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The goal of researchers working in the area of developmental toxicology is to prevent adverse
reproductive outcomes (early pregnancy loss, birth defects, reduced birth weight, and altered
functional development) in humans due to exposures to environmental contaminants, therapeutic
drugs, and other factors. To best achieve that goal, it is important that relevant information be
gathered and assimilated in the risk assessment process. One of the major challenges of
improved risk assessment is to better use all pertinent biological and mechanistic information.
This may be done qualitatively (e.g., demonstrating that the experimental model is not
appropriate for extrapolation purposes); semiquantitatively (using information to reduce the
degree of uncertainty present under default extrapolation procedures), or quantitatively (formally
describing the relationships between exposure and adverse outcome in mathematical forms,
including components that directly reflect individual steps in the overall progression of toxicity). In
this paper we review the recent advances in the risk assessment process for developmental
toxicants and hypothesize on future directions that may revolutionize our thinking in this area. The
road to these changes sometimes appears to be a well-mapped course on a relatively smooth
surface; at other times the path is bumpy and obscure, while at still other times it is only a wish in
the eye of the engineer to cross an uncharted and rugged environment. Environ Health
Perspect 104(Suppl 1):1 07-121 (1996)
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During the last 5 years, significant changes
in the risk assessment process for non-
cancer health effects of environmental cont-
aminants have begun to appear. The first of
these changes is the development and use of
statistically based dose-response models
(the benchmark dose approach) that better
utilize data derived from existing testing

approaches. Accompanying this change is
the greater emphasis on understanding and
using mechanistic information to yield
more accurate, reliable, and less uncertain
risk assessments. The next stage in the evo-
lution of risk assessment will be the use of
biologically based dose-response (BBDR)
models to build factors related to the
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underlying kinetic, biochemical, or physio-
logical processes, which may be perturbed
by a toxicant, into the statistically based
models. Such models are now emerging
from several research laboratories. The
introduction of quantitative models and
the incorporation of biological informa-
tion into them has pointed to the need for
even more sophisticated modifications,
which we term embryologically based
dose-response (EBDR) models. Because
these models are based upon the under-
standing of normal morphogenesis, they
represent a quantum leap in our thinking,
but their complexity presents daunting
challenges both to the developmental biol-
ogist and the developmental toxicologist.
However, the remarkable progress in the
understanding of mammalian embryonic
development at the molecular level that
has occurred over the last decade should
eventually enable these as yet hypothetical
models to be brought into use.
A firm understanding of the mecha-

nisms of normal development is required
to adequately characterize mechanisms of
abnormal development. Indeed, the paucity
of complete descriptions of mechanisms of
chemically induced dysmorphogenesis is in
large part based on our poor understanding
of normal developmental processes. For
example, without an understanding of
the forces that control the outgrowth and
differentiation of the limb bud, how can
we understand the formation of limb
deformities? Advances in understanding
morphogenesis on the molecular and bio-
chemical level, for the first time, are pro-
viding the knowledge base necessary for
developmental toxicologists to truly under-
stand the mechanisms by which chemicals
disrupt embryogenesis. Clearly, we are still
far from having models of normal morpho-
genesis commonly available in the toolbox
of the developmental toxicologist and risk
assessor, but one day we may witness a
revolutionary change not only in how we
evaluate developmental toxicity in animal
models but also in how toxicity is extrapo-
lated to the human population.

Basic Elements of
Dose-Response Assessment
For the purposes of this review, dose-
response assessment can be viewed as three
critical steps: identification of the effect
(and related exposure level) of most con-
cern; a characterization of the uncertainty
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present in the database; and an estimate of
the exposure level presumed to be free of
risk to the human conceptus. In the first
step, data from exposed experimental
species, as well as any epidemiological infor-
mation, is examined for the highest dose
level that is without a significant adverse
effect. This dose level is established by a
combination of statistical analysis and
expert opinion and is generally referred to
as the NOAEL (the no observed adverse
effect level). It is important not to confuse
the concept of NOAEL with that of
threshold for biological effects, as the for-
mer merely reflects the statistical power of
an experiment to see an effect when in fact
one does exist. Various regulatory agencies
have provided guidelines for the design,
conduct, and interpretation of such hazard
identification studies for developmental
toxicity (1). The lowest NOAEL in the
database on a particular chemical is termed
the critical NOAEL. In the second step,
the adequacy, relevance, and uncertainties
in extrapolating the NOAEL from the
experimental species to the target species
are estimated. Minimally, these extrapola-
tions consider the sensitivity of the human,
relative to test species, and the presence of
'potentially sensitive subpopulations. In the
default situation, uncertainty factors of 10
are used to cover both sources of uncer-
tainty. Other uncertainty or modifying fac-
tors may be applied to account for a lack of
identification of a NOAEL, an incomplete
database, or an expert opinion regarding
the probability of risk. In the final step, the
critical NOAEL is divided by the product of
the uncertainty factors, as well as any expert-
derived modifying factors (MF) to obtain
the reference dose [RfD] (or reference con-
centration (RfC) for an inhaled chemical).

RfD NOAEL critical effect
UF inrspeciesXUFintapecies XMF

Lifetime exposures below the RfD or RfC
are believed to be without appreciable risk
to humans (1-4).

Qualitative and
Semiquantitative Approaches
Perhaps the easiest and most straightfor-
ward approach to incorporating mecha-
nisms into dose-response assessment
occurs when it can be demonstrated that
the animal model yields results that are not
extrapolatable (a process that can be called
qualitative nonextrapolation). While this
may be pertinent only on rare occasions,
the impact is always profound. Excellent

examples of this have been derived by
research into the mechanisms of carcino-
genesis, where we now understand that sac-
charin-induced bladder tumors in rodents
and t2-microglobulin-induced kidney
tumors in male rats have no homologous
counterpart in humans. Likewise, if a
metabolite is found to be the proximate
toxicant and that metabolite is not formed
in humans, then the subsequent effect
would not be expected to occur either. In
developmental toxicity, examples include
the effects of Gram-negative antibiotics in
rabbits in which the marked effect of the
chemical class on the gut microflora causes
a nutritional deficiency that secondarily
produces effects on the offspring (5) and
the effect of diflunisal-induced axial skeletal
defects in rabbits that are due to a species-
specific maternal hemolytic anemia (6).

Another approach to incorporating
biological understanding into the dose-
response and risk assessment activities is to
carefully examine the quality, consistency,
and adequacy of the database in light of the
default assumptions regarding the pre-
sumed sensitivity of humans relative to the
experimental species and to the existence of
susceptible subpopulations. If the database
provides sufficient evidence, it is then
possible to reduce the magnitude of the
uncertainty factors to reflect the level of
understanding of interspecies and intra-
species differences. Such an approach is
exemplified by the Institute for Evaluating
Health Risks Evaluative Process (4) in the
assessment of the reproductive and devel-
opment effects of lithium (7). The human
and experimental evidence were judged
sufficient to indicate that lithium causes
developmental toxicity in the therapeutic
range, but it fell short of indicating what
the presumed safe level of exposure would
be; extrapolation therefore was necessary.
An expert review committee concluded
that the uncertainty factor of 10 for inter-
species differences could be reduced to
1005 on the basis of the facts that a) Li+2 is
the active toxicant; b) there was a linear
relationship between lithium exposure and
plasma levels in both humans and experi-
mental animals; c) adverse effects appear to
occur at similar lithium levels in humans
and animals; and d) the systemic target
organs for lithium toxicity are similar in
humans and animals. In addition, the
intraspecies uncertainty factor was also
reduced to 100°5 on the basis that the use
of serum concentrations as a measure of
delivered dose minimizes interindividual
differences in absorption, hence accounting

for some of the differences within a popu-
lation. The aggregate uncertainty factor
used was therefore 100.5 times 100°5, or 10.
This effort is one of the first coordinated
attempts to bring independent experts
together for the specific purpose of provid-
ing the best scientific determination of risk
of adverse reproductive outcomes (similar
in nature to the effort of the International
Agency for Research on Cancer for car-
cinogenesis); this effort also demonstrates
the types of decisions that such an
informed group can make regarding the
magnitude of the uncertainties present in a
typical example.

