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Human DNA adduct formation (covalent modification of DNA with chemical carcinogens) is a

promising biomarker for elucidating the molecular epidemiology of cancer. Classes of compounds
for which human DNA adducts have been observed include polycyclic aromatic hydrocarbons
(PAHs), nitrosamines, mycotoxins, aromatic amines, heterocyclic amines, ultraviolet light, and
alkylating cancer chemotherapeutic agents. Most human DNA adduct exposure monitoring
has been performed with either 32P-postlabeling or immunoassays, neither of which is able to
chemically characterize specific DNA adducts. Recently developed combinations of methods with
chemical and physical end points have allowed identification of specific adducts in human tissues.
Studies are presented that demonstrate that high ambient levels of benzo[alpyrene are associated
with high levels of DNA adducts in human blood cell DNA and that the same DNA adduct levels
drop when the ambient PAH levels decrease significantly. DNA adduct dosimetry, which has
been achieved with some dietary carcinogens and cancer chemotherapeutic agents, is described,
as well as studies correlating DNA adducts with other biomarkers. It is likely that some toxic,
noncarcinogenic compounds may have genotoxic effects, including oxidative damage, and
that adverse health outcomes other than cancer may be correlated with DNA adduct formation.
The studies presented here may serve as useful prototypes for exploration of other toxicological
end points. Environ Health Perspect 1 04(Suppl 5):883-893 (1996)
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Introduction

A large body of evidence in experimental promising biomarker for elucidating the
systems suggests that DNA adduct forma- molecular epidemiology of cancer (3,4).
tion is necessary, but not sufficient, for Classes of compounds for which human
tumorigenesis caused by genotoxic chemi- DNA adducts have been measured include
cal carcinogens (1,2). Thus, human DNA polycyclic aromatic hydrocarbons (PAHs),
adduct formation (covalent modification of nitrosamines, mycotoxins, aromatic amines,
DNA with chemical carcinogens) is a heterocyclic amines, ultraviolet (UV) light
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and alkylating cancer chemotherapeutic
agents. Human exposures that result in
DNA adduct formation are listed in Tables
1 and 2, and some chemical structures of
DNA adducts are shown in Figure 1. It is
generally considered that DNA adduct for-
mation represents biologically effective
dose, or dose reaching a target tissue, and it
is assumed that DNA adduct measure-
ments have the potential to become inte-
gral components of the risk-assessment
process. At the present time many techno-
logical approaches have sufficient sensitiv-
ity to measure human DNA adducts and
are being used widely for exposure assess-
ment. The advancement of the field to
DNA adduct-based cancer risk assessment
requires the implementation of adduct
measurements within epidemiologically
sound study designs, an area that is still in
the early stages of development. It is also
possible that toxic, but noncarcinogenic,
compounds form DNA adducts and may
have other adverse health outcomes for
which DNA adduct formation may there-
fore be an appropriate biomarker.

Methods that have been used for
sensitive detection of carcinogen-DNA
adducts in humans include immunoassays
(5), immunohistochemistry (6,7), 32p_
postlabeling, (8,9), fluorescence and
phosphorescence spectroscopy (10), gas
chromatography-mass spectrometry
(GC-MS) (11), atomic absorbance spec-
trometry (AAS) (12,13) and electrochemi-
cal conductance (ECC) (14). Typically,
the techniques that are used without
preparative procedures are not absolutely
quantitative or able to chemically charac-
terize a specific adduct, but they are highly
effective screening tools. Recent advances
combining preparative methods [immuno-
affinity chromatography (IAC), high per-
formance liquid chromatography (HPLC)
or other chromatography] with immunoas-
says, 32P-postlabeling, synchronous fluores-
cence spectrometry (SFS), and GC-MS
have allowed identification and quantita-
tion of specific DNA adducts in human
tissues potentially resulting in more precise
exposure documentation.

This paper is an overview of method-
ologies and their application in exposure
biomonitoring, focusing on human blood
cell PAH-DNA adduct measurements
obtained concomitantly with ambient
PAH monitoring. DNA adduct dosimetry
and correlation of DNA adducts with
other biomarkers are considered.
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Table 1. Sensitivities and exposures measured for human DNA adduct detection using antisera specific for DNA
adducts or modified DNA samples.

