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A cancer epidemiologist recently said that "adduct measurement has so far been of little use to
epidemiological research." This remark gives us a starting point for the discussion of the
purposes of measuring macromolecule adducts that originate from electrophilic compounds or

metabolites in humans and animals. Historically, methods for adduct monitoring were developed
as a means of determining target doses that, combined with measurements of genotoxic
potencies, could be used for risk assessment. With mass spectrometric methods, adducts can be
quantified at levels that are thousands of times lower than those in which the cancer incidence
associated with this exposure is detectable in disease-epidemiological studies. Furthermore,
mass spectrometric techniques permit identification of the chemical structure of the adduct,
particularly in the case of hemoglobin adducts. Adduct measurement therefore constitutes not
only a means of risk estimation but it may be used as a complement of disease epidemiology in
situations in which, for statistical reasons, the risk is too low to be detectable-which does not
signify that the risk is acceptably low. It also gives a possibility of identification of the dangerous
components in mixed exposures and of the relevant reactive intermediates in cases of complex
metabolism. Environ Health Perspect 104(Suppl 3):423-428 (1996)
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Introduction
The rationale of the use of biomarkers has
often been misconceived. In particular, this
concerns macromolecule adducts from
genotoxic chemical agents, the most sensi-
tive biomarkers originally suggested to be
used for risk assessment. The measurement
of adducts, particularly DNA adducts, is
now very widespread. The results of these
adduct studies are mostly limited to demon-
strated differences between exposed and

unexposed groups, with little contribution
to quantitative risk assessment.

In this review, we will highlight the basic
arguments for adduct measurement rather
than procedures and results in the hope of
stimulating future debate and develop-
ment-a lot remains to be developed. In
particular, the quantitative aspects of dose,
dosimetry, and risk are emphasized, among
other things, to show the usefulness as a

This paper was presented at the 2nd International Conference on Environmental Mutagens in Human
Populations held 20-25 August 1995 in Prague, Czech Republic. Manuscript received 22 November 1995;
manuscript accepted 28 November 1995.

Financial support from the Swedish Environmental Protection Agency, the Swedish Council for Planning and
Coordination of Research, and Shell International Research Maatschappij B.V. is acknowledged.

Address correspondence to Dr. Margareta T6rnqvist, Department of Environmental Chemistry, Wallenberg
Laboratory, Stockholm University, S-106 91 Stockholm, Sweden. Telephone: 46-8-163769. Fax: 46-8-152561.
E-mail: mt@mk.su.se

Abbreviations used: LET, linear energy transfer; D, dose; C, concentration; Mhr, (mol/kg)xhr; s, Swain-Scott
substrate constant; n, nucleophilic strength; EO, ethylene oxide; Hb, hemoglobin; SA, serum albumin; DEB,
diepoxybutane; DDREF, dose and dose-rate effectiveness factor.

subsidiary tool of adduct monitoring in
epidemiological research and cancer risk
assessment. We will show that disease-
epidemiology has a detection level that is
too high, often by orders of magnitude, to
permit detection of cancer risks within the
whole range of unacceptability. However,
this gap can be bridged by the measure-
ment of macromolecule adducts due to
possibilities of relating adduct levels to
exposure doses, in vivo doses, and risks.
The establishment of these relationships is
based on studies of dose response at low
doses, calculation of doses from observed
adduct levels, and determination of relative
genotoxic potencies with low-LET (linear
energy transfer) radiation or ethylene oxide
as reference standards.

Linearity of Dose Response
at Low Doses?
A central question in the risk philosophy
concerns dose-response relationships, par-
ticularly the existence of no-effect thresh-
olds. The genotoxic factor most intensely
studied in this respect is ionizing radiation;
it was indicated in the mid-1930s that the
frequency of mutations induced by X rays
in Drosophila depended linearly on the
dose, without any indication of a threshold
(1). Later, similar conclusions were drawn
for genotoxic chemicals. Although it had
been suggested earlier that changes in the
genetic material played a role in the devel-
opment of a tumor (2), it was not until the
mid-1960s that it was more generally
accepted that tumor induction, too, fol-
lows linear dose-response curves without
thresholds (3). This issue is, however, still
under debate. Proponents of the existence
of thresholds refer to the multistep nature
of carcinogenesis (4) and to the unequivo-
cal appearance of thresholds in certain
cases of experimentally induced tumors
[for radiogenic cancer, see (5)].

