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The utility of biomarkers for evaluating the genotoxicity of environmental exposures is well
documented. Biomarkers of both exposure and effect provide bases for assessing human-
genotoxicant interactions and may be indicative of future disease risk. At present, there is little
information on the predictive value of these assays for either a population or the individuals
tested. This paper describes some aspects of biomarker assays, the possible use of susceptibility
measures in biomonitoring protocols, and the need for evaluation of disease relevance. A population
study involving epidemiologists, geneticists, toxicologists, statisticians, and physicians is
proposed to determine the disease relevance of these biomarkers. Environ Health Perspect
104(Suppl 3):503-510 (1996)
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Introduction
The number of biomarkers available for
evaluating genetic and cancer risks in
humans is quite large (1). Their utility
for human monitoring is suggested by a
well-known paradigm of environmentally
induced cancer (Figure 1) (2), which pre-
sents end points for assessing the entire
spectrum of human-genotoxicant interac-
tions. These biomarkers begin with expo-
sure and include absorption, metabolism,
distribution, critical target interaction (i.e.,
DNA damage and repair), genetic changes
and, finally, disease. Disease is the province
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of traditional epidemiology; the develop-
ment of biomarkers has given rise to the
field of molecular epidemiology, which
uses these biomarkers rather than disease
to assess the risks of environmental expo-
sures. However, even though massive
efforts have been expended to develop bio-
marker assays and define their sensitivities,
much remains to be done. For example,
the central question of disease relevance,
widely assumed but never proven, is only
beginning to be explored.

The tools of molecular epidemiology
may be divided into several categories.
There are biomarkers of exposure/dose that
detect genotoxic agents at any level of body
penetration, including the target DNA.
There are biomarkers of susceptibility,
which measure interindividual variability

in the response to a given level of exposure.
Both imply disease relevance, the former at
the population level and the latter at the
individual level. The disease relevance of
these biomarkers is, of course, in the toxic-
ity (carcinogenicity) of the agent of con-
cern, or in unusual susceptibility to the
agent, not in the measured biomarker end
point per se. An important characteristic
for exposure/dose biomarkers is sensitivity,
i.e., the ability to detect exposures at levels
that exist in real human populations.

Biomarkers of effect, which measure
processed genetic damage, i.e., chromo-
some aberrations or gene mutations, are
more complicated. The end points they
measure, although defining consequences,
are sometimes also used to define exposures,
much in the manner discussed above.
Because of this, the terminology of expo-
sure/dose and effect biomarkers is some-
what ambiguous, and more mechanistic
terms such as reversible (transient) geno-
toxic responses (exposure/dose) and irre-
versible (permanent) genotoxic responses
(effect) may be better. Effect or irreversible
genotoxic end points require host process-
ing of DNA lesions into informational
changes in the cell (e.g., mutations) and
therefore may be relatively insensitive when
used as dosimeters. Nonetheless, there are
aspects of exposure assessment that are best
accomplished by irreversible genotoxic end
points. By recording permanent DNA
damage, they provide memory for dose
reconstructions of past exposures in terms
of cumulative effect. In other instances
there ,may be no specific assay for assessing
exposure to a given genotoxic agent, or the
agent or agents may be unknown. Irrever-
sible genotoxic responses are then used to
determine exposure to an undefined geno-
toxic agent. Finally, there may be a large
database for the use of a particular marker
for assessing some specific exposure, which
is best illustrated by the use of chromosome
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Figure 1. The paradigm of environmental cancer. From the Committee on Biological Markers of the National
Research Council (2).

Environmental Health Perspectives * Vol 104, Supplement 3 * May 1996

m

503



ALBERTINI ETAL.

aberrations for quantifying acute ionizing
radiation exposures (3,4).