Assay Adducts detected per 108 nucleotides Exposure Reference

Immunoassay > 1 Aflatoxins (27-29)
4-Aminobiphenyl (30,31,130)
Cisplatin and carboplatin (38,85,116,131)
Coal tar (medicinal) (41)
Dacarbazine (40)
8-Methoxypsoralen (42)
Oxidative damage (43)
PAHs (35-37,108,132)
Procarbazinea (39,117)
Ultraviolet light (44)

Immunohistochemistry 2 100 Aflatoxins (7)
Cisplatin (6,45)
8-Methoxypsoralen (46,47)
Ultraviolet light (48)

aCompetitive repair assay, analogous to immunoassay.

Table 2. Sensitivities and exposures measured for human DNA adduct detection by 32P-postlabeling and other
assays.

Assay Adducts detected per 108 nucleotides Exposure Reference

32p-Postlabeling 0.1 Coal tar (medicinal) (133)
Mitomycin C (134)
MOCA (135)
Ochratoxin A (136)
PAHs (9,55,105,109,

137-139)
Styrene (140-142)
Tobacco (143-145)
Unknown (36,146-149)

Luminescence 10-100 Aflatoxins (63,150)
spectroscopy B[a]P (61,67,151)

PAH (occupational) (65,66)
GC-MS 0.3-1 4-Aminobiphenyl (83)

N-Nitrosamines ( 11,73,77,78,80)
NNK (tobacco) (81)
PhIP (diet) (84)
Malondialdehyde (endogenous) (152)

Atomic absoprtion 100 Cisplatin and carboplatin (86,153)
spectrometry

Electrochemical 0o.i- a Oxidative damage (93,94)
conductance

8Picomole per milliliter of urine.

Major Methods for DNA
Adduct Determination
in Human Tissues and
Examples of Human
Exposure Monitoring
Immunoassays
Antisera elicited against DNA adducts and
carcinogen-modified DNA samples (15-17)
have been widely used to quantify and
localize xenobiotic-induced DNA damage
(18-21) and to measure DNA adduct for-
mation in human tissues (22,23). Com-
petitive radioimmunoassays (RIAs) and
enzyme-linked immunosorbent assays
(ELISAs), able to detect human DNA

damage with sensitivity in the range of one
adduct in 108 unmodified nucleotides,
have been established with these antisera.
Immunoassays are reliable, inexpensive,
and allow for the analysis of more than 20
samples per day. Disadvantages include the
requirement for relatively large amounts of
DNA (200 pg) and a lack of absolute
specificity because of antibody cross-reac-
tivity. Cross-reactivity with unmodified
DNA, unmodified nucleotides, or carcino-
gen alone rarely occurs (24), but there may
be recognition of other adducts of the same
carcinogen or adducts of other chemically
related compounds (25). Therefore, unless
prior separation of adducts is used, the

values obtained for human samples may
reflect measurement of multiple, chemi-
cally similar DNA adducts. In addition to
use with quantitative immunoassays, anti-
carcinogen DNA adduct antisera have been
used for immunohistochemical staining of
human tissues (21,23,26). In general,
immunohistochemistry is less sensitive
than ELISA, but the approach may be rele-
vant for identification of susceptible cell
types in complex tissues.

Xenobiotic exposures that have been
examined by immunoassay in samples from
human subjects (Table 1) include afla-
toxins (27-29), 4-aminobiphenyl (30,31),
N-nitrosamines (32-34), benzo[a]pyrene
(B[a]P), and other PAHs (35-37). In addi-
tion, medicinal exposures, including cis-
diamminedichloroplatinum (II) (cisplatin)
(38), procarbazine (39), dacarbazine (40),
coal tar (41), and 8-methoxypsoralen (42)
have been determined in DNA of patients.
Oxidative DNA damage (43) and UV
light photoproducts (44) have also been
measured by immunoassay. Immuno-
histochemistry to localize DNA adducts in
human tissues (Table 1) has been used for
aflatoxins (7), cisplatin (6,45), 8-methoxy-
psoralen (46,47), and UV light (48).