The Benchmark
Dose Approach
Another avenue to improve the dose-
response component of the risk assessment
process is to better use data generated from
standardized testing procedures, indepen-
dent of knowledge of toxicokinetic or toxi-
codynamic factors that may be used to
adjust the magnitude of the uncertainty
factors. Reliance on the NOAEL as the
entrance point into the extrapolation
process for noncancer effects has been the
subject of much criticism (1). The most
significant criticism has arisen from the fact
that the procedure to obtain the NOAEL
fails to encourage better experimental
design. In fact, it even works actively to
discourage such efforts: experiments with
more dose groups and more subjects per
group can only result in lower NOAELs
because more statistical power is focused
on between-dose-group comparisons.
Thus, chemical manufacturers are effec-
tively discouraged from submitting better
toxicological data than the minimum
required by regulatory agencies. Other crit-
icisms include the need to repeat experi-
ments that fail to demonstrate a NOAEL;
the approach ignores the shape and vari-
ability of the dose-response curve; and
NOAELs can represent considerable (and
inconsistent) risk levels (8,9).

Many of these criticisms have been
addressed by application of statistically
based dose-response models in the bench-
mark dose (BMD) approach (10). In the
BMD approach, a particular effect level is
chosen and the dose inducing that response
is calculated using a statistical model
(Figure 1). The BMD is then defined as
the lower 95% confidence interval on that
dose level. In principle, the response level is
chosen near the low end of the observable
range so no extrapolation is necessary (11).
The use of a dose-response function brings
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Figure 1. Benchmark dose calculation. In this idealized
graph, the experimental data points are depicted by
the symbols, the smooth line is the model fit to the
data, and the dashed line is the lower confidence limit
on dose for a given response level. The BME is shown
here as an extra 5% risk, and the BMD is the dose that
corresponds to the intersection of the BME and the
confidence interval.

data from all experimental doses into use,
and the use of the lower confidence interval
on the dose estimate for a particular risk
allows the experimental variability to enter
into the output. BMDs from different end
points or different studies would therefore
be based on more similar response levels
than occurs with the NOAEL.

To evaluate the utility of the BMD to
standard developmental toxicity test data, a
database of 246 studies was analyzed
(12-15). These studies used two dose-
response models applicable to any toxico-
logical end point (the quantal Weibull
model and the continuous power model),
as well as three models (termed the RVR,
NCTR, and LOG models) that incorpo-
rate aspects specific to developmental
toxicity data (e.g., litter-size effects and
intralitter correlations). These studies also
examined quantal (Q) end points (the pres-
ence or absence of litters with at least one
dead or malformed implant) and con-
tinuous (C) end points (the mean litter
incidence of affected implants and fetal
weight). BMDs for various added risk
levels (1, 5, and 10%) were estimated from
a variety of model formulations (e.g., the
presence of a threshold or litter-size para-
meter). For incidence data, a total of 1,825
end point-specific BMDs and correspond-
ing NOAELs were determined. For fetal
weight, comparisons were based on a sub-
set of studies for which individual fetal
weight data were available, and only the
continuous power model and the LOG
model (with the litter size but without the
threshold parameter) were used. To calcu-
late a benchmark dose for reductions in
fetal weight, it was first necessary to define

what level of effect should be used in the
assessment. Therefore, in a preliminary
analysis, 18 different definitions of reduced
fetal weight were considered in establishing
the benchmark effect (BME) level that was
similar in magnitude, on average, to tradi-
tionally determined NOAELs. Six BMEs
for reduced fetal weight were used in the
full analysis. These included reductions in
the mean fetal weight by 5%, 0.5 standard
deviations (SD), or 2 standard errors of the
mean (SEM); a reduction in mean fetal
weight to the 25th percentile of the control
mean; and a 5 or 10% increase in inci-
dence of fetuses weighing less than the 5th
or 10th percentile, respectively, of the con-
trol litter mean. The NOAEL for reduced
fetal weight was less than the highest exper-
imental dose level in 85 of the 173 studies
in this subset. X2 tests were used to assess
goodness of fit while the magnitude of the
log-likelihood estimates were used to com-
pare the influence of optional model para-
meters. BMDs were then compared with
traditionally determined NOAELs.

In the database, QNOAELs (the
NOAEL for an end point based upon
whether a litter contained an affected
implant) were similar in magnitude to
CNOAELs (the NOAEL for an end point
based upon the mean incidence of affected
implants within litters). Both generic and
developmental-specific models provided
acceptable fits to the data from these stan-
dard developmental toxicity bioassays. For
the generic models, goodness of fit tests
were rejected in less than 4% of all analyses.
A very low frequency of nonconvergence
(4/1,825) occurred, which seemed to coin-
cide with dose-response patterns in which
the response at low doses was higher than
that at higher dose levels. For the develop-
mental-specific models, incorporation of
the litter size but not the threshold parame-
ter marginally improved model fit, and the
LOG model was slightly better than the
RVR and NCTR models in terms of model
fit (probably the result of its more flexible
handling of the litter-size parameter).

In nearly every comparison, the median
ratios of benchmarks to NOAELs were
closer to unity than the means, suggesting
the presence of non-normal distributions.
In comparisons based upon the quantal
approach, the best match on average
between NOAELs and the BMDS was
found for a QMBDLO (a 10% added risk
from the quantal Weibull model). The
median benchmark-to-NOAEL ratio at
this risk level was 0.5, and 88% of the
BMDs were within a factor of 5 of the

NOAEL. When comparisons were based
upon more continuous measures of response
(the mean litter incidence), the best matches
were found between the NOAEL and a
CBMD05 (a 5% added risk from the con-
tinuous power model), and a BMD05 from
any of the three developmental-specific
models. For example, the median CBMD-
to-NOAEL ratio was 1.04, and 95% of the
benchmarks were within a factor of 5 of the
NOAEL; and only 9/486 (1.85%) of the
comparisons differed by a factor of 10. All
six operational definitions of reduced fetal
weight listed above provided BMDs that
were similar, on average to the NOAELs.
The median benchmark to NOAEL ratios
ranged from a low of 0.9 for a BME of a 2
SEM reduction in the average litter mean
to a high of 1.24 for a 5% reduction in the
average litter mean. In only 9/76 compar-
isons (11.8%) did any of the BMDs from
the six definitions of a BME for reduced
fetal weight differ from the NOAEL by
more than a factor of 4. The largest such
difference was 18-fold. Two aspects, often
in combination, generally contributed to
the differences of unusual magnitudes
between the BMD05 for the reduced fetal
weight BMEs and the corresponding
NOAELs. The first of these was the use of
a study design with wide dose spacing and
the second was the presence of a shallow
dose-response pattern. In the former
instance, a very wide interval between the
NOAEL and LOAEL dose would tend to
produce NOAELs that might be consid-
ered to be artificially low (recall that unlike
the benchmark dose, the NOAEL is con-
strained to be one of the experimental
doses). In the latter instance, the shallow
slope can make determination of the
NOAEL more arbitrary and unstable.
Combined, these two aspects can therefore
be expected to create greater than normal
heterogeneity in the BMD-to-NOAEL
ratio. Therefore, close examination of the
minority of studies that yielded divergent
BMD-to-NOAEL ratios demonstrates a
key advantage of the benchmark dose
approach. If the BMD always gives us the
same information as the NOAEL, there is
little compelling reason to adopt a new
system. Starting the extrapolation process
from a point of consistently determined
and comparable risk levels avoids some
potentially misleading comparisons of the
relative risk of two chemicals.