When biomarkers of effect are used to
assess exposures, some of the disease rele-
vance again derives from the genotoxicity
of the agents of concern. However, because
the irreversible genotoxic end points actu-
ally measured are the kind that are also
responsible for genotoxic diseases, i.e.,
chromosomal and gene mutations, the
question of disease relevance assumes an
additional dimension. Although the irre-
versible genotoxic end points actually mea-
sured occur in noncritical targets, they
presumably occur in the same manner, in
response to the same influences, and at the
same frequencies as disease-related irre-
versible genotoxic responses. This assumes
that the nonpathogenic reporter genotoxic
responses are valid surrogates for their
pathogenic but unmeasurable counterparts.
To the extent that these responses are
surrogates, it becomes reasonable to raise
several important questions. Do effect bio-
markers have disease implications per se?
Does what has occurred in one portion of
the genome, as measured by the biomarker,
also occur in another? Is there added dis-
ease relevance for effect biomarkers not
related to why and how they occur, but to
that they occur? Also, because the geno-
toxic effects are measured in individuals, is
there an implication of disease relevance
for that individual?

There would be, of course, great utility
for biomarkers that identify individuals
at increased risk for developing cancer or
having children with birth defects. A vari-
ety of steps could be taken including
increased surveillance, early diagnoses, or
other direct interventions. Preventive mea-
sures could be directed at individuals most
likely to benefit from them, and the real
goal of human mutagenicity monitoring
could be within reach, i.e., the prevention
of genotoxic disease.

Future research for evaluating genetic
and cancer risks from accidental exposures
then should be directed to questions of the
disease relevance of the tools of molecular
epidemiology. This paper considers some
aspects of the assays themselves and dis-
cusses approaches to optimize the value of
these assays for human preventive medicine.

The Assays
Biomarkers of xposue/Dose
(Reversible Genotoxic Responses)
Currently available measures of exposure/
dose for detecting in vivo penetrations of
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Figure 2. Biomarkers of exposure. Abbreviations: SCE, sister chromatid exchanges; WBC, white blood cells.

genotoxic agents to various levels are

depicted in Figure 2. These include mea-

surements of carcinogens/mutagens in
body tissues. Greater penetration, at least
in a functional sense, is afforded by mea-

suring the active metabolites of the agent(s)
of concern. Steady states of exposure to
carcinogenic/mutagenic electrophiles are

assessed by measuring protein or DNA
adducts (5-8). Most electrophiles will
adduct to the amino acids of proteins.
Hemoglobin is the preferred protein for
monitoring amino acid adducts because it
is available in large quantities in small
blood samples (9). Because the life span of
circulating red blood cells is approximately
120 days and the adducts are stable, cumu-
lative doses of genotoxicants over a 4-
month interval can be determined (10-13).
DNA adducts are better representations of
penetration of the agent to the target mole-
cules of genotoxic concern than are protein
adducts; however, the fact that DNA mole-
cules are repaired, which must be consid-
ered when using DNA adducts as in vivo
dosimeters. DNA adducts are assessed by
several means, the most sensitive and
specific being immunological assays (5,14);
however, these assays have the disadvantage
of requiring precise knowledge of the
adduct of concern. In addition to direct
detection in DNA, metabolized DNA
adducts can be detected in urine (15,16).

One of the most important features of
exposure/dose biomarkers for human bio-
monitoring is sensitivity. In our future
research, we must continue to improve
sensitivities, with new assays if necessary,
and document this sensitivity by human
studies where exposure levels are precisely
known. The development of more generic
exposure/dose biomarkers is also needed.
Researchers have long awaited a marker for
exposure to ionizing irradiations that will
be more sensitive than chromosome aber-
rations for acute exposures and will reliably
detect low-dose chronic exposures. A

promising start was made a decade ago in
using serum antibodies to DNA adducts to

detect chronic exposures to genotoxic elec-
trophiles (15,17,18). This reverses the
usual assay that used antibodies formed in
animals to detect in situ DNA adducts in
cells from humans and could permit sero-

logical studies in humans to yield informa-
tion regarding cumulative exposures to
carcinogens/mutagens.

Biomarkes ofSusceptibility
As used here, biomarkers of susceptibility
refer to measurements that reveal interindi-
vidual differences in response to genotoxic
influences (usually taken to mean genotypic
markers). Individuals who are susceptible to
various environmental carcinogens/muta-
gens have greatly heightened genotoxic
responses to exposure levels of agents that
induce little or no response in nonsuscepti-

ble individuals. Figure 3 indicates several
kinds of biomarkers of susceptibility.