32p-posdabeling
The 32P-postiabeling technique is widely
used for human DNA adduct detection
(9,20,23), largely because of its high sensi-
tivity (routinely one adduct in 109 nucleo-
tides) and application to small quantities of
DNA (2-10 pg). The method is based on
the radiolabeling of adducts with high
specific activity 32p from y32P-ATP by T4
polynucleotide kinase. DNA isolated from
a tissue of interest is digested to 3'-mono-
phosphates and phosphorylated to form 5'-
32P-3'-bisphosphates. Adducts in the
labeled mixture are separated by thin layer
chromatography (TLC) in multiple (most
often four) directions. Relative quantita-
tion has been approached by scraping
materials from the TLC plates and subject-
ing them to radiochemical analysis; how-
ever, recent development of a sensitive
radiomatic apparatus for chromatogram
scanning facilitates the quantitation and
provides a measure of protection for labo-
ratory personnel. Advantages and disadvan-
tages of this method have been discussed in
detail elsewhere (23,49).

Individuals receiving many different
types of potentially genotoxic exposures
have been demonstrated to have potential
adduct spots by 32P-postlabeling (Table 2),
and in the absence of other information
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Figure 1. Structures of representative DNA adducts. (A) (7R)-N2-{1O-[r-7, t-8, t-9-trihydroxy-7,8,9,1

benzo[a]pyrene]yI}-deoxyguanosine; (B) N-deoxyguanosin-(8-yI)-2-acetylaminofluorene; (C) N-deoxygu

2-aminofluorene; (0) N2-(2'-dG-8-yI)-2-amino-1 -methyl-6-phenylimidazo[4,5-b]pyridine;(
B1-N7-deoxyguanosine; (F) 05-methyldeoxyguanosine; (G) N7-methyldeoxyguanosine; (H) 8-hydroxydeo

these are termed "aromatic adducts." The
chemical identification of such adducts has
rarely been achieved, but recent sophisti-
cated modifications to the basic methodol-
ogy have allowed tentative identification of
some specific adducts (30,50,51). Overall,
correlations of adduct levels with docu-
mented human exposure appear to be good
(52-56), but the quantitative data should
be interpreted with caution because the
adducts are unidentified and the efficiency
of phosphorylation is often unknown and
uncontrolled (51,57-60).

Luminescence and
Phosphorescence Spectroscopy
Luminescence spectroscopy is possible only
with carcinogens having intrinsic fluores-
cence, such as PAHs and aflatoxins. In
SFS, both the excitation and emission
monochromators are driven simultaneously
at a distance equal to the Stoke's shift so

that a fluorescence signal is observed when
the last excitation maximum and first emis-
sion maxima are met. This approach sim-
plifies the spectrum and allows for the
generation of more complete fluorescence
excitation-emission matrices (61-63).
Conventional SFS detection of (7R)-N2-
110-[r-7,t-8,t-9- trihydroxy-7,8,9,10-
tetrahydrobenzo [a] pyrene]yl}-deoxyguanos

ine (BPdG) in human tissues rec

hydrolysis (0.1 N HCI, 90°C, 3
DNA and isolation of the B[a]P i

r-7, t-8, t-9, c- I 0-tetrahydroxy-
tetrahydrobenzo [a] pyrene, (BP-
tetrol). A detection limit of one
106 to 107 unmodified nucleotide
achieved for 100 pg ofDNA (64-

A recently developed approac

the use of analytical solid mat

phorescence spectroscopy to d
7,10/8,9-tetrol. The method us

matrix composed of hydrophobic
trins to adsorb PAH residues fo
laser excitation (67), and tht
detection is 20 to 50 times li
conventional SFS.

The major limitations to t
fluorescence spectroscopy for the
of carcinogen DNA damage in h
lack of prior knowledge of addi
istry, a requirement that the a

fluorescent, and a requirement
tively large quantities of sam
(100-1000 pg). After the initial
equipment, assays can be p

rapidly and inexpensively. To d;
2), fluorescence studies have been
to detection of DNA adducts co

pyrene fluorophore (49,68), de
exfoliated aflatoxin adducts in u

0' 0 and N7-methyl-deoxyguanosine (N7me-
IR dG) and 06methyl-deoxyguanosine
</ (06me-dG) adducts in liver in a case of

acute poisoning (70).
OCH3 Gas Chromatography-Mass

Spectrometry
Gas chromatography-mass spectrometry
(49,71) is highly specific and has had
widespread application in measurement of
both carcinogen-protein adducts and car-

