
represents time point at which respective substrate was removed from the perfusion buffer to wash out
residual resorufin product and return fluorescence to background levels before subsequent addition of
next substrate. Values represent the mean ± SD (dotted lines) of seven circular areas containing the max-
imum fluorescence response in ONF-treated liver slice. Control slice values were measured in one large,
circular area containing maximum fluorescence response.

,NF-treated rat liver section shows a

marked increase in CYPlAl expression, but
only in centrilobular regions.

To further substantiate the suggested
association between high centrilobular
expression of CYPlAl and the heteroge-
neous fluorescence response of the ,BNF-
treated rat liver slice perfused with ER, we

sequentially perfused liver slices from con-

trol and PNF-treated rats with ER, benzy-

loxyresorufin (BR), and pentoxyresorufin
(PR). Figure 4 demonstrates that the fluo-
rescence response of control rat liver slices
toward BR and PR is comparable to the
fluorescence response observed when con-

trol slices are perfused with ER. Increases
in fluorescence intensity were below the
limits of quantification (10 FIU/min) for
each of the three substrates in control
slices. These results indicate that rat liver
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Figure 5. Comparison of ethoxyresorufin-O-
deethylase (EROD) activity in liver slices isolated
from control and 3-naphthoflavone (ONF)-treated
rats by dynamic organ culture. Slices were incu-
bated with 5 pM ethoxyresorufin (ER) for 10, 20,
30, or 60 min as described in Materials and
Methods. EROD activity in liver slices isolated
from OiNF-treated rats was linear for periods of up
to 60 min, and the rate of resorufin formation was
nearly 60-fold higher in treated slices than in con-
trol slices.

slices have low, constitutive levels of
EROD, BROD, and PROD activity, as
has been shown previously in microsomes
from untreated rats (9,24).

In contrast to the equivalent response
of control slices toward ER, BR, and PR,
slices isolated from ,NF-treated rats show
a highly differentiated response toward
these three substrates. Figure 4 shows the
increase in fluorescence intensity of seven
defined areas containing cells and/or
groups of cells exhibiting maximum fluo-
rescence response. The relative maximum
fluorescence response of liver slices from
OiNF-treated rats toward ER is approxi-
mately 20-fold higher than the response
toward BR and PR. The maximum rate of
increase in fluorescence intensity over an
approximate 3-min time period for each of
the substrates in 3NF-treated slices was
307, 18.5, and 16.1 FIU/min for ER, BR,
and PR, respectively. These results indicate
that liver slices from ,NF-treated rats have
high EROD activity relative to BROD and
PROD activity and that EROD, BROD,
and PROD activities are at least 30-, 1.8-,
and 1.6-fold greater, respectively, in ,NF-
treated slices than in control slices.

To ensure that the lack of fluorescence
response of liver slices from ,NF-treated
rats perfused with BR and PR was not due
to possible depletion of cofactors resulting
from the preceding ER perfusion, we re-
perfused slices with ER following BR and
PR perfusion. The fluorescence response of
the liver slice during the second ER perfu-
sion approached the fluorescence response
observed during the initial perfusion (Fig.
4). The maximum rate of increase in fluo-
rescence intensity for the second ER perfu-
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Figure 6. Comparison of alkoxyresorufin-0-
dealkylase activities in liver microsomes isolated
from control and j-naphthoflavone (ONF)-treated
rats. Liver microsomes were prepared and incu-
bated as described in Materials and Methods
using a substrate concentration of 5 pM. Results
are expressed as means ± SD from triplicate
analyses.

sion was 193 FIU/min. Although this rep-
resents only 63% of the activity observed in
the initial ER perfusion (significant at p
<0.05), EROD activity measured during
the second ER perfusion is substantially
greater than the preceding BROD and
PROD activities. Taken together, these
findings suggest that only a small depletion
of cofactors that support 0-dealkylase
activity, such as NADPH, occurred during
the 60 min preceding the second ER perfu-
sion. The magnitude of the second ER
response indicates that the low BROD and
PROD activities shown in Figure 4 are
more likely due to low substrate-specific
isozyme expression rather than depletion of
cofactors.