These comparisons demonstrate the
feasibility of applying the benchmark dose
methodology to developmental toxicity
bioassays and provide convincing evidence
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of the risk level (5% on average) associated
with traditionally derived NOAELs based
upon continuous measures of response.
The analysis also points to the conservative
nature of dose-response models based
upon quantal end points that reduce the
data to whether a litter contained at least
one affected implant (recall that the
QBMD that best matched the QNOAEL
was based upon an added risk of 10%, and
even in that case the estimate was still con-
servative relative to the NOAEL). At the
10% risk level, QBMDs were two to three
times smaller than the CBMDs, a differ-
ence attributable to both lower maximum
likelihood estimates (MLE) of the dose
corresponding to this risk level and to wider
confidence intervals. For example, the
median ratio for the CMLE05/CBMD05
was 1.6 with an upper 99th percentile of
4.0, whereas the median ratio of the
QMLE05/QBMD05 was 3.3 with an upper
99th percentile of 15.6. In only 13 of 542
end points with significant quantal and
continuous trends, the QBMDo5 was
greater than the CBMD05. Such compar-
isons may have important implications for
implementing the BMD approach for
other noncancer end points in which data
are more like those of the quantal end
points that are based upon affected litters
and point to the advantages of using indi-
vidual implant data for developmental tox-
icity analyses. In any event, there were no
major differences in performance or fitness
between the generic, continuous, or devel-
opmentally specific benchmark models for
any of the end point comparisons, suggest-
ing that the choice of model is up to the
user, provided that it adequately describes
the data. Another advantage of the BMD
approach is that it provides a stimulus for
considering other dose-response method-
ologies in the area of noncancer health
effects, a situation that appeared extremely
remote only a few years ago.

Second Generation Models
The discussion to this point has been lim-
ited to assessing each end point of develop-
mental toxicity individually. Several groups
are now working on models that are capa-
ble of providing risk estimates for multiple
adverse outcomes. End points of develop-
mental toxicity nominally recorded in
bioassays include the viability of an
implant and the morphological status and
growth of surviving implants. Emerging
models can account for correlations
between outcomes and can represent the
overall probability of yielding a normal

birth outcome. For example, Catalano et
al. (16) presented a model of the probabil-
ity of abnormality, which is defined as the
probability that an offspring is either dead,
malformed, or of low fetal weight. The
model can be simply expressed as

P(d) = 1 -[1 -P(d)] [1 -P2(d)]

where P(d) is the overall probability of
being normal at dose d, PI is the probabil-
ity of death or resorption, and P2 is the
probability of malformation or low weight
conditional on survival. The models were
fit using generalized estimating equations
(GEE), which are computationally simpler
than maximum likelihood methods and
also have relaxed distributional assump-
tions. The probability of fetal death or
resorption was initially modeled as a func-
tion of dose using a probit model with a
power parameter. Next, outcomes among
live fetuses were modeled using a two-
stage regression approach. The first stage
regresses fetal weight as a function of dose
with litter size as a covariate and allows for
a correlation parameter to characterize the
litter effect. Then, the procedure calculates
the individual and average litter residuals
from the fetal weight model. A cutoff value
of 3 SD units beneath the control mean
was considered abnormal. Next, a probit
model was used to quantify the probability
of malformation, with covariates for dose,
individual and average weight residuals,
and litter size. Finally, all three models
were linked to obtain an overall risk of
adverse outcome. An important model
assumption was that malformation and
weight are independent after conditioning
on litter size. The multinomial approach
should produce more conservative esti-
mates of adverse outcome as a result of its
increased power and sensitivity to detect
effects among strongly correlated out-
comes. Thus, in the analysis of the effects
of diethylene glycol dimethyl ether
(DYME) on mouse development, the indi-
vidual estimates of the BMD05 for death,
malformation, and weight were 152.4,
141.7, and 149.8 mg/kg, respectively, while
the full multinomial yielded a combined
BMD05 of 99.4 mg/kg.

Similarly, Zhu et al. (17) examined an
extended Dirichlet-multinomial covariance
function to estimate jointly the regression
parameters in Weibull dose-response
models for both embryolethality and fetal
malformations as applied to the large-scale
study conducted by the National Center
for Toxiocological Research on the

developmental toxicity of 2,4,5-trichloro-
phenoxyacetic acid (2,4,5-T) in mice. Here,
the fetal malformation rate was determined
conditionally on both the number of
implants and the number of viable fetuses.
Using GEE to estimate the model parame-
ters, the doses associated with 5% increased
risk of response (ED05) were: 51.93 mg/kg
for cleft palate, 55.55 mg/kg for prenatal
death, and 46.51 mg/kg for what they
termed overall toxicity. Krewski and Zhu
(18) later extended the comparison of bino-
mial and trinomial models to 11 datasets
and found that when both end points were
affected by dose, the ED05s were always
lower for overall toxicity and the standard
errors of the estimate tended to be smaller.
When only one end point was affected by
dose, the ED05 for overall toxicity approxi-
mated that for the affected end point.

As seen in both examples of multinomial
approaches to developmental toxicity, there
is a gain in sensitivity (conservatism) in
estimating the joint probability of response
when multiple end points are affected by
exposure. As many of the measured end
points are intercorrelated, and perhaps
even related biologically, there seems to be
considerable logic in models that are capable
of estimating the overall risk of adverse out-
come; there are also computational advan-
tages of these models. However, they have
not been extensively evaluated in large num-
bers of datasets, and the gains in precision
generally appear to be relatively small.

Study Design Implications
of the BMD Approach
The practical consideration of identifying
the highest experimental group that does
not differ significantly from the control
group has led to study designs for develop-
mental toxicology that generally consist of
four dose groups (one control and three
treated) of 20 litters each. The high dose is
usually targeted to induce mild maternal
toxicity, with lower doses set either by pro-
gressively halving the higher doses or by
other factors, such as the desire to ensure
that no adverse maternal or developmental
effects are observed at the lowest experi-
mental dose. Given the sample sizes and
background response rates, these designs
are generally capable of detecting a 3- to
6-fold increase in embryonic death, a 5- to
12-fold increase in malformations, and a
15 to 20% decrease in mean fetal weight
(1). With the emergence of the BMD
approach for dose-response assessment, the
premium on identification of the NOAEL
is likely to diminish in favor of designs that
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yield smaller confidence intervals, and
hence higher BMDs, around the bench-
mark effect level. Given this new consid-
eration, it is important to analyze how
elements of study design can influence esti-
mation of the BMD. While there has been
considerable effort placed on examining the
influence of study design on cancer risk
assessment models, the fact that target risk
estimates for noncancer effects lie in the
observable range (10°-10-1) as opposed to
very low and experimentally noncon-
firmable levels for carcinogenic effects (gen-
erally 10-5-106) provides a different set of
issues related to study design. Thus, it is
expected that the BMD will be less sensitive
to model misspecification, provided that the
models are flexible in terms of handling dif-
ferent dose-response patterns (11). The
most important issue for BMD calculations
is how the number of dose groups, their
spacing, and sample size affect the precision
and accuracy of the risk measure. These
aspects were studied by simulating the dose-
response effects of 5-fluorouracil (5-FU) on
the incidence of malformations and reduced
fetal growth noted in a study by Shuey et al.
(19). The primary findings of that study
will be presented in the discussion on bio-
logically based dose models. In the simula-
tion study (20), fixed sample size designs
were studied: a total of 80 litters were
distributed as evenly as possible among
four, five, six, seven, or eight dose levels, as
well as fixed dose group designs in which
10, 13, 17, or 20 litters per group were
assigned to either four or five strategically
spaced dose levels. In this review, discus-
sion will be focused on malformations as
the outcome variable.