,CH3 cinogen-DNA adducts (72-76). Mass
s<Ns spectrometry requires derivitization of the

compound of interest to increase mass and
N volatility; vaporization of the sample; ion-
RlsosE ization, which can be achieved in a number

d RIBOSE of ways (electron impact, fast atom bom-
bardment, chemical ionization, and laser
desorption); collimation of the charged
particles; and acceleration into the mass

analyzer. The spectrum of ions detected
comprises the molecular ion plus the frag-
ment ions including the base peak. The
base peak, the most intense signal, is most

0-tetrahydro- commonly used for quantitative sample
ianosin-(8-y1)- analysis by single-ion monitoring when the
[E) aflatoxin mass spectrum of a compound of interest is
xyguanosine. already known.

Methods using GC-MS have been
developed for several different exposures

luires acid (Table 2). Alkyl purine adducts in human
hr) of the urine have been the most extensively stud-
residues as ied (11,72,73,77-80). These investigations
7,8,9,10- have examined the exfoliation of adducts
-7,10/8,9- by seeking the presence of N7me-dG,
adduct in N7et-dG, N7-hydroxethyldeoxygua-
s has been nosine (N7-OHet-dG), 3-methyladenine
-66). (3me-Ade), 3-ethyladenine (3et-Ade), 3-
-h involves hydroxyethyladenine (3OHet-Ade), and 3-
trix phos- benzyladenine (3bz-Ade) in human urine.
Ietect BP- Investigations using single-ion monitoring
ses a solid GC-MS have been extended to the mea-

cyclodex- surement of 4-(N-nitrosomethylamino)-1-
ollowed by (3-pyridyl)-1-butanone (NNK) adducts in
e limit of human lung and tracheal DNA of smokers
wer than and nonsmokers (81). In addition, the

presence of BPdG has been demonstrated
the use of in placental tissues of smokers and non-

detection smokers (82). Samples of human urinary
iumans are bladder and lung DNA, digested and sub-
uct chem- jected to negative ion GC-MS, were shown
adduct be to contain N-deoxyguanosin-(8-yl)-4-
t for rela- aminobiphenyl (dG-C8-4-ABP) at levels
ple DNA that compared well with 32P-postlabeling
cost of the analysis of the same samples using appro-
erformed priate standards (83). Similarly, the C-8
ate (Table DNA adduct of the heterocyclic amine
i restricted 2-amino-1-methyl-6-phenylimidazo-
ntaining a [4,5-b]pyridine (PhIP) was observed by
tection of GC-MS after hydrolysis from human
rine (69), colon (84).
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Atomic Absorbance Spectrometry
Atomic absorbance spectrometry is an
analytical method for determining ele-
ments based on the absorbance of radiation
by free atoms released by high-temperature
combustion. It is most valuable in the
detection of metal ions and has been suc-
cessfully applied, for human dosimetry, in
the monitoring of DNA from cancer
patients treated with the platinum drugs,
cisplatin and diamminecyclobutane-dicar-
boxylatoplatinum (II) (carboplatin) (Table
2). These drugs have been shown by AAS
(12) and other methods to bind covalently
to DNA (45,85-87). For measurement of
platinum bound to DNA in tissues of
human cancer patients, unknown samples
are quantified by comparison to a standard
curve, and sufficient sensitivity is only
obtained using an AAS with Zeeman back-
ground correction (86,88).

Electochemical Conductance
Electrochemical conductance requires the
application of a voltage across two electrodes
that are immersed in an electrolytic solu-
tion. An electric current flows, allowing the
measurement of electrical conductance,
which is proportional to the analyte concen-
tration (89). This technique has the advan-
tage of specificity because it can be directly
applied to individual HPLC fractions (14).
However, factors related to the chromato-
graphic conditions (gradient elution, tem-
perature, and pressure) may cause problems
with detector performance (90,91).

Electrochemical conductance has been
used to monitor oxidative damage in DNA
(Table 2). This use of the method is com-
plicated by the fact that oxidation of DNA
may occur during the extraction procedure
(92); however, 8-hydroxydeoxyguanosine
(80H-dG) is detectable, whereas unmodi-
fied deoxyguanosine is not. The approach is
sufficiently specific and sensitive for human
biomonitoring, but investigations so far
have been limited to determining 80H-dG
in urine, peripheral white blood cells, or
bronchial alveolar macrophages (93,94).