Figure 5 shows the regression lines for
the amount of the fluorescent resorufin
product formed over time by liver slices
isolated from both control and ONF-treat-
ed rats incubated with 5 pM ER in DOC.
The correlation coefficient for the regres-
sion line that describes the rate of resorufin
formation (EROD activity) in ,NF-
induced liver slices indicates a high degree
of linearity (R2 = 0.949). This suggests, as
does the second ER perfusion in Figure 4,
that cofactors supporting 0-dealkylase
activity are adequately maintained in liver
slices from ONF-treated rats for periods of
at least 60 min. In addition, the slope of
the PINF-treated regression line is nearly
60-fold greater than the slope of the con-
trol regression line.

Figure 6 further demonstrates the selec-
tive induction of EROD activity by ONF,
as previously shown in whole-liver slice
perfusion experiments (Fig. 4). Micro-
somes isolated from ,BNF-treated rats had
greater than 20-fold higher EROD activity
than control rat liver microsomes. This is

consistent with previous studies that com-
pare microsomal EROD activity in control
and PNF-treated rats (9,24). It is interest-
ing to note, however, that the profile of 0-
dealkylase activities in microsomes does not
parallel the activity profile seen in whole-
liver slice perfusion experiments. The activ-
ity profile for liver slices isolated from
3NF-treated rats could be described as
EROD>>>BROD=PROD, whereas in
microsomes from PNF-treated rats, the
activity profile is EROD>BROD>>
PROD. These differences may be due to
the intact nature of the liver slice and may
reflect differences in isozyme kinetics as a
result of the more biologically relevant
cofactor and substrate concentrations
achieved in whole-cell systems.

Discussion
The fluorescence images in Figure 2 show
that perfusion of liver slices isolated from
3NF-treated rats with EBSS containing 5
pM ER results in an intense fluorescence
response localized to specific regions of the
liver lobule. Immunocytochemical staining
of liver sections isolated from control and
INF-treated rats (Fig. 3) demonstrates that
,BNF treatment results in centrilobular
induction of CYPlAl. Precision-cut liver
slices incubated with ER in DOC show
that slices isolated from ONF-treated rats
(Fig. 5) have nearly 60-fold higher EROD
activity than slices isolated from control
rats. In addition, analysis of a series of
alkoxyresorufin O-dealkylase activities in
precision-cut liver slices by confocal laser
cytometry (Fig. 4) shows that ONF treat-
ment results in increased EROD activity to
a much greater extent than either PROD
or BROD activity. A similar response is
observed in liver microsomes isolated from
control and jNF-treated rats (Fig. 6),
except that BROD activity was also
induced to a greater extent in microsomes
than in intact liver slices. Based on these
findings, we conclude that the fluorescence
images in Figure 2 accurately reflect high
levels of centrilobular EROD activity due
to region-specific induction of CYPlAl by
iNF in the rat.
fNF and 3-methylcholanthrene (MC)

are prototypic inducing agents representa-
tive of a broad range of compounds such as
polyaromatic hydrocarbons, coplanar poly-
chlorinated biphenyls, and 2,3,7,8-tetra-
chlorodibenzo-p-dioxin. Treatment with
these compounds results in increased
expression of the CYPIA gene family (2).
Baron et al. (25) showed by immunocyto-
chemical techniques that treatment of male
Holtzman rats with ,BNF (40 mg/kg) or
MC (25 mg/kg) results in increased expres-
sion of CYP1A isozymes that is nearly

homogeneous across the liver lobule. In
addition, the relative amounts and distribu-
tion of these isozymes are the same in the
right, median, left, and caudate lobes of the
liver (25). More recently, van Sliedregt and
van Bezooijen (6) found that the induc-
tion pattern in Brown Norway rats was
dependent on dose and that at low doses of
MC (2.5, 5, 7.5 and 10 mg/kg) the highest
expression levels were concentrated around
the central vein. Higher doses of MC (25
mg/kg) resulted in a homogeneous pattern
of induction.

Based on these findings and the com-
paratively high dose of fNF (65 mg/kg)
used in our experiments, we would expect
to see a homogenous pattern of CYPlAI
induction. However, we found that sec-
tions isolated from PNF-treated Sprague-
Dawley rats (Fig. 3) show very dark stain-
ing for CYPlAI in centrilobular areas only,
a pattern identical to that observed by van
Sliedregt et al. (6) at low doses ofMC.

Recent work using periportal and
perivenous hepatocytes isolated by zone-
restricted digitonin treatment during in situ
perfusion have demonstrated regional dif-
ferences in the constitutive expression and
inducibility of a number of P450s (4,26).
In addition, Buhler et al. (4) noted that the
inducible forms of P450 they studied
(2B1/2, 2E1, and 3A1) were generally
induced in hepatocytes of the same zonal
origin in which they were constitutively
expressed. These findings led them to sug-
gest that phenotypic differences exist
between centrilobular and periportal hepa-
tocytes with respect to factors that control
P450 expression, causing hepatocytes of
different zonal origins to respond different-
ly to exogenous and endogenous signals.