Genetic screening, another term for
evaluating human populations using bio-
markers of susceptibility, evolves from the
concept that human populations are het-
erogeneous, i.e., made up of individuals
who are genetically and, therefore, inher-
ently susceptible or resistant to various
environmental agents. There are many eth-
ical issues associated with the application of
biomarkers of susceptibility to genetic
screening, including the right to work and
insurance and job discrimination.

Metabolic genotypes reveal interindi-
vidual differences in ability to activate or

detoxify genotoxic agents (19-24), which
influence internal and biologically effective
doses of the reactive forms of deleterious
agents that penetrate to in vivo targets.
Important genes of this type include those
for P450 and other enzymes that convert
inactive carcinogens/mutagens to their
genotoxic forms, i.e., the class I reactions,
and those that conjugate and thereby detox-
ify these reactive forms, i.e., the class II
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Figure 3. Human susceptibility influences on the paradigm of environmental cancer.

reactions (22,23,25,26). Many of these
genes are polymorphic in human popula-
tions and they potentially explain much of
the interindividual differences observed
both in genotoxic responses revealed by
biomarkers and by disease outcomes
(21,22,25,26). It appears to be the com-
bined genotype at these loci rather than
that at a single gene that governs individual
susceptibility or resistance.

There are also genetically determined
interindividual differences in the ability to
repair damage to the DNA (27-36).
Individuals with impaired repair capabili-
ties have an increase in irreversible geno-
toxic damage resulting from the processing
of reversible DNA lesions such as adducts.
It is now well recognized that persons with
such defects have increased susceptibilities
to cancer and, indeed, many of the herita-
ble cancer syndromes are due to inherited
mutations at such loci (29,37-42). The
genes of interest here are those that encode
DNA repair enzymes, polymerases, cell-
cycle, or check-point proteins (32-34,
43,44). The biomarkers of susceptibility
include identification of relevant mutations
in the critical genes, identification of
mutant proteins, or loss of a critical repair
or cellular function. As indicated in Figure
3, susceptibility due to impaired DNA
repair capacity will influence the occur-
rence of early biological effects in either
reporter or disease genes.

One class of genetically determined
biomarkers of susceptibility usually not
considered part of human biomonitoring
includes genetically defined levels of host
resistance to the emergence of disease-
usually cancer. As shown in Figure 3, sus-
ceptibility factors will operate after the early
biological effects have been induced. At
some point, factors such as immunological
competence will have to be considered in

assessing risk for developing a genotoxic
disease such as cancer in the context of
given levels of exposure, dose, and early
biological effects. For example, a human
leukocyte antigen association (HLA-DPB1
glutamate 69) has been shown for a lung
disorder related to beryllium exposure (45).

To include biomarkers of susceptibility
in human biomonitoring protocols in any
practical way, these biomarkers will have
to be developed as reliable and simplified
assays and then validated as to their disease
relevance. Recent studies in this regard show
that variability in biomonitoring results,
especially using effect biomarkers, is often
attributable to null genotypes for one of the
genes of importance in metabolism (34).
Similarly, individuals who are homozygous
deficient for DNA repair functions have
grossly elevated frequencies of chromosome
aberrations or gene mutations (46-49).
Clearly, it is important to consider inter-
individual genetically determined suscepti-
bility and resistance factors when making
assessments of genetic and cancer risks.

Other kinds of indicators of suscep-
tibility will have to be considered (50).
Nutrition factors are important in animal
in vivo mutagenesis studies and have estab-
lished relevance in the development of can-
cer (51). Studies of in vivo genotoxicity in
humans have shown that nutrition factors
such as folate deficiency can enhance the
occurrence of chromosome aberrations and
gene mutations (52). Future research will
have to define the factors and nutrients of
relevance to genotoxicity, devise simplified
means for their measurements in human
populations, and incorporate such mea-
surements into human monitoring proto-
cols. Again, accurate risk assessments
require such information.

