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We have studied human spermatozoa from 24 normal, healthy unexposed men, 18 of whom
were semen donors at the Sperm Bank in Turku, using multicolor fluorescence in situ hybridiza-
tion with two chromosome-specific probes. The possible age-related increase in aneuploidy
frequencies was assessed. Ten thousand spermatozoa were scored per individual for the presence
of hyperploid, i.e., disomic and diploid, cells. The overall hybridization efficiency was 98.8%. The
frequency of spermatozoa with two chromosome 1 signals was 11.5±5.2/10,000. The frequency
of spermatozoa with two chromosome 7 signals was 6.4 ± 3.9/10,000. Diploidy was present in
15.0 ± 8.9/1 0,000 spermatozoa. Interindividual variation was quite large. No statistically significant
correlation between age of the donors (range= 20-46 years) and the frequency of hyperploid
spermatozoa was observed. The results give background information on the incidence of hyper-
ploid spermatozoa in unexposed men and encourage the use of this novel technique for future
studies on genetic effects in men exposed to potentially aneuploidogenic agents. Environ
Health Perspect 104(Suppl 3):629-632 (1996)
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Introduction
Germ cell chromosome aberrations, either
numerical or structural, may cause preg-
nancy delay, spontaneous abortions, fetal
and perinatal mortality, or severe malfor-
mation syndromes in newborns. Numerical
chromosome errors may arise at maternal
or paternal meiotic divisions or at first
cleavages of the zygote. Although aneu-
ploidy is more common in oocytes than
in spermatozoa, it is in practice much
easier to study spermatozoa and to obtain
statistically meaningful cell numbers.

Direct analysis of chromosome numbers in
human spermatozoa has gained large inter-
est since the invention of chromosome-
specific fluorescence in situ hybridization
(FISH) techniques (1-9).

Human spermatozoa carry many more
chromosomal abnormalities than germ
cells of experimental animals (10). It
has been suggested that one reason might
be exposure of men to various environ-
mental agents. To estimate whether envi-
ronmental mutagens can affect segregation
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of chromosomes in male meiosis, the
frequency and variation of aneuploidy in
spermatozoa of normal unexposed men
must first be characterized. We have stud-
ied 24 normal semen donors and analyzed
the frequency of hyperploid spermatozoa
by using multicolor FISH with probes
for chromosomes 1 and 7. The possible
effect of age on aneuploidy frequencies in
spermatozoa was evaluated.

Methods
Semen Donors and Semen Analyses

Ejaculates were obtained from 18 normal
healthy donors, all nonsmokers, who had
fulfilled the criteria for becoming semen
donors for an artificial insemination center
at the Semen Laboratory of the University
of Turku. In addition, six healthy medical
students with normal semen analysis
results, but with unknown fertility status,
were studied. All donors gave written
informed consent. A complete semen
analysis was performed for each sample
using World Health Organization criteria
(11). Semen samples were stored at -70°C
in closed plastic straws until thawed at
room temperature.

Preparation ofSlides and Sperm
Nudear Decondensation
Seven-microliter aliquots of semen were
spread on clean microscope slides and
allowed to air dry at room temperature for
at least 16 hr.

Sperm nuclear decondensation was
accomplished essentially as described by
Robbins et al. (6) with slight modifi-
cations. Seminal smears were incubated in
10 mM dithiothreitol (DTT, Sigma
Chemical Co., St. Louis, MO) 15 min, fol-
lowed by incubation in 4 mM lithium
diiodosalicylate (Sigma)/1 mM DTT for
30 min. Smears were allowed to air dry
before the hybridization procedure.

Probe Generation on Fluorescence
in Situ Hybridization
The probe for the pericentric heterochro-
matin of chromosome 1, pUC 1.77, was a
gift from J. Wiegant, University of Leiden,
The Netherlands, and was labeled with
biotinylated deoxyuridine triphosphate
(dUTP; Boehringer Mannheim, Mannheim,
Germany) using a nick translation kit
(Boehringer Mannheim) and purified using
a TE Select D G-25 column (5 Prime-3
Prime, Boulder, CO).
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A primer set for amplification of the
chromosome 7-specific alpha satellite
was made with an oligonucleotide synthe-
sizer (Applied Biosystems, Foster City,
CA). Polymerase chain reaction (PCR) was
performed using digoxigenin-1 1-dUTP
(Boehringer Mannheim) in the reaction mix-
ture in order to label the probe while synthe-
sizing. The PCR conditions were adopted
from Dunham et al. (12) with the following
modifications. The deoxythymidine triphos-
phate (dTTP) concentration was 133 pM,
the digoxigenin- 11 -dUTP concentration
was 66 pM, and the amount of Taq DNA
polymerase (Boehringer Mannheim) was
2.5 units per reaction. Thirty cycles were
run with denaturation at 920C for 30 sec,
annealing at 540C for 30 sec, and extension
at 720C for 30 sec. The PCR product was
not purified for hybridization.