This uncertainty, or contradiction, is
settled by the demonstration of a (certain)
proportionality between the incidence
increments due to exposure and the back-
ground incidences of the different tumor
types in the animal strain studied. This mul-
tiplicative character of the dose response was
most convincingly shown by Storer et al.
(6) in their systematic comparison of radi-
ogenic tumors in mouse strains with differ-
ent spectra of background tumors, but it is
also valid for mutagenic chemicals such as
ethylene oxide and butadiene [Ehrenberg
et al., in preparation; (7)]
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Figure 1. Dose-response relationship as a function of the dependence on interaction of mutation (initiation) and promotion according to Pini x Ppmo= Pcan. A, Pini is shown as a
linear function of dose; B and C show the two alternatives for Ppro: presence (B) or absence (C) of a background promotive condition, both with increased promotion above a
threshold dose. The resulting increase in cancer incidence, Pcan(D) will be linear at low doses if P0pro>O (D) but will appear with a threshold (DT) when Popro =O(E).

Accordingly, a multiplicative model
is now preferred for the description of
dose-response relationships (8)

P(D)=(1+ D)xP°, [1]

where D is the dose, P is a risk coefficient,
and P and P0 are the estimated and the
background probabilities, respectively.

In agreement with this picture, tumors
of types that do not occur in a studied
strain are not (or are seldom) inducible at
low doses (9). These tumors do appear,
however, at doses above a threshold, an
effect ascribed to a promoter action of a
complete carcinogen, i.e., a carcinogen
with both initiating and promoting proper-
ties. Promoting properties are caused, for
example, by reparative growth (wound
healing) in tissue damaged at high doses. If
exposure to the genotoxic agent (e.g.,
benzo[a]pyrene) is followed by treatment
with an efficient promoter [e.g., 12-0-
tetradecanoylphorbol- 13-acetate (TPA)],
the thresholded dose-response curve for
treatment with the genotoxic agent alone
becomes linearized (10).

The assumption of a role of mutation
in carcinogenesis has received strong sup-
port by recent progress in biochemical
genetics, which has shown that a number
(-6) of mutations in oncogenes and, par-
ticularly, tumor suppressor genes are
required for the change of a normal cell to
a malignant cell (11). For statistical reasons
it is expected that, at the low doses usually
received by members of the public, a

specific genotoxic factor is rarely able to
cause more than one of the mutations
required. This would be in line with a (lin-
ear) incidence increment due to exposure
at current levels.

This model is summarized in Figure 1.
In agreement with this model, human
cancer incidence increments are compatible
with a linear dependence on radiation
dose (8).

It may be practical to subdivide doses
(and corresponding dose rates) into very
low, low, intermediate, and high (Figure 2).
At low doses (dose rates), the dose depen-
dence of the response is approximately lin-
ear. In the intermediate region, a rise in
effectiveness due to increasing saturation of
repair or detoxification is often observed; at
high doses cell killing leads in many cases
to a decrease of the response.

It should be stressed that, in all the
cases of mutation frequencies and cancer
incidences discussed so far, the causative
doses, although low in the subdivision
above, have been relatively high compared
with current doses judged to be of concern
to human health. For statistical reasons it is
mostly impossible to obtain information
about the true shape of the dose-response
curves at very low doses and dose rates
(region I in Figure 2). At doses leading to
about one potentially mutagenic hit per
cell (which might be defined as the upper
limit of a virtually low dose), the concen-
tration of repair enzymes will be higher
than that of the substrate (repairable DNA
damage). It is therefore expected that at
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Figure 2. Dose-response relationships at low (region
11), intermediate (Ill), and high doses (IV). At very low
doses (I), information on the dose response cannot be
obtained for statistical reasons. For this dose region,
three alternative curve shapes have been indicated: a,
linear; b, superlinear hump; c, tendency to no-effect
threshold. Modified from Ehrenberg et al. (12).

very low doses, repair will be more efficient
than if ordinary Michaelis-Menten kinetics
were applied (13). However, in experi-
ments specially designed to study dose
response in this region, particularly with
respect to the possible magnitude of a no-
effect threshold, data agree either with lin-
earity down to dose zero (curve a in Figure
2) or with a superlinear hump at the lowest
doses (curve b in Figure 2) (12,14). This
hump is explainable in terms of inducibil-
ity of error-free repair, with the effect that
the lowest doses hit the material in an
uninduced and therefore more sensitive
condition. The low-dose limbs of these
humps indicate the mutagenic effectiveness
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to be a factor of 2 to 3 times higher than in
the linear part of the curve at low to inter-
mediate doses observed under usual experi-
mental conditions. This factor may, for the
time being, be considered an uncertainty
that is not very large compared with other
uncertainties in cancer risk estimation.