Finally, the unit of susceptibility or
resistance to carcinogens/mutagens may

not be the individual per se, but the cell.
For genotoxic diseases such as cancer,
which are cellular disorders that are usually
clonal in origin, the genotoxic event that
initiates the disease occurs in a single cell.
As noted above, individuals with inherited
DNA repair defects have increased frequen-
cies of in vivo chromosome aberrations,
somatic mutations, and cancers. These dis-
orders are often referred to as genetic insta-
bility syndromes and, at the constitutional
level, are functionally homozygous reces-
sive conditions. In affected individuals, all
cells in the body are deficient for the neces-
sary stability factor, and the unit of suscep-
tibility is considered to be the individual.
One of these disorders, ataxia-telangiectasia,
is also suspected of having heterozygous
effects in female carriers, causing breast
cancer (53,54). The ataxia-telangiectasia
gene has recently been cloned (30); this
will allow clear genotyping of heterozygous
individuals and the evaluation of possible
increased cancer risk.

Undoubtedly, the cancer-prone charac-
teristic of the genetic instability syndromes
results from a genetic alteration in a single
cell. Because every cell in the body of a
homozygous individual is homozygous
deficient, the probability that such onco-
genic alterations will occur by mutation is
very high, i.e., almost one. However, an
individual who is a constitutional heterozy-
gote for one of these conditions will almost
certainly be a mosaic at the cell level, with
a majority population of heterozygous cells
and several minority populations of cells
that have lost function of the active copy of
the relevant gene by somatic mutation or
loss of heterozygosity of the single wild-
type allele. Actually, calculations reveal that
there can be many mutations of the origi-
nally wild-type allele, with the extent of the
minority cell populations in the individual
being determined by the number of these
somatic events and, more importantly, the
time during fetal development that they
occurred. The earlier the inactivating muta-
tion of the intact allele occurs, the larger the
resultant deficient clonal cell fraction will
be. These cells now homozygous for a
genetic instability gene will in effect have
acquired a mutator phenotype.

While homozygosity for DNA repair
diseases such as ataxia-telangiectasia are
very rare, the heterozygotes occur at mea-
surable frequency by Hardy-Weinberg
expectations. When the large number of
DNA repair, DNA stability, cell cycle, and
checkpoint genes are considered, a large
proportion of the human population will
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be constitutionally heterozygous for one or
more of these mutator genes. There is also
the possibility that dominant negative
mutations may occur in these genes,
thereby not requiring the individual to be
constitutionally heterozygous at those loci.
In toto, interindividual differences in sus-
ceptibility to cancer could be due to
intraindividual interclonal differences in
genetic stability. Colon cancer patients
who are constitutionally heterozygous for
mutations in mismatch repair genes have
shown the replication error (RER+) pheno-
type indicating mismatch repair deficiency
in somatic cells that are not part of their
cancer; this suggests that such individuals
are true somatic mosaics for this function
(55). Future research should be devoted to
characterizing this phenomenon and its
extent in human populations. If this kind of
mosaicism is not rare and if it does account
for a substantial portion of interindividual
variability in cancer susceptibility, then
appropriate biomarkers of susceptibility
will have to be devised and incorporated
into human monitoring protocols.

Biomarkers ofEffect (Irreversible
Genotoxic Responses)
As indicated in Figure 4, biomarkers of
effect can be divided into two classes:
those that measure genotoxic events in
reporter genomic regions and those that
measure genotoxic effects in disease-
critical regions. Traditionally it has been
the former that have constituted the effect
biomarkers used for human monitoring.
More recently, genotoxic events are also
being measured in disease-critical genes.
These genotoxic events would certainly be
expected to have disease relevance, but it
must be determined whether they are
biomarkers of effect or early indicators
of disease.