Combinations of Methods
The most frequently applied detection
methods, immunoassays, 32P-postlabeling,
and fluorescence spectroscopy, used in the
absence of micropreparative techniques,
provide a broad screen and indicate expo-
sure. However, recently devised combina-
tions of methods produce more specific
and readily comprehensible data. Such
approaches are necessarily more labor
intensive, time consuming, expensive, and

demanding when applied to large numbers
of specimens, but the information they
provide is invaluable for human exposure
assessment.

Most combinations of methods to
improve the specificity of DNA adduct
detection use either conventional chro-
matographic separation or immunoaffinity
chromatography as a first step. When a
human DNA sample is digested and sub-
jected to HPLC, even though the adducts
cannot be observed by conventional moni-
toring, the fractions known to contain
specific adducts can be analyzed by immu-
noassay, 32P-postlabeling, or GC-MS. For
example, the sensitivity and specificity of
ELISAs for human DNA adduct monitor-
ing have been enhanced by combination
with prior HPLC. This approach has been
applied to human gastric mucosa (32) and
liver samples (33) using antisera specific
for alkyl-modified nucleosides. Chromato-
graphic separation by HPLC has also been
combined with 32P-postlabeling; a recent
review (59) covers the subject. A highly
successful line of experimentation has com-
bined two chromatographic steps with 32p_
postlabeling to detect specific o6- and
N7-alkyl-dG adducts in human lung and
lymphocytes (51,57,95). The development
of this method has facilitated the use of
internal and cochromatography standards.
In an another approach, Stillwell et al. (79)
employed two chromatographic steps prior
to the GC-MS determination of 3me-dA
and 7me-dG adducts in the urine of smok-
ers. Finally, in a novel set of experiments,
HPLC was used as the first step of a proce-
dure combining 32P-postlabeling with
immunoprecipitation (termed PREPI) for
the detection of 06me-dG, 04me-dG, and
04et-dG in human liver and leukocyte
DNA samples (50).

Immunoaffinity chromatography pro-
vides a valuable purification step that has
been widely used to improve the specificity
of other methods. Antibodies elicited
against DNA adducts or carcinogen-
modified DNA samples can be covalently
bound to a matrix and the resulting mater-
ial used in columns that bind and elute
specific adducts in a DNA digest. Because
most antisera have cross-reactivity for fami-
lies of structurally similar DNA adducts,
IAC concentrates structurally similar DNA
adducts (96-98). Further separation of
adducts by HPLC is frequently required
before specific adduct determination
is possible.

For PAH exposure, IAC and HPLC of
human lung and placenta have been

combined with different end points,
including SFS (82,98,99), GC-MS (82),
and 32P-postlabeling (99,100), to provide
evidence of BPdG formation. Using this
methodology, it is possible to detect one
BPdG adduct in 108 nucleotides.

Immunoaffinity chromatography and
GC-MS have been combined to detect
exfoliated 3-alkyl-adenines in human urine
(11,80). Recently, Bianchini et al. (101)
reported the combination of IAC, HPLC,
and ECC to measure N7me-dG in human
pancreas. Aflatoxin exposure dosimetry has
been accomplished by combining IAC
with HPLC and UV absorbance (A362) to
detect adducts in human urine and tissues
(28,102,103). In other studies IAC has
been combined with 32P-postlabeling and
TLC to detect 06 me-dG (104).

Human DNA Adduct
Formation as an Exposure
Dosimeter
Comparison ofAmbient B[a]P Levels
with DNA Adduct Formation
A number of investigatiors have attempted
to monitor ambient air for B[a]P and other
PAHs while simultaneously measuring
blood cell DNA adducts in occupationally
or environmentally exposed individuals.
Studies focused only on smoking have been
excluded here because the dosimetry is nec-
essarily crude, and PAH-DNA adduct
levels in blood-cell DNA are not consis-
tently higher in smokers. In fact, the results
suggest that smoking is only one of many
factors that contribute to adduct formation
in blood cell DNA. This analysis focuses
on adduct measurements in human blood-
cell DNA because human tissue biopsies
are not practical for routine analysis.