From kinetic points of view, dose rates
(doses per unit of time) are low if there is
no (measurable) saturation of repair and
detoxification, i.e., with linear dose
response for one-hit effects. At intermedi-
ate dose rates, such saturation leads to con-
vex dose-response curves (12). If at very
low dose rates, time intervals between
doses-in some cases single hits-leading
to induction of repair are longer than the
persistence of the induced condition,
dose-response curves could again show
superlinear humps (12).

It can be concluded that frequencies of
mutation and cancer induced by DNA-
damaging (genotoxic) agents depend
linearly on the dose at low doses. It is indi-
cated that this rule is valid also at the very
lowest doses. In principle, this means that
any dose increment of a genotoxic agent
leads to a corresponding risk increment.

Reaction-kinetic Aspects
Miller and Miller (15) showed that cancer
initiators (and mutagens) are, or are metab-
olized to, electrophilically reactive agents
that give rise to macromolecule adducts in
vivo. Alkylating agents have been tenta-
tively characterized in terms of the reac-
tion-kinetic parameters of the Swain-Scott
(16) free energy relationship

log(knIkH2o) = s x n, [2]

where kn and kH2o are the second-order
rate constants for reaction with an atom of
nucleophilicity n or with water (n= 0),
respectively, and s is the substrate or selec-
tivity constant. (In this relationship the val-
ues of n for different compounds were
determined from the reactivities toward
methyl bromide, setting s = 1 for this com-
pound.) The reaction rate kn at any value n
can be calculated from the first-order rate
constant (k') for hydrolysis (k' = kH2o X
55.5, where 55.5 is the molarity of water)
and the value of s:

kn= kH20x 10(sx n). [3]

When Equation 3 was applied to
monofunctional alkylating agents, it
was found that the potency for eliciting

forward mutation in Escherichia coli Sd-4
was approximately proportional to kn
where n= 2, if the compounds were com-
pared at equal dose (17). Dose (D) has
then to be defined as the time integral of
concentration (C):

D=ftC(t)dt. [4]

Thus, defined dose will have the
dimension concentration x time, e.g., mil-
limole per kilogram xhr or millimolar-hr
(mMhr) (12). The correlation of muta-
genic potency with kn (n=2) then implies a
key role of the cumulative frequency of
alkylations at n=2, a value that would
correspond to guanine-06 in DNA.

Compounds or ultimate alkylating
species that are positively charged were
found to be about 5 (range, 3-10) times
more effectively genotoxic than predicted
by the Swain-Scott principle. This con-
cerns isopropyl methanesulfonate, which
reacts according to SN1 (nucleophilic sub-
stitution, first order) via the carbocation
(CH3)2CH+, and N-methyl-N-nitro-
sourea, which reacts via the diazonium ion
CH3N2+ (18). The rate of reaction of these
positively charged species toward the
polyanion DNA is enhanced due to electro-
static attraction. Ongoing work indicates
that the model can be improved by allowing
for influences of charge of the reactants.

Deviations that are different from the
proportionality of genotoxic potency with
kn where n= 2 are represented by bifunc-
tional agents such as diepoxybutane (DEB,
one of the alkylating metabolites of butadi-
ene) (19). In mammalian cells DEB is
about 100 times more effective than
expected from this proportionality rule.
This is due to the formation of cross-links,
partly involving the more reactive guanine-
N-7 (20). This rule for relative potency has
been shown for the effects of a large number
of alkylators in various materials including
mammalian cells, plant seeds, and yeast.

The experience from kinetic studies
leads to the conclusion that the relative
genotoxic potency of alkylating agents or
metabolites can be assessed from a determi-
nation of hydrolysis rate (kH2o) and of s,
if necessary, with correction for charge
and functionality.

Comparisons of Genotoxic
Potencies with Reference
Standards
To convert the genotoxic potency values
based on reaction-kinetic parameters to

values of absolute risk, two additional
pieces of information are required: a com-
parison of these genotoxic potency values
with that of a reference standard with
known dose-response (dose-risk) relation-
ship for cancer in human populations and
access to methods to determine dose in tar-
get tissues (target dose), defined according
to Equation 4 above (12).