The observed and simulated dose
response patterns for 5-FU-induced malfor-
mations are depicted in Figure 2A. Note
that the response pattern is steep; elevated
responses are first observed at 30 mg/kg
and increase rapidly to reach nearly 70%
by 40 mg/kg. In the original experimental
data, the BMD for malformations was 26.5
mg/kg with a NOAEL of 30 mg/kg. Figure
2B presents a composite analysis of the
results from five different simulated designs.
The designs varied from four through eight
dose groups, with all dose groups consist-
ing of 10 litters. Fifty permutations were
run for each design; benchmarks were cal-
culated using the log-logistic model with
litter size and intralitter correlations as
optional parameters. NOAELS were deter-
mined by the NOSTASOT method (21).
Several elements can be observed in Figure
2B: the proximity (and variability) of the

MLE estimations to the true do
induced a 5% increase in mal
(the ED05 of the simulated popu
width (and variability) of the
interval beneath the MLE (the I
the impact on the NOAEL. For
the study design contained a dc
30 mg/kg, that dose was ident
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time. The deviation for the tru
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group was near the ED05. This response pat-
tern is typical of what might be considered
a weak developmental toxicant.

Although the current NOAEL-based
strategies for study design in developmen-
tal toxicity studies are adequate for use in
benchmark dose calculations, the results of
this simulation study point to minor

l~-------~- improvements that offer increased preci-
30 40 sion and accuracy of the desired risk esti-

mates. The most important of these factors
include the location of a dose group at the
low end of the response range and the pres-
ence of two nonzero responding dose lev-

1 els. It is possible that information from
pilot dose-range-finding studies could help

12 position dose levels for the definitive
dose-response study.

(0,10, (0,10,20, (0,10. (0,10,20, (0,10,15,20
20,401 35,40) 20,30) 30,40) 25,30,35,40)

Dose groups

Figure 2. A, Box and whisker plot for the dose
response for abnormalities derived from 1,000
samplings of the simulated population. The smooth
line is drawn through the true population response at
each dose level. In the box and whiskers, the box
encloses the interquartile range, the lines extending
from the box reach the 10th and 90th percentiles, and
the line in the box is the median value. Litters with
responses in the tail 10th percentiles are indicated by
open circles. B, Graphical representation of results
from simulations of different study designs for abnor-
malities given 10 litters per dose. For each study
design, the box plot on the left is for the MLE, the box
plot immediately to the right is for the BMDs, and the
number of simulations (50 total) at each dose level giv-
ing a particular NOSTASOT is inscribed to the right.
Box plots are as described in A. Adapted from Kaviock
et al. (20).

The Biologically
Based Approach
In vivo

Thus far we have discussed how to better
use data traditionally acquired in the haz-
ard identification phase of risk assessment.
We now turn our attention to approaches
that require additional knowledge and char-
acterization and, by doing so, offer greater
promise of reducing the uncertainties pre-

sent in extrapolating data from experimental
systems to humans. In the first set of exam-
ples, the problem is approached from the
top, i.e., identifying an effect and putative
mechanism, acquiring the necessary infor-
mation, and constructing a formal quantita-
tive response model. These models, termed
pharmacodynamically or biologically based
dose-response (BBDR) models, break
down the sequence ofevents-from admin-
istration of the chemical to expression of
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toxicity (in the case of developmental toxi-
city these would be an altered phenotype in
the offspring)-into individual intervening
steps and attempt to quantitatively describe
each segment (Figure 3). Thus, to the
extent possible and feasible, these models
attempt to determine and quantify mecha-
nisms of toxicity and how the relationships
may change as a function of dose rate, route
of administration, and molecular, biochem-
ical, and physiological differences across
species. Much of the early efforts in devel-
opment of BBDR models has been in the
area of carcinogenesis (22,23), but atten-
tion is now being turned to noncancer end
points as well. Gaylor and Razzaghi (24)
postulated a model to describe the induc-
tion of cleft palate by 2,4,5-T (using the
same NCTR dataset used above for multi-
nomial benchmark-dose comparisons). To
simplify the model, they assumed that the
chemical affected only one stage of develop-
ment through a reduction in cell number,
which in turn yielded palatal shelves that
were too small to close, hence the cleft. A
logistic function was used to describe the
growth rate of cells, and an exponential
function described the effect of target dose
on the growth rate constant. The probabil-
ity of a normal palate in a treated animal
relative to a normal palate in a control ani-
mal was assumed to be equal to the ratio of
the number of palatal cells present at the
critical time of closure. The overall model
was expressed as:

P(D)-P(O) = [1-P(O)]

ot'e-aDy -pot'e -e

where P (D) is the probability of a cleft
palate at dose D, Bo is the growth rate con-
stant of palatal cells in untreated animals,
and t' is the time to complete the ith stage
of development. Note that two parameters,
a and y, must be estimated for growth rate
of the cells in the palatal region, as well as
an estimate of the background incidence of
clefting in control litters. For cross species
extrapolation, it would be necessary to fur-
ther assume that postulated relationships
between administrated dose and target
dose and with cell kinetics and morpho-
genesis are similar in the exposed and tar-
get species. They cautioned that, even in
this simplified case, many assumptions had
to be made and the estimates of response
from the BBDR model may not improve
those obtained by logistic analysis of

Administered dose

Target dose

Molecular interaction

Molecular response

Cellular response

Tissue response

Developmental toxicity

Fetal levels of 5-FU/FdUMP
(pharmacokinetics)

Thymidine depletion
Decreased DNA synthesis

, Ia== .I_

Figure 3. Framework of BBDR and application to 5-FU.
Data from Shuey et al. (19).

standard bioassay data. It is also worth not-
ing that this approach did not consider
among-animal variability in parameters
and thus did not include an important
component of modeling.