Comparative studies investigating the
phenobarbital responsiveness of rat hepatic
hyperplastic nodules (HHN) have provided
further evidence for phenotypic differences
between centrilobular and periportal hepa-
tocytes in factors that control P450 isozyme
expression. Phenobarbital induces CYP3A1
in centrilobular hepatocytes (23) and
CYP2B1/2 in centrilobular and midzonal
hepatocytes (23,27). Chen et al. (23, 28)
have demonstrated that HHNs induced by
the aflatoxin BI(AFB,) administration pro-
tocol (5) arise through clonal expansion of
centrilobular hepatocytes only. In contrast,
HHNs induced by the Solt-Farber induc-
tion protocol (5) are derived from cen-
triobular, midzonal, and periportal hepato-
cytes (28). When HHN-bearing rats were
administered phenobarbital, all AFB1-
induced HHNs expressed increased levels of
CYP3A1 and CYP2B1/2 (28). In contrast,
only a portion of Solt-Farber-induced
HHNs were shown to respond tO pheno-
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barbital as measured by increased expression
of these isozymes (23, 28). These findings
led Chen and Eaton (28) to hypothesize
that phenobarbital responsiveness is deter-
mined primarily by the zonal origin of pre-
cursor hepatocytes and provide indirect evi-
dence for distinct, heritable phenotypic dif-
ferences between hepatocytes of different
zonal origin that control P450 expression.

At the present time, relatively little is
known about factors controlling region-spe-
cific constitutive and inducible P450
isozyme activity. Anundi et al. (26) and
Lindros et al. (29) have described linkages
between zone-specific P450 isozyme expres-
sion and zone-specific hepatic lesions. In
addition, the effects of P450 expression by
HHNs on tumor promotion and progres-
sion have been well documented (30).
These findings emphasize the importance of
developing in vitro assays that could be used
to colocalize functional P450 isozyme activ-
ity with factors governing P450 expression.
Sidhu et al. (8) have demonstrated the abil-
ity of noninvasive scanning laser cytometry
to measure CYPlAl functional activity in
hepatoma cell lines. More recently, this
same group demonstrated large individual
cell differences in the functional activity
and the immunoreactive protein content of
primary rat hepatocytes exposed to proto-
typic P450 inducers in vitro (8,31). The
ability of scanning laser cytometry to mea-
sure functional activity in a whole-cell sys-
tem led us to hypothesize that laser cytome-
try could be used to measure functional
P450 isozyme activity in viable precision-
cut liver slices and that, because the archi-
tecture of the liver lobule in liver slices
remains intact, marked differences in
regional activity could be observed.

In conclusion, using a well-character-
ized induction protocol and P450 isozyme-
specific alkoxyresorufin substrates, we were
able to show that confocal laser cytometry
of precision-cut liver slices can be used to
assess P450 isozyme-specific induction in
intact liver tissue. More importantly, the
method allows for the analysis of region-
specific induction of P450 activities, which
are difficult to determine by conventional
methods. These techniques should allow
for the accurate quantification of P450
enzyme activity in situ and, with subse-
quent analysis of the same slice after fixa-
tion and processing, the ability to correlate
specific P450 isozyme mRNA, specific
P450 isozyme protein content, or other
factors, with enzyme activity on an individ-
ual cell basis. These techniques should also
be amenable to examination of similar phe-
nomena in other tissues such as lung and
kidney, where heterogeneity in cellular
P450 expression is also known to occur.

REFERENCES

1. Guengerich FP, Shimada T. Oxidation of toxic
and carcinogenic chemicals by human
cytochrome P-450 enzymes. Chem Res Toxicol
4:391-407 (1991).

2. Nelson DR, Kamataki T, Waxman DJ,
Guengerich FP, Estabrook RW, Feyereisen R,
Gonzalez FJ, Coon MJ, Gunsalus IC, Gotoh 0.
The P450 superfamily: update on new
sequences, gene mapping, accession numbers,
early trivial names of enzymes, and nomencla-
ture. DNA Cell Biol 12:1-51 (1993).