At the onset of this work in the late
1960s and in the 1970s, the only environ-
mental factor for which somewhat reliable
(and continuously improving) data for can-
cer risk were available was low-LET ioniz-
ing radiation (X rays and y radiation). By
the use of radiation as a reference standard,
allowances are made for the influence of the
background incidence, P°, in Equation 1.

In the choice of y radiation as a refer-
ence standard for the relative genotoxic
potencies of chemical carcinogens, it was
assumed that induced mutations would
show the same interference with promotive
and modifying factors, i.e., would have the
same probability of leading to a tumor
regardless of the nature of the causative
mutagen. A tentative determination of
radiation dose equivalents of chemical
doses somewhat surprisingly showed
approximately the same value in various
test systems (21). For instance, a chemical
dose (of a monofunctional agent) giving
rise to a degree of alkylation equal to about
1 x 10-7 at n=2 was shown to induce the
same mutation frequency as 1 rad (0.01
Gy) y radiation. (Recent recalculations
indicate 1.3 x 10-7 as a more correct value;
see Figure 3.)
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Figure 3. Observed and expected rad-equivalent doses
for mutation. Abbreviations: DEB, diepoxybutane; DES,
diethyl sulfate; DMS, dimethyl sulfate; ECH, epichloro-
hydrin; EMS, ethyl methanesulfonate; EO, ethylene
oxide; MeBr, methyl bromide; iPMS, isopropyl
methanesulfonate; PL, 0-propiolactone; P0, propylene
oxide; STO, styrene oxide. The rad-equivalent doses
were expected to correspond to 1.3 x 10-7 alkyls per
unit at n=2. *, E coli Sd-4; o, HPRTmutations in CHO
cells. Modified from Vogel et al. (18).
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Ethylene oxide (EO) has long been
used as a model compound in the develop-
ment of methods to estimate cancer risks.
For this compound, the rad equivalent of
chemical dose of 80 (range 40-160)
rad/mMhr has long been used as a mean
value for various biological systems (22). A
validation of this value leads to 40 (range,
20-80) rad/mMhr as a more correct value
(Ehrenberg et al., in preparation; (23)].

Analyses of cancer mortality data from
the Hiroshima and Nagasaki populations
and from patients irradiated with therapeu-
tic doses support a cancer mortality risk of
about 8 to 10% per Gy (1 Gy= 100 rad) at
high doses and high dose rates, the lower
figure considering exposure at ages 18 to
65. From other experimental data, it has
been concluded that the mutagenic and
carcinogenic effectiveness is lower by a
factor of 2 to 10 at low dose rates or low
doses (8,24). Current radiation protection
recommendations (24) are based on a pru-
dently assumed dose and dose-rate effective-
ness factor (DDREF) of 2; the estimated
risk is 4 to 5%/Gy at low doses and low
dose rates (24). If experimental data for
influences of dose rate on the induction of
mutation and cancer are taken into consid-
eration, a more likely value for DDREF is
3 to 4 (8). We have therefore considered a
reasonable figure for the risk of cancer
death to be 3 x 10-2/Gy (3 x 10-4/rad).
Although the DDREF for EO is still
uncertain, it may be assumed that one
mMhr of EO is associated with a cancer
mortality risk of 12 x 10-3. [For deviations
of this value from other estimates, see
Tornqvist et al. (25)]. This value for EO
may be used as a reference standard for
estimations of cancer risks of other alkyla-
tors. The expression of potencies in terms
of EO equivalents might present an alter-
native for those who find the direct com-
parison of chemical and radiation risks to
be unacceptable.

From the radiation dose equivalents of
genotoxic chemicals and the relatively well-
characterized risk coefficents for radiogenic
cancer, the chemical cancer risks may be
estimated, provided human target doses
could be measured.

Measurement of in Vivo Dose
(Target Dose)
The International Commission on Radio-
logical Protection (26) has suggested that
the limit of acceptability of the annual can-
cer mortality risk to individuals of the pub-
lic due to radiation exposure from
man-made sources is in the range of one

per million to one per hundred thousand.
This value was taken at first as an indicator
of the sensitivity required for methods to
be used in chemical dosimetry. With the
above risk of 3 x 104/rad, the above range
for acceptability corresponds to radiation
doses in the range 3 x 10-3 to 3 x 10-2
rad/year. With the above radiation-dose
equivalence (-40 rad/mMhr) of the stan-
dard compound EO, this corresponds
to about 10-7- about 10-6 Mhr/year at
continuous or intermittent exposure.