As shown in Figure 4, biomarkers of
effect include measurements at both the
chromosome and the gene levels for both
reporter and disease-critical events. Among
the chromosome-level reporter events are the
traditional nonspecific chromosome aberra-
tions (56,57), micronuclei (58-62), sister
chromatid exchanges (SCE) (56,63-65),
and more recently, single-cell electrophor-
etic determinations of chromosome frag-
mentation (comet assay) (66,67). It has
become possible over the last decade to
directly measure and characterize gene level
somatic mutations arising in vivo in humans.
Four or five assays are in use (68), but a
significant database has been developed
for only two, i.e., hypoxanthine guanine

-_- Early genotoxic effects
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Figure 4. Biomarkers of effect.

phosphoribosyltransferase (hprt) mutations
in T lymphocytes (69-71) and glyco-
phorin A (ga) mutations in red blood cells
(72,73). Of these, the assay for hprt muta-
tions allows recovery of mutant isolates for
molecular and other characterizations, such
as the discovery of mutational spectra (74),
while the assay for gpa mutations allows
phenotypic scoring only.

As indicated in Figure 4, all of the
specific chromosome aberrations or gene
mutations that characterize the various
human malignancies can, in theory, be
used as biomarkers of effect. Polymerase
chain reaction (PCR) or ligase chain reac-
tion amplification-based technologies can
be used to define any of these chromosome
aberrations or gene mutations in blood or
other samples, allowing determination of
chromosome changes that characterize the
leukemias or lymphomas or specific muta-
tions in oncogenes or tumor suppressor
genes. Using these changes as biomarkers
for human monitoring holds great promise
in terms of disease relevance; however,
future research, in addition to developing
rapid and reliable assays, will have to deal
with issues such as clonal amplifications
when attempting to ascertain the frequency
of the monitored event. Nonetheless, assay
development and validation for this class of
biomarkers of effect are important future
research directions.

For surrogate biomarkers to have disease
predictability, it must be demonstrated
that the genotoxic events actually measured
really mimic disease-causing genotoxic
events. Indications exist that pathogenic
mutagenic mechanisms that presumably
occur elsewhere in the genome are faith-
fully reproduced in the reporter events. At
the gene level, somatic recombination, an
important event for loss of heterozygosity
in malignancies, is recorded in HLA muta-
tions in T lymphocytes (75-77) and pre-
sumable gpa mutations in red blood cells
(73). Specific cancer-relevant mutagenic

mechanisms such as DNA breaks at topo-
isomerase II and V(D)J recombinase
consensus cleavage sequences have been
demonstrated for hprt mutations (78,79).
Future studies must extend the pathogenic
mechanisms detected at reporter loci.

The issue of surrogacy of tissue must
also be addressed in future research. At
present, assays of genotoxic effects all use
blood cells, i.e., T lymphocytes or red
blood cells. That specific lymphoma-related
mutations, such as those mediated by the
V(D)J recombinase, are captured in hprt
mutations in T lymphocytes implies that
this genetic event in this cell type is a good
surrogate for lymphocyte malignancies
(80-82). However, future research must
devise methods to assess irreversible geno-
toxic effects in other cell types. In this
regard, our laboratory is devising a method
for assessing in vivo hprt mutations that
arise in CD34+ myeloid stem cells, the pre-
cursors of most nonlymphocytic leukemias,
to determine if these cells are a better surro-
gate for this kind of malignancy. We need
assays of in vivo-arising irreversible geno-
toxic effects in epithelial cells, as well as
simple, inexpensive, and reliable molecular
assays for specific in vivo mutations.

Population Studies
Future research will improve the current
assays used by molecular epidemiology,
making them simpler, cheaper, and more
reliable, but these are only the tools needed
for human monitoring. What will be of
paramount importance for this field will be
studies of the meaning of human biomoni-
toring. Specifically, the disease relevance of
the biological end points measured, sepa-
rately or together, must be established in
quantitative terms. Disease relevance must
be determined at the population level in
order to permit and defend public health
decisions made at that level, e.g., removal
of sources of contamination. If it can be
documented that biomarkers have disease
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predictability at the individual level, a wide
variety of early intervention strategies will
be possible. Because disease relevance at the
population level usually depends on the
toxicity of the agents of concern, it will not
be discussed further here. The determina-
tion of disease relevance at the individual
level is something that must be initiated by
those involved in molecular epidemiology.
The determination must be expanded
beyond the laboratory and encompass field
studies of real human populations and
the cooperative efforts of epidemiologists,
geneticists, toxicologists, and physicians.