3. Baron J, Redick JA, Guengerich FP. An
immunohistochemical study on the localization
and distributions of phenobarbital- and 3-
methylcholanthrene-inducible cytochromes P-
450 within the livers of untreated rats. J Biol
Chem 256:5931-5937 (1981).

4. Buhler R, Lindros KO, Nordling A, Johansson
I, Ingelman SM. Zonation of cytochrome P450
isozyme expression and induction in rat liver.
EurJ Biochem 204:407-412 (1992).

5. Chen ZY, Eaton DL. Differential regulation of
cytochrome(s) P450 2B1/2 by phenobarbital in
hepatic hyperplastic nodules induced by aflatox-
in BI or diethylnitrosamine plus 2-acetylamino-
fluorene in male F344 rats. Toxicol Appl
Pharmacol 111:132-144 (1991).

6. van Sliedregt A, van Bezooijen CF. Effect of dif-
ferent doses of 3-methylcholanthrene on the
localization of the 3-methylcholanthrene-
inducible isoenzymes of cytochrome P450 with-
in the centrilobular and periportal zones of the
rat liver. Biochem Pharmacol 39:1703-1708
(1990).

7. Omiecinski CJ, Hassett C, Costa P.
Developmental expression and in situ localiza-
tion of the phenobarbital-inducible rat hepatic
mRNAs for cytochromes CYP2B1, CYP2B2,
CYP2C6, and CYP3A1. Mol Pharmacol
38:462-470 (1990).

8. Sidhu JS, Kavanagh TJ, Reilly MT, Omiecinski
CJ. Direct determination of functional activity
of cytochrome P-4501A1 and NADPH DT-
diaphorase in hepatoma cell lines using nonin-
vasive scanning laser cytometry. J Toxicol
Environ Health 40:177-194 (1993).

9. Burke MD, Thompson S, Elcombe CR,
Halpert J, Haaparanta T, Mayer RT. Ethoxy-,
pentoxy- and benzyloxyphenoxazones and
homologues: a series of substrates to distinguish
between different induced cytochromes P-450.
Biochem Pharmacol 34:3337-3345 (1985).

10. Nakajima T, Elovaara E, Park SS, Gelboin HV,
Hietanen E, Vainio H. Monoclonal antibody-
directed characterization of benzene, ethoxyre-
sorufin and pentoxyresorufin metabolism in rat
liver microsomes. Biochem Pharmacol
40:1255-1261 (1990).

11. Krumdieck CL, dos Santos JE, Ho KJ. A new
instrument for the rapid preparation of tissue
slices. Anal Biochem 104:118-123 (1980).

12. Smith PF, Gandolfi AJ, Krumdieck CL,
Putnam CW, Zukoski CF, Davis WM, Brendel
K. Dynamic organ culture of precision liver
slices for in vitro toxicology. Life Sci
36:1367-1375 (1985).

13. Gahwiler BH. Organotypic monolayer cultures
of nervous tissue. J Neurosci Methods
4:329-342 (1981).

14. Forscher P, Kaczmarek LK, Buchanan JA,
Smith SJ. Cyclic AMP induces changes in distri-
bution and transport of organelles within

growth cones of Aplysia bag cell neurons. J
Neurosci 7:3600-3611 (1987).

15. Ernster L. DT-diaphorase: a historical review.
Chem Scripta 27A 1-13 (1987).

16. Lubet RA, Nims RW, Mayer RT, Cameron
JW, Schechtman LM. Measurement of
cytochrome P-450 dependent dealkylation of
alkoxyphenoxazones in hepatic S9s and hepato-
cyte homogenates: effects of dicumarol. Mutat
Res 142:127-131 (1985).

17. Burke MD, Orrenius S. The effect of albumin
on the metabolism of ethoxyresorufin through
0-deethylation and sulfate conjugation using
isolated rat hepatocytes. Biochem Pharmacol
27:1533-1538 (1978).

18. Smith PK, Krohn RI, Hermanson GT, Mallia
AK, Gartner FH, Provenzano MD, Fujimoto
EK, Goeke NM, Olson BJ, Klenk DC.
Measurement of protein using bicinchoninic
acid. Anal Biochem 150:76-85 (1985).

19. Burke MD, Mayer RT. Ethoxyresorufin: direct
fluorimetric assay of a microsomal 0-dealkyla-
tion which is preferentially inducible by 3-
methylcholanthrene. Drug Metab Dispos
2:583-588 (1974).