In an attempt to prospectively build a
BBDR model, Shuey et al. (19) examined
the response of gestation day (GD) 14 rat
fetuses to the chemotherapeutic 5-FU.
This agent was selected because steps in
altering cellular biochemistry are generally
known (inhibition of the enzyme thymidy-
late synthetase by the metabolite 5-fluoro-
2'-deoxyuridylic monophosphate) and the
consequences of depleted nucleotides on
the cell cycle, and hence fetal growth and
hind limb development, were quantifiable.
The experimental design included exami-
nation of a wide range of dose levels, tis-
sues, end points, and time points following
dosing. The end points induded activity of
thymidylate synthetase, the synthesis of
DNA and protein, cell cycle kinetics, tissue
morphometrics, and fetal morphology. In
constructing the quantitative dose-response
model, they focused on enzyme activity
1 hr after dosing, the percent of cells in
S phase 8 hr after dosing, limb bud mor-
phometry 24 hr after dosing, and the inci-
dence of malformations on day 21 of
gestation (7 days after dosing). Each step
was described by a Hill equation; the indi-
vidual equations were linked as proposed
in the initial framework to yield an empiri-
cal model of the induction of developmen-
tal toxicity (Figures 4 and 5). The linked
model slightly overestimated the incidence
of hindlimb defects observed in the origi-
nal bioassay. A Monte Carlo simulation to
evaluate the amount of variability around

the predicted relationship between the
administered dose of 5-FU and the inci-
dence of digit agenesis showed that a few
combinations provided predicted curves
near the original dose response. The
model, though biologically based, must
still be regarded as empirical because of the
lack of a priori biological basis for the form
of the quantitative expressions. As a conse-
quence, the proposed model cannot be
used to make predictions about other
thymidylate synthetase inhibitors, effects
following exposure at other critical times
during development or via other routes of
exposure, or in other species. Nevertheless,
the effort provided clear evidence of the
feasibility of constructing mechanistic
models, as well as the somewhat daunting
data intensiveness required of even rela-
tively simple postulated cause-and-effect
mechanisms. If experimental situations can
be constructed in which portions of the
response model can be verified with in
vitro tissues from the test species and from
human embryo tissues, then it might be
possible to make the models less empirical
in nature. In addition, if models could be
built upon final common pathways of
chemical perturbation (altered nucleic acid
pools or altered cell cycle kinetics), then
their use could be extended beyond the
particular chemical under study. Leisenring
et al. (25) have proposed such a model
based upon cell kinetics and a branching
model. In any event, the data intensiveness
involved in the construction of models of
this nature will, for the foreseeable future,
limit their application to situations in
which large segments of the population are
exposed to low levels and where determina-
tion of safe exposure levels is extremely
important or to economically important
chemicals where the costs of regulation
would warrant a concerted effort to mini-
mize the uncertainties inherent in extrapo-
lation. To generalize the predictiveness of
the experimental model, a parallel model-
ing effort was undertaken using computer
simulations of the toxicokinetics, cellular
biochemistry, and cell kinetics.

Computer Simulation
The next step in the evolution of the
dose-response model is to develop mathe-
matical descriptions that capture the mech-
anisms that are responsible for the steps in
the causal cascade from exposure to final
effect. This has several advantages. If there
is a good mapping between the biological
structures and processes being modeled
and the equations and parameters in the
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Figure 4. Relationships (described mathematically by Hill equations) between successive biochemical and cellular events in the fetal rat hindlimb following 5-FU exposure,
TS, thymidylate synthetase. A, TS inhibition 1 hr after dosing; B, altered cell cycle following TS inhibition; C, growth reduction as a result of an altered cell cycle; D, malforma-
tions following growth reduction. Reproduced with permission from Shuey et al. (19).

model, and the biological processes in the
animal for which the model is developed
reflect the processes going on in the target
species (usually humans), then interspecies
extrapolation can be carried out by replac-
ing the species-specific parameters. Under
current dose-response methodology, there
is little empirical support for low-dose
extrapolation; however, the creation of the
sort of biologically based dose-response
model considered here presumes mechanis-
tic understanding of the toxic processes,
and lends credence to any low-dose extrap-
olation. A similar argument applies to

route-to-route extrapolation. Finally, such
a model incorporates data from a wider
diversity of sources than conventional
dose-response models. Dose-response
bioassays and virtually any other relevant
biological information could be incorpo-
rated into such models. In the develop-
ment of such models, it is helpful if their
structure reflects the biological structure of

the system being modeled. Thus, it may help
to divide the events to be modeled into steps
as depicted in Figure 3, with each submodel
linked together by common variables.

Conventional dose-response models
relate some measure of final outcome, such
as incidence of malformations or average

weights, directly to an administered dosage.
It is more natural for this kind of BBDR to

predict time courses of phenomena because
it is usually easier to express models in terms
of rates. So, for example, a pharmacokinetic
submodel will predict the concentration of
a compound at the target cell surface for a

continuous range of times after dosing;
submodels for the interaction with molecu-
lar receptors and subsequent changes in

cellular behavior will predict the time
course of such behaviors (e.g., the fraction
of cells undergoing apoptosis at a given
time). Lastly, the time course of the final
end points in the causal cascade must be
related to the observed adverse effect.

Consider as an example a model for the
effects of 5-FU on cell-cycle kinetics in the
rat fetus described above (19). A mathe-
matical model is being developed to facili-
tate the understanding of the relationships
among enzyme activities, nucleotide con-

centrations, and subsequent perturbations
of cell kinetics observed in this system.
Although the model is still in development
(26-28), it is far enough along to allow
discussion of the salient points in non-

mathematical form.
The mathematical model is an attempt

to quantify an admittedly simple concep-

tual model for the developmental toxicity
of 5-FU: when pregnant dams are dosed
on GD14 by subcutaneous injection, the
5-FU is absorbed from the site of injection
into a large, metabolically inactive com-

partment. From there it enters the blood
and is distributed to a metabolically active
compartment, which includes renal elimi-
nation and the uterus. From there, 5-FU
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Figure 5. The integrated empirical model for 5-FU developmental toxicity based on TS inhibition. Individual
were generated by Monte Carlo simulation to evaluate the amount of variability around the predicted relatii
Triangles (with lines) are the mean and standard errors of the original data. Reproduced with permissio
Shuey et al. (19).

distributes uniformly throughout the
uterine contents (fetuses), which are also
metabolically active. Up to this point, the
pharmacokinetic model is based on a model
of Collins et al. (29) and modified to incor-
porate the uterine compartment after the
model of O'Flaherty et al. (30). Parameters
were estimated by fitting to data of Boike et
al. (31), as well as empirically measured
serum levels of 5-FU in the GD14 dam. A
fraction of the metabolism of 5-FU results
in FdUMP, the inhibitor of thymidylate
synthetase (TS). The inhibition of TS and
its consequences are modeled using a

modified version of the equations published
by Jackson (32) for the regulation of the
composition of the deoxyribonucleoside
triphosphate composition. The modification
consisted of, first of all, rewriting the por-
tion of the model dealing with TS in the
form of mechanistic equations instead of the
rapid equilibrium equations and allowing
enzyme activities to change during the cell
cycle [e.g., TS activity increases throughout
S phase; (33)]. This latter point was

deemed important because the biochemical
kinetic system is highly nonlinear, and it
was of interest to see to what extent embed-
ding the system into an active cell cycle
would alter its behavior. From this model
we obtain predictions about the nucleotide

pool sizes, rates of DNA synthesis an

cylcle kinetics as a function of time
concentration of FdUMP.

The 5-FU model as described inc
only two of the kinds of submodels
above: a pharmacokinetic model to pi
5-FU and FdUMP concentrations in
cells and a biochemical model that inc
inhibition ofTS (the receptor for Fdt
by FdUMP and the resulting perturba
of DNA synthesis and cell cycle kin
Nevertheless, implementation of the n
involves 17 differential equations an
parameters, virtually all of which we

to values estimated in the literatur
similar mammalian systems. Only the
tion of 5-FU metabolized to FdUMI
the intracellular half-life of FdUMP
adjusted to match model predictions (

maximum inhibition of TS to our it
high-dose observations.

The original motivation for bui
this particular model was to account f
apparent discrepancy between the reli

ship of 5-FU dose to maximum TS ir
tion on one hand and that of dose t
incidence of malformations and w
deficits on the other (19). In brief, a

dosage increases, the marginal incre-
TS inhibition decreases sharply. The
response for malformations has neo

hockey-stick shape (Figure 2A); at the
dosages at which malformations begin to
increase, the additional increase ofTS inhi-
bition due to increases in 5-FU dose has
already become very small. The mathemat-
ical model reproduces this behavior (Figure
6). Thus, what at first seemed to be evi-
dence for the action of mechanisms other
than initially hypothesized is actually the
normal behavior of a highly nonlinear
interactive system.