A summary of investigations in which
ambient B[a]P levels were compared to
PAH-DNA adduct analyses in human
blood cells is shown in Table 3. Overall,
the data suggest that increased ambient
pollution levels (using B[a]P as an indica-
tor) are associated with higher levels of
blood-cell PAH-DNA adducts, and that
measures taken to remove B[a]P (and
presumably other PAHs) from the environ-
ment yield dividends in terms of lowered
biologically effective dose. Two studies in a
population of Finnish foundry workers,
performed several years apart, indicate
that decreasing the B[a]P levels from
12-200 ng/m3 to < 5-60 ng/m3 signifi-
cantly reduced the PAH-DNA adduct
levels measured by the anti-BPdG-
DNA-ELISA (37,41). In addition, lower

Environmental Health Perspectives - Vol 104, Supplement 5 * October 1996886



HUMAN DNAADDUCT MEASUREMENTS

Table 3. Human white blood-cell DNA adduct levels (adducts/108 nucleotides) as a function of ambient benzo[alpyrene (ng/m3) levels.

Cohort <1 ng/m3 <5 ng/m3 5-12 ng/m3 12-60 ng/m3 50-50,000 ng/m3 Assay Reference

Finnish foundry 2.2a 8.0 21.0, 50.0 ELISA (37)
Finnish foundry 5.2 6.1 9.6 ELISA (41)
Dutch coke ovens 2.8a 5.2 ELISA (109)
Polish coke ovens 8.2 24.5 32P-Postlabeling (110)

2.3 15.3 ELISA
Silesia, Poland 1.3 (summer)b 6.4 (winter)b 32P-Postlabeling (107)
U.S. Army soldiers 1.6 (Kuwait) 4.0 (Germany) DELFIA (106)

1.7 (Kuwait) 3.0 (Germany) 32P-Postlabeling
Chinese women 9.2 (methane)c 3.3 (smoky coal)c ELISA (108)
For comparison, ambient B[a]P levels from cigarette smoking are 2.8 to 760 ng/m3 (154). 8Controls. Ambient monitoring was typically not conducted for individuals serving as
controls. bONA adduct values are for lymphocytes only. COf the methane controls, 4/16 (25%) were positive; for samples from coal smoke, 17/30 (57%) were positive.

PAH-DNA adduct levels were measured
in the same workers after time spent on
vacation (105).

In a study of U.S. Army soldiers, mili-
tary personnel were monitored before, dur-
ing, and after a tour of duty in Kuwait
(106). It was expected that higher expo-
sure to PAHs would result from oil-well
fires burning at that time. However, the
DNA adduct and air sampling data indi-
cate that these soldiers went from a clean
environment in Kuwait in August to signi-
ficantly higher pollution levels in Germany
in October, and DNA adducts, assayed by
both BPdG-DNA dissociation-enhanced
lanhtanide fluoroimmunoassay and 32p-
postlabeling, increased significantly (106).

Another example of pollution modula-
tion and concomitant reduction in DNA
adduct levels occurred in the Silesian
region of Poland in the summertime; the
air was approximately 5-fold cleaner than
in the winter, and the levels of adducts in
lymphocytes was approximately 5-fold
lower (107). One should note, however,
that the adduct dosimetry shown here to
reflect ambient PAH levels is not consis-
tent with the much higher levels of ambi-
ent B[a]P and the disproportionately low
adduct levels observed in other studies
(Table 3).

Of all the studies summarized in Table
3, the highest reported ambient B[a]P
levels were 2283 ng/m3 for Chinese women
breathing coal smoke (108), 7800 ng/m3
for Dutch coke oven workers (109), and
50,000 ng/m3 for Polish coke oven work-
ers (110). Of these, neither Dutch coke
oven workers nor Chinese women had pro-
portionately higher DNA adduct levels.
The Chinese women, who have a high lung
cancer risk, were exposed to coal smoke
while cooking meals (108), but the Dutch
workers experienced 100 to 7800 ng/m3
during a 40-hr week (109). Therefore,
in analyzing these data, a number of

confounding factors must be recognized.
The use of ambient B[a]P measurements
provide an indicator of the pollution levels,
but the actual hydrocarbon components
vary and are not always measured. The
BPdG-DNA immunoassays used actually
measure BPdG as well as a broad spectrum
of PAH-DNA adducts, since the anti-
serum used in many studies (96,111,112)
recognizes multiple PAH-DNA adducts
(98). In addition, cohorts are grouped
according to the highest exposure docu-
mented, but the range of exposures for one
job at one work site can vary considerably.
Overall, the data suggest that DNA adduct
levels vary with pollution, and that B[a]P
may not be the compound responsible for
producing the majority of PAH-DNA
adducts observed by immunoassay and
32P-postlabeling in human blood cells.