20. Lubet RA, Mayer RT, Cameron JW, Nims
RW, Burke MD, Wolff T, Guengerich FP.
Dealkylation of pentoxyresorufin: a rapid and
sensitive assay for measuring induction of
cytochrome(s) P-450 by phenobarbital and
other xenobiotics in the rat. Arch Biochem
Biopys 238:43-48 (1985).

21. Fisher R, Smith PF, Sipes IG, Gandolphi AJ,
Krumdieck CL, Brendel K. Toxicity of
chlorobenzenes in cultured rat liver slices. In
Vitro Toxicol 3:181-194 (1990).

22. Farin FM, Omiecinski CJ. Regiospecific expres-
sion of cytochrome P-450s and microsomal
epoxide hydrolase in human brain tissue. J
Toxicol Environ Health 40:317-335 (1993).

23. Chen ZY, Farin F, Omiecinski CJ, Eaton DL.
Association between growth stimulation by phe-
nobarbital and expression of cytochromes P450
lAI, 1A2, 2B1/2 and 3A1 in hepatic hyperplas-
tic nodules in male F344 rats. Carcinogenesis
13:675-682 (1992).

24. Lubet RA, Syi JL, Nelson JO, Nims RW.
Induction of hepatic cytochrome P-450 mediat-
ed alkoxyresorufin 0-dealkylase activities in dif-
ferent species by prototype P-450 inducers.
Chem Biol Interact 75:325-339 (1990).

25. Baron J, Redick JA, Guengerich FP. Effects of
3-methylcholanthrene, beta-naphthoflavone,
and phenobarbital on the 3-methylcholan-
threne-inducible isozyme of cytochrome P-450
within centrilobular, midzonal, and periportal
hepatocytes. J Biol Chem 257:953-957 (1982).

26. Anundi I, Lahteenmaki T, Rundgren M,
Moldeus P, Lindros KO. Zonation of aceta-
minophen metabolism and cytochrome P450
2E1-mediated toxicity studied in isolated peri-
portal and perivenous hepatocytes. Biochem
Pharmacol 45:1251-1259 (1993).

27. Bars RG, Bell DR, Elcombe CR, Oinonen T,
Jalava T, Lindros KO. Zone-specific inducibii-
ty of cytochrome P450 2B1/2 is retained in iso-
lated perivenous hepatocytes. Biochem J
282:635-638 (1992).

28. Chen ZY, Eaton DL. Association between
responsiveness to phenobarbital induction of
CYP2B1/2 and 3A1 in rat hepatic hyperplastic
nodules and their zonal origin. Environ Health
Perspect 101(suppl 5):185-190 (1993).

29. Lindros KO, Cai YA, Penttila KE. Role of

542 Volume 104, Number 5, May 1996 * Environmental Health Perspectives



Articles * Imaging P450 activity in rat liver slices

ethanol-inducible cytochrome P450 IIEI in car-
bon tetrachloride-induced damage to centrilob-
ular hepatocytes from ethanol-treated rats.
Hepatology 12:1092-1097 (1990).

30. Chen ZY, White CC, Eaton DL. Decreased
expression of cytochrome P450 mRNAs and

related steroid hydroxylation activities in hepatic
hyperplastic nodules in male F344 rats. Toxicol
Appl Pharmacol 123:151-1 59 (1993).

31. Sidhu JS, Kavanagh TJ, Farin FM, Omiecinski
CJ. Use of scanning laser cytometry to deter-
mine functional activity and immunoreactive

protein associated with phenobarbital- and beta-
napthoflavone-inducible CYP genes in primary
rat hepatocytes. In Vitro Toxicol 7:225-242
(1994).

Seventh
North American

ISSX( Meeting
October 20-24, 1996

The Seventh North American Meeting of the International Society for the Study of Xenobiotics
(ISSX) will take place in San Diego, California from October 20-24, 1996 at the historic Hotel del
Coronado.

The meeting will feature plenary lectures, symposia, poster sessions, continuing education, com-
mercial exhibits and presentations.

Scientific Program

Scientific Program will highlight these themes:

Enzymology of xenobiotic biotransformation

FMO and P450

Hydrolytic enzymes

Conjugating enzymes

Human drug metabolism and polymorphisms

In vitro test systems and methodologies

Enzyme induction

Drug development and safety evaluation

Environmental and agricultural chemicals

Cosmetic and food chemicals

Biotechnology products

Regulatory affairs

For more information:
ISSX
PO Box 3
Cabin John, MD 20818 USA
FAX: 301-983-5357
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