The 5-FU model as described here is far
from being useful as a quantitative
dose-response model for risk assessment;
however, it serves as the source of some
instructive points. First of all, the model
reproduces the very steep increase in malfor-
mations seen in rats exposed in vivo begin-
ning at 30 mg/kg in its prediction of cell
cycle disruption (Figure 7). Although this

-y- may yet turn out to be an artifact of model
40 construction, the observation points out

the possibility of using such models to
infer safe exposure levels based on a quanti-

curves tative understanding of the mechanism of
onship. action of a toxicant. By looking at how
n from much the threshold varies when the model

is run with different values for the kinetic
parameters, it would be possible to get at
least a semiquantitative estimate of the

d cell degree of intraspecies variability in the
and threshold one might expect. Thus the

model could serve as a link between the
ludes variability of metabolic values, which could
listed be observable experimentally, and the
redict uncertainty factor for intraspecies variability,
fetal which so far is usually determined purely

-ludes formally. Finally, by putting hypotheses
JMP) about mode of action in a quantitative lan-
ations guage, experimental tests of those hypothe-
etics. ses can be carried out in a more rigorous
nodel manner, facilitating decisions about the
id 65 appropriateness of an animal model for
re set
re for
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P and
were

ofthe
ViVO

lding
for an
ation-
nhibi-
to the
reight
as the
ase of
dose

arly a

100 -

80-

*- as

E 40-

E o

xae

4 20-

0-

o Model
| Data

0

~1 2

10 15 20 25 30 35 40

5-FU dosage, mg/kg
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extrapolation to humans. In addition to
refining the precise mathematical form of
the model, we are currendy evaluating sev-
eral model-generated hypotheses concern-
ing the effects on nucleotide pool sizes, cell
cycle kinetics, and rescue by presumably
rate-limiting nucleotides in a simpler in
vitro cell system. If these experiments are
successful, similar information will be col-
lected on embryos exposed in utero. All
along, there will be an iterative interplay
between model formulation and experi-
mental data as we learn more about the
underlying biological processes.

It is reasonable to inquire whether the
effort implied by this discussion of BBDR
modeling could ever be justified in routine
practice. Clearly, in our current state of
knowledge, it would be unrealistic in the
extreme to propose that all dose-response
assessments for developmental toxicity
should be conducted under this paradigm.
However, there may be toxic agents with
such pervasive distribution and potentially
toxic effects that such intense effort is
justified: chemicals such as dioxins, PCBs,
and other persistent environmental chemi-
cals that mimic or inhibit the effect of
endogenous hormones may provide exam-
ples. Such efforts may also be warranted for
chemicals that are being proposed for
significantly new uses in which the potential
economic gain to the supplier and resulting
widespread human exposure justifies
extended examination of the hazards
identified by more traditional toxicological
approaches (e.g., fuel additives, alternative
fuels). Perhaps the greatest potential for such
models is not for assessments of specific
chemicals but as research tools to help eluci-
date general mechanisms of toxicity. As the
experience with such investigations accumu-
lates, it may be that their results could be
treated as a toolbox out of which models for
new compounds could be constructed with

only incremental increases in effort. In the
meantime, the rigor required to construct
BBDR models can only benefit toxicologi-
cal mechanistic investigation.

The Embryologically
Based Approach
The final approach we present is dearly the
most visionary and hypothetical of the
approaches. The EBDR approach begins
not with an effect and mechanism but with
the fundamental understanding of normal
morphogenesis and, only secondarily, fac-
tors in how these events are perturbed by
exogenous agents. Such models would be
adaptable to the effects of multiple chemi-
cals provided they captured the salient
biological events. The biological under-
standing of morphogenesis at the molecu-
lar level, linked with mathematical theories
and constructs of pattern formation, may
open the door for these approaches. We
will use recent advances in the understand-
ing of the role of homeobox genes in devel-
opment of the axial skeleton and limbs to
illustrate how the emerging knowledge of
positional signaling is providing informa-
tion to take the heretofore theoretical mod-
els of pattern formation into potential use
by developmental toxicologists.

Homeobox genes, so named for a 183
bp DNA sequence that yields a 61 amino
acid protein sequence containing a DNA
binding domain, were first described in

Drosophilia
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Drosophila about 10 years ago (34). These
genes are highly conserved across many
phyla, and today some 38 Hox genes orga-
nized in four chromosome complexes are
recognized in the mouse (Figure 8). The
role of Hox genes in pattern formation in
vertebrates is in part due to a feature termed
collinearity, that is, there is a close relation-
ship between expression along the anterior-
posterior axis of the embryo and the gene's
order along the chromosome (Figures 9
and 10) (35-37). Manak and Scott (36)
provided several conserved rules governing
Hox gene function in the developing verte-
brae: a) their tissue expression and function
follows along the order on the chromo-
some; b) more genes are expressed in the
more posterior regions; c) loss of gene func-
tion leads to development of anterior struc-
tures where posterior structures should have
formed (e.g., a rib on the 14th postcervical
vertebra of a rodent); d) activation of genes
where they should be off (gain-of-function
mutations) leads to formation of posterior
structures where anterior structures should
be (e.g., the presence of only 12 pairs of
ribs in rodents); e) each homeotic gene con-
tains a single homeobox, which encodes a
specific DNA-binding transcription factor;
andf ) most of the 5' ends of the transcrip-
tion are oriented toward the end of the
cluster. The upstream and downstream
events from Hox expression have yet to be
generally established (38,39), but their

Did Ser Lbx abbd-A Abd
_ _ _ t _ _ >BX-C

.ff%, _,.
.. . .. ... . . ...........

d3 d4 as_- _ _ | asO

1.11 1iS IA 1 12

so ae10 all s13 Evxl_

1.1 1.7 1.8 1.9 1.1O

bi b2 b3 bM bS be b7 b b9

2. 2 2.7 2.6 21 2.2 2.3 2.4 2.5
d4 as as Go co cO cl 012 cl3

3. 3 3 3.1 3.2 3 3.7

di

49

dO dW

- -
4.1 42

Paralogs 1 2 3 4 5 6

3' Hindbrain
Anterior
Early -

High RA response

dB dg dlO dli d12 dit Evx2
--- - -

4.3 4.4 4. 4.0 4.7 4.8

7 8 9 10 11 12 13

Trunk 5'
Posterior

~ Late
Low RA response
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Modified from Krumlauf (35).
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Figure 10. Schematic representation of the Hox gene
expression in the chick leg bud at various Hamburger
and Hamilton stages. The view is of the dorsal surface
of the right limb bud. Hox-10 and Hox-12 have been
omitted for the sake of clarity. Note the progressive
expression of the 5' genes as development proceeds.
Modified from Morgan and Tabin (73).

coordinated appearance during early pat-
tern formation implicates them in at least
specifying segment identity if not the actual
segmentation process. Other gene classes
are also known to be involved in sculpting
the formation of the vertebrae, with the
Pax genes (especially those that include the
paired box and homeobox) among the
more well studied (40).