DNAAdduct Dosimetry
As discussed above, because much of the
available human DNA adduct dosimetry
for occupational and environmental expo-
sures depends on ambient biomonitoring,
precise dose-response relationships have
not been possible. However, in some
studies with dietary carcinogen exposure
and others involving DNA-damaging
cancer chemotherapeutic agents, dosimetry
has been demonstrated.

In one study involving California fire-
fighters (113), blood samples were taken
before the summer firefighting season
began and 8 weeks later. PAH-DNA
adducts were measured by BPdG-DNA
ELISA and did not correlate with the
extent of firefighting. Comparison of ques-
tionnaire results with DNA adduct values
showed that individuals (n= 19) consum-
ing charbroiled food one to two times in
the previous week had a mean PAH-DNA
adduct value of 1.6 adducts in 108 nucleo-
tides. Twenty-three individuals who
reported consumption of these foods three

to five times in the previous week and five
individuals reporting consumption more
than five times in the previous week
had mean adduct values of 3.0 and 6.7
adducts/ 108 nucleotides, respectively. The
largest single source responsible for PAH-
DNA adduct formation was consumption
of charbroiled food.

For dosimetry of aflatoxin exposure, 42
individuals in the Guangxi region of China
were studied (103). Samples of the food
consumed were assayed for aflatoxin con-
tent, which was correlated with the urinary
excretion of aflatoxin-N7-guanine (AFB1-
N7-G) by both males and females. Immu-
noaffinity chromatography and HPLC were
used to isolate metabolites and adducts from
urine (28,114) and fluorescence emission
spectra were used to identify the AFB1-N7-
G. The dosimetry data showed an excellent
correlation between dietary aflatoxin intake
and urinary adduct excretion (69).

Cancer chemotherapy has presented
unique opportunities to demonstrate DNA
adduct dosimetry because the doses of drug
are precisely known. Analysis of blood-cell
DNA from 77 previously untreated ovarian
and testicular cancer patients receiving
platinum drug-based therapy showed
strong DNA adduct dosimetry in patients
with measurable DNA adduct levels
(115,116). In studies with procarbazine
and dacarbazine, which were used to treat
patients with Hodgkin's lymphoma, an
excellent correlation was shown between
cumulative drug dose and blood-cell DNA
levels of the O6me-dG adduct (39,117). In
general, the presence of high levels ofDNA
adducts appears to correlate positively with
favorable clinical outcome (118), and
therefore such analyses may become impor-
tant clinical dosimeters. In addition, they
serve to validate the assays commonly used
for human DNA adduct measurements,
since precise dosimetry is rarely possible in
a clinical setting.
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Correlation of DNA Adducts
with Other Biomarkers
The classes of biomarkers most likely to
correlate with PAH-DNA adduct mea-
surements are urinary metabolites (bio-
markers of exposure), hemoglobin adducts
(surrogates for DNA adducts), mutagenesis
(biomarkers of effect), and polymorphisms
for enzymes involved in PAH metabolism
(biomarkers of susceptibility). Studies cur-
rently available in this area have been per-
formed with small numbers of subjects,
and conflicting correlations have some-
times been observed. However, as method-
ological advances improve the specificity of
biomarker analysis, there is the promise
that batteries of such assays may be usefully
employed in future risk assessments.

Metabolic polymorphisms are consid-
ered to influence all the other classes of
biomarkers. The enzyme complex responsi-
ble for the initial metabolism of PAHs, aryl
hydrocarbon hydroxylase (AHH), consists
of a battery of enzymes that include cyto-
chrome P4501A1. The extent of AHH
activity in human lung microsomes has
been compared to DNA adduct levels
determined in the same lung samples by
either HPLC and fluorescence (specific for
BPdG) (119) or 32P-postlabeling (53).
Both DNA adduct detection methods
yielded results that correlated positively
with the extent ofAHH activity. Correla-
tions of blood-cell DNA adduct levels with
CYPlAl have been examined in chimney
sweeps (155) and in California firefighters
(156) with ambivalent results. The lack of
agreement may be due to differences in
experimental approaches to determining
polymorphism and to detecting DNA
adducts, but it is also possible that neither
study had sufficient statistical power to
demonstrate subtle effects.