Without any known exception, elec-
trophiles react with nucleophilic centers in
both nucleic acids and proteins. In blood,
the most easily available tissue, hemoglobin
(Hb) and serum albumin (SA) are available
in gram quantities in a 10 ml sample,
whereas leukocyte DNA amounts to about
1 mg. Other than the advantages to high
sensitivity of large amounts of the monitor
compound, the use of the proteins for dosi-
metric purposes has been preferred because
of the absence of repair (which for DNA
adducts varies between cell types and
adducts) and because of better possibilities
of chemical identification of adducts.

It should be stressed that measurement
of the level of adducts to Hb, SA, or
leukocyte DNA generate a value for the
dose in the blood (Dblood) with the same
need for a determination of the relation-
ship between Dblood and the doses in dif-
ferent target organs. At present, these
ratios have to be estimated from acute-
exposure studies in animal models. For
EO, the doses in blood and in vessel-rich
organs of the mouse were found to be
approximately the same (27,28).

The requirement for sensitivity dis-
cussed above was set as a goal in the devel-
opment of a new method based on the
determination of adducts to N-terminal
valines in Hb by a modified Edman pep-
tide-sequencing method. One major reac-
tion site in Hb for many simple alkylating
agents is the N-terminal valines in the four
globin chains. With the new method, the
N-alkyl Edman method, this goal regarding
sensitivity has been reached (29,30). Under
chronic or intermittent exposure, the
adducts are accumulated over the life span
of the erythrocytes (18 weeks in humans);
the steady-state adduct level obtained corre-
sponds to the cumulative level in one-half
of the erythrocyte life span. The dose
received during 1 year could thus be esti-
mated from the dose received during 9
weeks on the basis of the steady-state
adduct level. Doses of chemicals calculated
by the rad-equivalence approach, which

correspond to the risk in the range 10- to
10-5/year, could thus be expressed in a
steady-state adduct level. The adduct level
to N-terminal valine in Hb from EO corre-
sponding to this risk, and the large number
of compounds with similar values of s will
be 1 to 10 pmol/g globin. At present, analy-
sis of 50 mg globin permits determination
of 0.1 to 1 pmol/g globin, a value that can
be reduced further by increasing the
amount of globin per analysis. It is of inter-
est to note that the measurement of DNA
adducts by the 32p postlabeling technique
currently reaches approximately the same
sensitivity, one adduct per 1010 nucleotides,
corresponding to about 0.3 pmol/g DNA.

It has been shown for a number of com-
pounds that the possibilities of measuring
small adduct increments in individuals
are reduced by the presence of identical
background adducts, to a large extent
endogenous in origin (31).

Other than using adduct measurement
for exposure monitoring, i.e., as a qualita-
tive indicator of raised exposure or for qual-
itative and quantitative studies of metabolic
pathways, a methodology is thus available
permitting measured adduct levels to be
translated to cancer risks (or, if the detec-
tion level is not reached, the upper limits of
possible risks).

The general applicability of this
methodology, primarily to low molecular
weight alkylating agents or metabolites, is
supported by results of ongoing studies
which indicate that tumorigenic dose 50
(TD50) values for experimental cancer (32)
can be rather accurately predicted by the
key reaction kinetic parameters (kH2o, s)
and the blood dose per amount absorbed
[Ehrenberg et al., in preparation; (18)].

In principle, cancer risk increments (Pi)
from exposures to chemicals i may be
estimated from

Pi= QiX kstdxDi, [5]

where Qj is the relative genotoxic potency
compared with a standard with risk coeffi-
cient k5td per unit of dose and Di is the tar-
get dose of chemical i. kstd is equal to
Istd X P0 in Equation 1. The risk estimation
procedure, with ethylene oxide and ethene
as examples, has been reviewed (7,33).