For in situ hybridization, 80 ng of both
probes and 6.0 pg of herring sperm DNA
in 60% deionized formamide/2 x SSC
(SSC= 0.15 M NaCl, 0.015 M sodium
citrate) were used per slide in a volume of
100 pl. The target and the probe were
denaturated simultaneously at 75 to 800C
for 10 min in an oven followed by hybridi-
zation at 37°C for 16 to 24 hr. Post-
hybridization washes were carried out three
times for 5 min each at 43°C in 60%
formamide/2xSSC, pH 7.0, two times in

0.2 x SSC for 5 min at room temperature,
and 5 min in TN-buffer (0.1 M Tris-HCl,
0.15 M NaCI) containing 0.05% Tween
20. The slides were blocked for 20 min
at 37°C using 0.5% blocking reagent
(Boehringer Mannheim) in TN-buffer. For
fluorescence detection of hybridization the
slides were incubated 45 min with 20
pg/ml sheep antidigoxigenin (Boehringer
Mannheim) at 370C and 30 min with 10
pg/ml donkey antisheep-fluorescein isoth-
iocyanate (FITC; Chemicon, Temecula,
CA) at 370C in blocking solution. In the
latter incubation, 5 pg/ml of lissamine rho-
damine (LRSC)-conjugated streptavidin
Jackson ImmunoResearch Laboratories,
West Grove, PA) was added. As suggested
by Williams et al. (7), propidium iodide (5
ng/ml; Sigma) was used as a weak counter-
stain in 2.5% DABCO antifade (Sigma)
diluted in 90% glycerol-1.0 M Tris-HCI,
pH 7.5. The slides were examined at
1,250 x magnification with a Zeiss Axioplan
fluorescence microscope equipped with a
double band pass filter that allows simulta-
neous detection of both red and green
fluorescence. Photomicrographs were taken
on Agfachrome RS 100 film.

Ten thousand spermatozoa were scored
by two scorers, 5,000 spermatozoa each.
The following criteria were used: only
signals with compact, clear appearance were

taken into account. If scattered string-of-
pearls-like signals were observed or in the
case of poor hybridization (most spermato-
zoa without any signals), the whole micro-
scopic field was excluded. The morphology
of the spermatozoa had to be well main-
tained, and overlapping cells were excluded.
For twin signals, only those cases were
accepted where two compact signals were
clearly separate, with a distance at least the
diameter of one signal. The frequency of
spermatozoa with 0, 1, or 2 red and 0, 1, or
2 green signals was determined.

The correlation analysis of age and fre-
quencies of spermatozoa with hyperploid
chromosome numbers were performed
using a SAS statistical program package
[SAS Institute, Cary, NC (13)].
Results
The hybridization efficiency of this tech-
nique was good. When spermatozoa with
no signals or with just one signal (either
green or red) were considered as signs of
poor hybridization, the average efficiency
was 98.8% (Table 1).

In the results of the analyses shown in
Table 1, 98.4% of all spermatozoa showed a
normal chromosome constitution with these
probes, i.e., one red and one green signal.
The frequency of spermatozoa lacking a
chromosome 1 signal was 2.3 ± 1.7/10,000

Table 1. Analysis of FISH signals (red, chromosome 1; green, chromosome 7) in human spermatozoa of 24 normal semen donors.
Number of sperm

Donor Age (years) No signals 1 Green only 1 Red only 1 Green, 1 red8 1 Green, 2 redb 2 Green, 1 redc 2 Green, 2 redd
1 23 31 6 11 9918 5 14 15
2 31 26 0 6 9933 13 7 15
3 34 19 1 3 9948 12 12 5
4 38 376 5 2 9599 9 2 7
5 45 7 4 5 9973 4 2 5
6 40 47 1 12 9919 14 1 6
7 44 41 4 9 9929 5 3 9
8 38 296 3 9 9635 16 7 34
9 31 66 2 3 9912 4 6 7
10 43 16 1 5 9959 10 1 8
11 49 77 2 3 9864 16 9 29
12 44 23 1 8 9946 3 8 11
13 46 152 3 10 9796 11 7 21
14 29 91 1 4 9878 11 3 12
15 37 102 0 13 9823 18 14 30
16 22 63 5 4 9891 11 9 17
17 21 314 3 4 9661 9 2 7
18 20 170 1 15 9784 15 3 12
19 23 146 2 7 9803 21 8 13
20 23 157 1 13 9780 14 6 29
21 21 100 1 12 9850 17 6 14
22 21 87 4 5 9852 15 8 29
23 22 130 3 10 9814 18 11 14
24 30 168 1 3 9809 4 4 11
Mean SD 32.3 ±9.8 112.7 98.5 2.3 ±1.7 7.3±3.9 9845±102 11.5±5.2 6.4±3.9 15.0 8.9

Ten thousand spermatozoa were scored per donor and altogether, 240,000 spermatozoa were studied. Lack of signals was interpreted as poor hybridization; lack of one signal
may also indicate loss of a chromosome (nullisomy). Normal. bDisomy-1. CDisomy-7. doiploidy.
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and the frequency of spermatozoa lacking a
chromosome 7 signal was 7.3 ± 3.9/10,000.
Previous studies have suggested that nulli-
somy cannot be reliably scored because it
can also represent lack of hybridization.