Recnt Studies
Reports that at least one of the effect
biomarkers, i.e., chromosome aberrations,
has disease relevance per se are beginning
to appear in the literature. The first con-
cerns a large Nordic cohort study of cancer
incidence in individuals who had determi-
nations of chromosome aberrations, micro-
nuclei, or SCE between 1970 and 1988
(83). Cytogenetic studies were carried out
with populations with environmental
exposures and with unexposed referents.
(Individuals with cancer diagnosed before
the study were not, of course, included in
the cohort.) Interlaboratory variation was
standardized by trichotomizing the data.
There was a statistically significant linear
trend in that the upper tertile of chromo-
some aberrations had a greater than 2-fold
increase in cancer incidence over the lower
tertile; however, there was no positive asso-
ciation of cancer incidence with SCE
results (which are biomarkers of exposure).
Data with micronuclei were too limited for
firm conclusions (83).
A similar study has recently been

reported from Italy in which chromosome
aberration results obtained from 17 labo-
ratories, again trichotomized, were corre-
lated with standardized mortality ratios
(SMR) for cancer (84). Statistically signifi-
cant increases in SMR were found in indi-
viduals in the middle and upper tertile of
chromosome aberrations for all cancers and
in individuals in the upper tertile for respi-
ratory tract, lymphatic, and hematopoietic
malignancies. These results of SMR analy-
sis were confirmed by multivariate Poisson
regression analysis after adjusting for
potential mutagen/carcinogen exposures,
which indicates that the disease predictabil-
ity was not due entirely to the fact that a
genotoxic exposure had been measured.
A third study also compared chromo-

some aberrations and cancer outcomes. The
results of cytogenetic analyses performed

many years after pelvic irradiation were
compared for two groups of women, i.e.,
those with benign and those with malig-
nant gynecological disease (85). Frequen-
cies of stable aberrations were found to be
only slightly higher in the cancer survivors,
despite that group having received more
than a 10-fold higher bone marrow dose of
ionizing radiation than the group of benign
disease survivors. This finding correlated
with the earlier observation that the excess
leukemia risk is also approximately equal
for patients receiving radiotherapy for
benign or for malignant disease despite the
dose difference. Kleinerman et al. (85)
conclude that, for patients receiving par-
tial-body radiotherapy, stable chromosome
aberrations measured a long time after
exposure appear to serve as biomarkers of
effective risk rather than as biomarkers of
radiation dose received.

The results of these three studies
suggest that biomarkers of effect may have
disease relevance per se, independent of
their reflecting exposures to carcinogens/
mutagens. This should encourage future
research to fully document and quantify this
potential predictive value of these assays.

Future Studies
Both the Nordic and Italian studies above
(83,84) were prospective studies in which
cancer incidence or mortality, respectively,
were ascertained several decades after the
cytogenetic analysis. Although these find-
ings are exciting, it is not practical to base
large-scale studies of disease relevance on
this design, and multiple biomarkers can-
not be assessed in the same general analysis.
Rather, a source of blood and, if possible,
other tissue samples should be obtained
from individuals at the time the carcino-
genic/mutagenic influences that initiate the
malignancy are operative. That is, the sur-
rogate tissues for detection of biomarkers
must be obtained at the time when the dis-
ease-causing genotoxic events are arising,
which is well before the clinical detection
of cancer. The surrogate tissues must then
be cryopreserved and the individual from
whom they were obtained followed med-
ically to ascertain final disease outcome.
Only at that time should the tissues be
analyzed for biomarkers.