During the last several years, a number
of loss-of-function mutants created by
recombinant genetic techniques illustrate
the governing rules stated above (Table 1).
Phenotypes similar to those of the knockout
experiments are familiar to developmental

toxicologists, and it should not be surpris-
ing to see that homeotic-type alterations
in the vertebrae, particularly the anterior
and posterior boundaries of ribs, are fre-
quently induced by xenobiotics. Thus,
anteriorizations (i.e., the taking on of the
morphology of the immediately preceed-
ing segment) of the first lumbar vertebrae
as induced by maternal toxicity or stress

(58,59); valproic acid (60); bromoxynil
(61,62); salicylate (63); dimethadione
(64) and retinoic acid (65) are but a few
examples. Posteriorizations of the thoraco-
lumbar border have also been observed
(66-68), but this effect is clearly less fre-
quent in the developmental toxicology lit-
erature. Toxicant-induced alterations are

not limited to the thoraco-lumbar border
and may also involve posteriorizations of
the cervical-thoraco juncture, as demon-
strated by experiments with methanol
(69,70) and boric acid (67). In general,
these agents induce frank dysmorphologies
of the axial skeleton at higher dose levels;
however, the phenotypes rarely, if ever,

completely resemble the null hox pheno-
types regardless of response level. Closer
examination of subtle skeletal morpholog-
ical features in developmental toxicity
bioassays may strengthen the impact of
the effects on the axial skeleton. We see

changes at the major boundaries because
that is where our attention has been
focused and because of the ease of observ-
ing such changes. In addition, comparison
with phenotypes from individual null
mutations might not be expected to pro-
duce complete concordance due to other
possible pathogenic pathways as well as

the- potential redundancy in Hox gene
function (52).

The study of pattern formation in the
limb has perhaps received the most atten-

tion of any vertebrate organ (71-75). The
limb begins as an outgrowth of the lateral
somatic mesoderm as cell proliferation
slows in the regions immediately anterior
and posterior to the emerging bud. An api-
cal epidermal ridge (AER) soon develops
and is maintained by the underlying meso-

derm. In turn, the AER supports prolifera-
tion of the underlying mesenchymal cells
in what is termed the progress zone (PZ).
Recent evidence suggests that fibroblast
growth factor (FGF) 2 and FGF 4 may be
the morphogenetic signal emanating from
the AER. Continued cell proliferation in
the PZ gradually establishes the proximal-
distal axis of the limb. As shown by surgi-
cal removal of the AER at various stages,
the longer cells stay in the PZ, the more

distal the structures they will form. As cells
leave the -PZ, they decrease their rate of
proliferation and begin to differentiate;
thus as they exit, they are believed to have
acquired some aspects of positional iden-
tity. A small set of cells in the posterior
area of the PZ then gains a special property
that contributes to the anterior-posterior
axis. This area, known as the zone of polar-
izing activity (ZPA), was first identified by
its ability to induce digit duplications when
grafted into the anterior region of the
emerging bud (76). The polarizing ability
of the ZPA was at one time thought to be
due to its role in establishing a gradient of
retinoic acid, but it has now been demon-
strated to result from expression of sonic
hedgehog (Shh), a gene related to Drosophila
segment polarity gene hedgehog (77). The
Shh gene product is an autocleavable
protein whose active amino terminus
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Table 1. Phenotypes of null mutations for paralogs in the four vertebrate Hoxclusters, with particular reference to specification of the axial skeleton.

Paralog Hoxa Hoxb Hoxc Hoxd

1 No rhombomeres; ear defect; poor NA
form of ganglions IX and X,
posteriorization of ganglions VII and
VIII (41)

2 Cleft of secondary palate; defects NA NA
in inner, middle, and outer ear;
cleft in root of tongue; reduced size
of facial nerve (42,43)

3 Athymic; aparathyroid; decreased NA Loss of dens axis; ectopic ossification
thyroid and sub-maxillary glands; of caudal edge of basioccipital bone;
defects in heart, arterial, and cardio- displacement of lateral foramina on
pulmonary failure; lethal (44,45) C2 (44,46)

4 Non-normal dorsal process on C2 Transformation of C2 to Cl; sternal Transformation of C2 to Cl; malfor-
and C3; transformations of C3 to C2, defects (49) mations of Ci to C3 (50)
and C7 to Ti (47,48)

5 C7 rib; no TA on C6; abnormal Forelimbs shifted anteriorly relative NA
number of sternebrae and ribs (51) to axial skeleton by 1 to 2 cervical

vertebrae; anteriorization C6 thru Ti (52)
6 Split in ventral T1; C7 rib; trans- Missing 1st rib; bifurcation of 2nd NA

formation of Ti to T2 (48) rib at the sternum; anteriorization
C6 thru Ti (52)

7 NA NA
8 NA 8th pair of ribs on, instead of below,

sternum; ribs on Li; die within days
of birth (53)

9 Anterior transformation of Ti0 through
li; 8 or 9 pairs of attached ribs (54)

10 NA
11 12 rib pairs; complete fusion of NA Anteriorization of sacral bones;

pisiform to triangular carpal fusions between wrist bones; defects
bones (55) in the radius and ulna; extra lumbar

vertebrae (56)
12 NA NA
13 NA Splits, fusions in digits, and extra

digits (57)
NA, not applicable (paralog not discovered).

remains within the cell of origin and
therefore does not meet the criterion of a
true morphogen. Ectopically placed retinoic
acid-soaked beads have been shown to
induce Shh, create a new ZPA, and cause
mirror-image digit duplications.

As with the axial skeleton, Hox genes
are important in providing positional
information that defines axes of the limb, if
not of the digits themselves. Genes in the
Hoxa cluster have been reported to emerge
in a collinear fashion from the PZ, such
that the more 3' Hoxa-Ji is expressed
more distally than Hoxa-13 (78). This gra-
dient may be involved in proximal-distal
axis definition. Similarly, the Hoxd cluster
is expressed in a collinear fashion in
response to the ZPA, with Hoxd-9 coming
to be expressed in the most anterior and
proximal region and Hoxd-10, d-11, d-12,
and d-13 having progressively more poste-
rior and distal expressions. Expression of

the Hoxd cluster in the limb is dependent
on the presence of the AER. The progres-
sive expression also correlates with the
onset of asymmetry within the limb, as the
posterior half becomes larger than the ante-
rior as Hoxd-1 1 and Hoxd-12 are activated,
perhaps suggesting a role in mediating
growth (73). By providing this overlapping
gradient of expression, the five members of
the Hoxd cluster help define the number
and placement of digit types. The fact that
the Hoxa gradient is orthogonal to the Hoxd
gradient may give further positional identity
to cells. However, results of knockout exper-
iments have not necessarily supported some
facets of this model of positional informa-
tion. For example, following disruption of
Hoxd-13 (which might be hypothesized to
interfere with the most posterior digit
based upon its expression pattern), all dig-
its, but particularly digits II and V, are
reduced in size, and half the animals

possessed an additional rudimentary digit
posterior to digit V (57). The early Hox
gradients are also clearly dynamic in space
and time, and the more restricted domains
seem to fade with time into a more uniform
expression pattern (73). As with the axial
skeleton, the downstream events from Hox
expression in the branching process and
formation of bones in the limb remain to
be discerned, although retinoic acid and its
metabolites, binding proteins and recep-
tors, are undoubtably involved (72,79).
Finally, the Wnt genes appear to have a
role in establishing the dorsal-ventral axis
of the limb bud (80).