Our study focused on the incidence of
hyperploid spermatozoa. The frequency of
spermatozoa with two chromosome 1 sig-
nals was 11.5 ± 5.2/ 10,000. The frequency
of spermatozoa with two chromosome 7
signals was 6.4 ± 3.9/10,000. Diploidy was
found in 15.0 ± 8.9/10,000 spermatozoa.

The interindividual variation was quite
large. For example, donors 8, 11, and 15
had higher frequencies of aneuploid sper-
matozoa than other donors (Table 1). No
statistically significant correlation between
the age of the donors (range = 20-46 years)
and the frequency of spermatozoa with
two chromosome 1 signals (p = 0.1449),
spermatozoa with two chromosome 7 sig-
nals (p= 0.3833), or diploid spermatozoa
(p= 0.8748) was observed.

Discussion
For estimation of potential genetic risks to
the germ line of human beings by environ-
mental agents, direct studies on sperm
offer an invaluable means. The use of
FISH with chromosome-specific probes
has opened new and attractive means to
study numerical chromosomal changes in
human spermatozoa. Several laboratories
have published results on spermatozoa of
normal men (1-9) and infertile men
(14,15). Spermatozoa of translocation car-
riers (16,17), a 46,XY147,XXY individual
(18), and an XYY individual (4) have also
been studied with FISH.

The frequency of disomy for chromo-
some 1 in our study, 0.11%, fits well in the

range observed in the sperm karyotype
studies, i.e., 0.06 to 0.17% (19,20). It is
also perfectly in agreement with a multi-
probe FISH study on 10 normal men
showing a mean chromosome 1 disomy
frequency of 0.11% (range = 0.05-0.18%)
(21). Several single-probe approaches have
yielded variable results of disomy 1 in sper-
matozoa [for review, see (8)], possibly due
to variable diploidy frequencies interfering
with the interpretation of results. The fre-
quency of disomy for chromosome 7 in
our study (0.06%) is in the range of
another study that showed 0.00 to 0.09%
disomy 7 in two men (9).

Diploid spermatozoa may arise as a
result of an error at either the first or the
second meiotic division. We did not
observe tetraploid sperm nuclei. Our
results show rather large interindividual
differences in diploidy frequencies, but the
mean frequency (0.15%) is close to that
reported by other groups (3,7,14,21-23).
Nine fertile men studied using probes for
chromosomes 17 and 18 showed a fre-
quency of 0.18% diploid spermatozoa
(14), while another study among 10 nor-
mal donors showed higher frequencies of
diploidy: 0.34% by using autosomal
probes and 0.45% by using sex chromo-
some probes (7). Three recent reports of
studies of 10, 24, or 14 normal men of dif-
ferent ages showed mean frequencies of
diploid spermatozoa well in agreement
with our present results: 0.16%, 0.190%,
and 0.145%, respectively (21-23). All
multiprobe FISH studies indicate that
diploidy is more common than disomy for
a certain autosome, and thus a single-probe
study cannot give accurate estimates of
disomy frequencies in spermatozoa.

An increased risk of trisomy in offspring
is clearly related to increased maternal age.
Whether paternal age influences the risk of
trisomy has been a matter of debate
(24,25). FISH studies on human sperma-
tozoa have opened a new way to study this
question. Martin et al. (21) studied 10
men 21 to 52 years of age and found a
significant increase of disomy 1 and YY in
spermatozoa with age, but there were no
effects on disomy 12, XX, or XY sperm.
Griffin et al. (22) observed, however, that
the incidence of XX, YY, and XY disomy
all were significantly elevated among older
men. The study consisted of 24 men 18 to
60 years of age and did not show an effect
on disomy for chromosome 18 (22). In
accordance, the study of Robbins et al.
(23) showed significantly higher frequen-
cies of sperm carrying sex chromosomal
disomy among the older group of 4 men
(mean age = 46.8 years) compared to a
group of 10 younger men (mean age = 28.9
years).Together with our present results,
these results suggest that the disjunction of
sex chromosomes at meiotic divisions may
be affected by increasing paternal age while
that of autosomes may not be affected.

In conclusion, our results on the fre-
quency of hyperploidy for chromosomes 1
and 7 in human spermatozoa in 24 normal
healthy donors reveals variation between
individuals. The data suggest that among
spermatozoa of unexposed men diploidy is
more common than disomy of a single
autosome and age does not affect autoso-
mal aneuploidy frequencies. This informa-
tion is valuable for future studies on men
exposed occupationally or environmentally
to aneuploidogenic agents.
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