The individuals from whom tissue
samples are obtained should have a high
risk of developing cancer from a known
carcinogen/mutagen exposure. If at all pos-
sible, the exposure level or dose of the dele-
terious agent(s) should be known. This
situation describes cancer patients receiving

chemo-radiotherapy or individuals who are
exposed in environmental disasters. Blood
or tissue samples should be collected early
and, if possible, at several intervals follow-
ing the exposures. (For cancer patients,
there should also be pretreatment samples.)
Ideally, blood and tissue sampling should
be performed by experts disinterested in
the final outcome of the study, e.g., multi-
institution cooperative cancer treatment
groups for treated cancer patients or the
International Red Cross for environmental
disasters. These samples should be pre-
served in a repository especially established
for that purpose by specialists trained in
maintaining tissue samples and informa-
tion for later retrieval. Medical follow-up is
critical in this scheme, and clinical informa-
tion must be linked to the tissue samples.
Testing should not be done until there
have been a sufficient number of cases of
the disease of interest to allow statistically
valid determinations.

After a sufficient number of cases of,
for example, acute nonlymphocytic leuke-
mia (ANLL) have occurred, a panel of epi-
demiologists, geneticists, toxicologists,
statisticians, and physicians should design
an appropriate nested case-control study
for determining the disease relevance of
biomarkers. Biomarkers chosen for study
should include appropriate measures of
susceptibility and effect certainly, but
perhaps others also. Expert laboratories
should be selected to conduct the bio-
marker analyses blindly. In the case of
somatic mutations, mutational spectra may
be determined to ascertain if particular
molecular kinds of events are more disease
relevant than others. Biomarkers of effect
that measure reporter events and those
that measure disease genotoxic events
should be tested. Assay results should be
returned to the panel for unblinding and
final analyses.

Over a period of 5 to 10 years, studies
such as this should provide answers to
questions of disease relevance and individ-
ual predictability. ANLL was chosen as the
first example because, unfortunately, the
incubation period for such malignancies is
quite short. Another advantage of choos-
ing this disease for initial correlations is
that PCR-based methods for detecting the
specific chromosome changes in these leu-
kemias can give added confidence to the
diagnosis of no disease. The information
to be obtained in this type of study should
be the relative risk (odds ratio) for devel-
oping disease (ANLL) among exposed
individuals with abnormal biomarker
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results compared to exposed individuals
who do not show such abnormal results.
This is the beginning of developing quan-
titative data for using biomonitoring data
to assess genetic and cancer risks from
accidental exposures.

Conclusions
There are a number of biomarkers available
for carcinogenicity/mutagenicity monitor-
ing in humans. The assays themselves are
becoming more and more sophisticated
and are allowing basic questions about car-
cinogenic and mutagenic mechanisms to
be approached in humans. This progress in
assays development has occurred in labora-
tories; however, the availability of biomark-
ers has resulted in their use in the field for
assessing human environmental health risks
and has allowed development of the field
of molecular epidemiology. As biological
rather than disease end points find greater
and greater application for assessing
human health risks, more attention must

be paid to the health relevance and disease
predictability of the end points measured.
This will require studies of the scope and
complexity outlined above and cannot be
accomplished in laboratories alone or in
the confines of a single discipline. Further-
more, these studies will require a level of
national and international cooperation
that has not thus far been shown by the
genetic toxicology community. Samples
and information must be shared, one or
more repositories must be created, com-
mitments must be made to continue the
research over time, and perhaps wet work-
shops will have to be conducted. Studies
will be group efforts, and the research will
be cumulative and develop over time. The
scheme suggested above is for an initial
disease assessment; others must follow.
Also, new and better biomarkers will con-
tinually become available, and these also
will require validation of this sort. The
effort will be great, but so will be the
potential benefits.

Traditional epidemiology has been and
remains the gold standard for studying
disease outcomes in human populations;
however, such approaches to human gene-
tic and cancer risks from environmental
exposures is impractical because of the
infrequency of the disease events, the num-
bers of individuals therefore required for
study, and the long incubation periods of
many of the resultant diseases. In any
event, the purposes of monitoring the pop-
ulation is defeated because the diseases that
are to be prevented must first occur.

The use of biomarkers in molecular
epidemiology holds the promise of disease
prevention. If successful, monitoring in
this way allows one to buy time and
initiate measures aimed at true disease pre-
vention. For this to be accomplished, the
tools with which human populations are
studied must provide information that is
interpretable in terms of health risks.
Calibrating these tools for this use should
become our major research goal.
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