To what extent does our increasing
knowledge of the molecular foundation of
pattern formation allow us to judge the
significance of toxicant-induced homeotic
shifts or other structural perturbations dur-
ing development? Are the Hox genes
directly involved in providing positional
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information for subsequent pattern forma-
tion? Can we identify alterations in pat-
terning-gene expression in the immediate
stages following toxicant exposure when
the agent is initiating the morphologic
lesion? The difficulty in establishing
relative landmarks at these early embry-
onic stages and quantitating molecular
responses at the cellular level makes this
problematic. Are the shifts in the bound-
aries the limit of their phenotypic expres-
sions or just the tip of other responses that
are more difficult to identify? If direct pri-
mary links between xenobiotics and altered
gene function become evident, will we
become more worried because we are per-
turbing the action of transcription factors
key to morphogenesis; or do we become
less worried as we understand the redun-
dancies built into the overlapping expres-
sion of paralog members? Before we can
answer such questions, we need to be able
to quantify expression in space and time on
the cellular level, characterize the extent of
variability in controls, learn exactly how
xenobiotics can affect expression (do they
all, for instance, modulate local retinoic acid
concentrations?), and understand the down-
stream events that translate the expression
into cellular characteristics of particular seg-
ments (be it vertebrae or limb components).
In these regards, it is desirable to have
frameworks in place for assimilating the
information and even testing hypotheses
using computer models, as is being done for
the 5-FU BBDR presented above. It is in
this context that we introduce more theoret-
ical formulations of pattern formation in
biological systems.

Since Turing introduced the concept of
morphogen in 1952 (81), modelers have
explored the consequences of different the-
ories of pattern formation through the
behavior of mathematical models. Two
major kinds of models have been devised
to explain the complex patterns seen in
development. The first type of model sup-
poses that the development of pattern
occurs in two stages. In the first stage, a
field that provides positional information is
laid down; it is a prepattern to be used by
developing cells to determine their position
in the field. During the second stage, cells
sense their positions relative to this chemical
coordinate system and react appropriately.
This concept has been referred to as posi-
tional information (82,83). In the second
type of model, the final pattern unfolds
due to the manifestation of mechanical and
chemical interactions among the develop-
ing cells. The volume by Othmer et al.

(84) and the references cited therein
provide a good introduction to this topic.

Models for developmental processes
have been mostly abstract explanations of
the consequrences of hypothesized mecha-
nisms of pattern formation. Molecular
embyrology, as exemplified by the discus-
sion of the role of Hox genes and other
factors in specifying segment identity, is
now providing concrete expressions for the
hypothesized mechanisms. Thus, models of
pattern formation should take on new sig-
nificance when combined with the detailed
understanding of how locational informa-
tion is actually expressed at the molecular
level during development.

Historically, two principal mechanisms
have been proposed to convey positional
information in the mathematical models.
The most common approach uses a gradi-
ent of chemicals to provide the positional
information. In an interesting recent exam-
ple, Levin (85) supposes that the products
of two genes are initially distributed on a
gradient and interact intracellularly to pro-
duce complicated patterns, making use of
fractals and chaos theory to generate devel-
opmental patterns. A more common model
relies on pairs of diffusing chemicals that
interact with each other to form stable pat-
terns in the concentration of the two chem-
icals (reaction-diffusion models). In the
general form for such a system, one of the
chemicals catalyzes its own synthesis as well
as that of a second chemical, which inhibits
the synthesis of the first chemical. Both
chemicals diffuse away from their point of
synthesis, but the inhibitor diffuses faster.
Thus, there arises a common developmen-
tal pattern of local self-enhancement and
long-range inhibition. Simple models, with
this structure as a point of departure and
with a single spatial dimension as well as
time, can demonstrate a number of spatial
patterns such as gradients or stripes and can
qualitatively reproduce the behavior of
some experimental developing systems after
they are perturbed (86).

In the other approach, mechanico-
chemical models, pattern formation and
morphogenesis evolve simultaneously to
produce the final pattern. Here a more
simple positional signal, for example, a
simple gradient in a chemical, interacts
with other mechanical aspects of cells, such
as differential adhesion and motility, to
generate the final pattern. No prepattern is
formed in these models; rather, it is the
innate behavior of the cells themselves that
forms the final morphogenetic pattern. As
in reaction-diffusion models, successful

mechanico-chemical models generate a
pattern of local enhancement and long-
range inhibition (87). Figure 11 shows an
example of how a simple model involving
chemotaxis and mitosis of pigment cells
can reproduce the complicated skin pig-
mentation patterns seen in snakes (88).
Sometimes, to account for the develop-
ment of complex patterns, the underlying
parameters of the model, such as the size of
the developing tissue or organ, are allowed
to change (87,88). The resulting pattern is
an interaction between the stable pattern
that would have evolved for fixed parame-
ters and the change in the parameters.

For much mathematical modeling in
developmental biology, the general form
has been to show that some specific pattern
could be generated by a particular mecha-
nism. Often, the absence of much-detailed
biological information, such as rates of reac-
tion, actual cellular behavior, and even the
identity of hypothetical reacting chemicals,
has forced such models to be fairly abstract.
Even so, their ability to show the conse-
quences of simple hypotheses of interaction
has been valuable, both for testing hypothe-
ses about mechanisms of development and
for augmenting biologists' intuition about
such systems. However, in risk assessment,
we are likely to have fairly detailed and
specific information about how a chemical
interacts at the subcellular level and how the
cells' behavior changes as a consequence. To
be able to link these changes to develop-
mental changes, more detailed and specific
models for morphogenesis are needed. The
problem changes from demonstrating that a
particular pattern could be generated by a
given mechanism to quantifying how much
a particular cellular behavior can change
without affecting subsequent morphogenesis
or, more generally, how much morphogene-
sis is affected by a given change in cellular
behavior. Naturally, before we can solve
this problem, much more needs to be
learned about normal development, and
more specific models for normal develop-
ment need to be developed. This is perhaps
an area where developmental toxicologists
and developmental biologists can collabo-
rate successfully. By using the plethora of
developmental perturbations available
through developmental toxicants and
observing and modeling their effects on
normal development, our knowledge of
both normal and abnormal development
should be greatly enhanced. The emerging
knowledge base on molecular morphogene-
sis as exemplified by the axial skeleton and
limbs appears ripe for the task.

Environmental Health Perspectives - Vol 04, Supplement * March 99618



EMBRYOLOGICALLY BASED MODELS

Figure 11. Patterns produced by the model mechanism of chemotaxis and mitosis of pigment cells can reproduce
the complicated pigment patterns in snakes. The following equations describe this mechanism:

rate of change of cell density=diffusion-chemotaxis + cell mitosis

anl3t= DV2n-aVe(nVc)= sm(N-n)

rate of change of chemoattractant = diffusion + chemoattractant production - degradation

A, shows how the pattern changes as the chemotactic parameter ax increases in the range 19.92 to 63.43.
B, shows Flaphe situ/a with paired spots. Modified from Murray and Myerscough (88).

Conclusions
Risk assessment for developmental end
points is entering a state of flux after a
relatively long period of inertness. The
benchmark dose concept is certainly an
improvement over the use ofNOAELs and
LOAELs (lowest observed adverse effect
levels) for standard setting. Nevertheless, it
presents the same problems for extrapola-
tion as the NOAEL. Only by developing
more complete pictures of how develop-
mental toxicants perturb normal develop-
ment will we be able to put extrapolation
on a more empirical and scientific footing.
This will not be easy and it will require
that developmental biologists become
familiar with developmental toxicology
(and vice versa), that biologists become
more comfortable with quantitative meth-
ods, and that biomathematicians be willing
to work with the often complex and inele-
gant mathematical systems required to
more realistically model specific biological
systems. We also need to develop better
ways to use partially developed models to
enhance more statistical approaches to risk
assessment, perhaps by modifying uncer-
tainty factors or through dose scaling,
as we occasionally use pharmacokinetic
models now.
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