Sensitive methods are thus available for
the measurement of in vivo doses of geno-
toxic chemicals in humans. Cancer risks
may be estimated by a relative-potency
method, which expresses the doses as radia-
tion dose equivalents (rad-equivalents) or
ethylene oxide dose equivalents.
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Epidemiological Aspects
Cancer is a primary cause in approximately
20% of deaths in western populations. In
exposed groups of the size that is usually
available in disease-epidemiological stud-
ies, it is rarely possible to detect risk factors
leading to relative risks less than 1.5 to 2
(34), which corresponds with risk incre-
ments of 10 to 20% (for total cancer mor-
tality). For an accurate assessment of the
magnitude of studied risks, these risks have
to be even higher. If we decide that indi-
vidual risks higher than 106 to 10-5 annu-
ally (i.e., 7 x 10-5 to 7 x 10-4 or about
0.01-0.1% of the deaths in a 70-year life-
time) should be avoided, it is evident that
disease-epidemiological studies are about
1,000 times too insensitive to detect and
properly assess risk factors that do not occur
in large excess in specifically exposed popu-
lations. A consequence of reliance upon
data for disease or death from cancer may,
due to this low resolving power, be that
many factors associated with important
nonacceptable risks are liable to escape
detection if high exposures do not occur. In
particular, this concerns weak carcinogens
that, if widely distributed, are associated
with considerable collective risks.

This insensitivity gap (see Figure 4)
can be bridged by the introduction of
macromolecule adduct measurement as an
auxiliary tool in epidemiological studies.
The above discussion of the linearity of
dose-response relationships shows that an
observed raised adduct level can, in princi-
ple, be directly translated to a risk incre-
ment. An advantage of this approach,
besides its high resolving power, is its ability
to identify the chemical structure of the
adducts, with clues to the nature of the
causative environmental factor (of particular
importance in cases of mixed exposure or in
the presence of confounders). Furthermore,

Lifetime risk
increment from
1-year exposure

1000

10 SCE, HFC, detection level

10

0.11

0.001 0.01 0.1 1 10

Annual dose (rad or rad-equivalent)

Figure 4. Detection levels of cancer epidemiology,
SCE, HFC (sister chromatid exchanges, high frequency
cells), and hemoglobin adducts, compared with accept-
able risk of cancer death.

adduct monitoring is a way to overcome
the long latency times from exposure to
full expression of disease, often several
decades. In fact, since P0 in Equation 1
and P0can in Figure 1D refer not only to
tumor localization but also to the influence
of age, some two-thirds of the total cancer
incidence increment in western populations
is expected to occur above age 65, according
to Swedish cancer statistics (35).

In Figure 4 the resolving power of the
most sensitive cytogenetic end point, SCE
high-frequency cells (36), is also indicated.
This and other genetic biomarkers are gen-
erally too insensitive, but they play impor-
tant roles as early hazard indicators and in
the clarification of action mechanisms.

Although these basic principles seem to
be valid, further developments are needed.
This concerns, for example, dosimetry and
risk estimation of polycyclic aromatic
hydrocarbons, aromatic amines, and car-
bonyl compounds such as unsaturated
aldehydes and techniques offered by recent

developments of tandem mass spectrometry
to determine adducts from a priori unknown
electrophiles. In such work, increased
resolving power is expected to be gained by
analysis of samples from individuals
deficient in detoxification functions (37).
The value of including in epidemiological
studies the genetic characterization in this
respect of participating individuals should
therefore be pointed out. In addition, dose
monitoring should take into consideration
the induction status, i.e., the phenotypic
expression, of bioactivating and detoxifying
enzymes. For retrospective dosimetry, as
well as for the planning of measures for risk
reduction, it is also essential to improve
methods for exposure assessment.

It should be emphasized that nongeno-
toxic carcinogens have to be monitored by
methods different from, but combinable
with, those discussed here. These agents
present other problems because, in general,
their biological effects follow dose-response
relationships with no-effect thresholds.

Cooperation between disease epi-
demiologists and biochemical epidemiolo-
gists is important to both groups. Adduct
measurement may be used in disease-
epidemiological investigations to identify
genotoxic agents, to estimate their in vivo
doses, and to estimate risks by application
of the rad equivalence or ethylene oxide
equivalence. Both risk figures and dose
estimates are useful for the design and
dimensioning, as well as for the interpreta-
tion of results of disease-epidemiological
studies. Disease-epidemiological studies
are required for verification, adjustment,
and further development of dosimetry-
based methods for risk estimation. By and
large, biochemical epidemiology could
assist cancer epidemiology to overcome
some of its limitations (38).
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