Another metabolic enzyme class, the
glutathione S-transferases (GSTs), is
involved in PAH detoxification. An 8-kb
deletion, including the entire coding
region of the GSTMI gene, renders the
null genotype in approximately 45% of
people who are homozygotes. This geno-
type has been implicated in increased
aflatoxin-DNA adduct formation. To
investigate PAH exposure levels in lung tis-
sue, Shields et al. (100) showed that mea-
surable BPdG adduct levels, by SFS and
IAC/32P-postlabeling, were present in six
of seven people with the null genotype.
Among individuals who were negative for
these adducts, only 12 of 31 individuals
had the null genotype. However, studies

with blood-cell DNA adduct measurements
did not show a similar correlation. For
example, PAH-DNA adduct levels, mea-
sured by ELISA in blood cells from heavily
smoking males with the null genotype
(32/63) were similar to those found in
matched individuals with homozygous or
heterozygous normal genotypes (31/63)
(120). In addition, in California fire-
fighters who had significant increases in
blood-cell PAH-DNA adducts due to
eating charbroiled food, the presence or
absence of the null genotype was not
associated with consistent fluctuations in
adduct levels (156). It is not likely that a
single metabolic polymorphism will be
the major determinant of cancer risk,
but the results from a metabolic profile
may be useful for future elucidation
of susceptibility.

Urinary metabolites, hemoglobin
adducts, and HPRTmutagenesis are being
analyzed in conjunction with DNA
adducts in human biomonitoring studies.
Although few of these multiple biomarker
studies are published, a number of promis-
ing new methodologies make this an
important direction for the future. Urinary
metabolites are considered to provide
direct evidence of exposure and reflect the
activity of the enzymes discussed above.
The metabolite measured most frequently
is 1-OH-pyrene (121), and the extent and
timing of I-OH-pyrene excretion have
been correlated with occupational PAH
exposures (122). In one study, PAH-DNA
adducts and 1-OH-pyrene were measured
in Finnish Foundry workers at three levels
of ambient B[a]P exposure (41), and
whereas adducts did correlate with expo-
sure, the urinary metabolite did not.
Subsequently, analytical procedures have
been developed for the BP-7,10/8,9-tetrol
(123) and the 1-OH-pyrene glucuronide
(124), and these are now being measured
in conjunction with DNA adducts (106).
A number of methodological approaches
for PAH analysis of human hemoglobin
have demonstrated the presence of adducts
derived from B[a]P and chrysene
(66,125,126). Hemoglobin adducts of
B[a]P were measured concomitantly with
airborne PAH concentration in one study
(127), and a weak correlation was demon-
strated with exposure, but DNA adducts
were not measured. Attempts have been
made to correlate HPRT mutagenesis with
exposure and DNA adduct formation
in Finnish foundry workers (128,129).
There was a significant increase in HPRT

mutagenesis and DNA adduct formation
with exposure, but the numbers of individ-
uals in the mutagenesis portion of the
study were small (128) and the correlation
requires more substantial validation.

Taken together, these results demon-
strate that multiple biomarker correlations
are not necessarily straightforward. The tis-
sues studied, the nature of the parameters
being measured, and the capabilities of the
assays used should all be carefully scruti-
nized. The numbers of subjects available
may be insufficient for solid statistics, and
the validity of a particular correlation may
not be established until after several inde-
pendent investigations are performed.
However, the present status of develop-
ment of several biomarkers suggests that
good correlation studies with PAH-DNA
adduct measurements can now be designed.

Conclusion
Human DNA adduct formation is a
promising biomarker for molecular cancer
epidemiology. The recent development of
methodologies capable of measuring classes
of adducts and specific adducts in human
blood and tissue samples is likely to lead to
improved risk assessment for groups of
exposed individuals and may indicate
opportunities for chemoprevention. This is
true not only for cancer but for other toxic
biological end points. Human DNA
adduct measurements have been most
widely used for exposure documentation.
The studies presented here demonstrate
that high ambient levels of B[a]P are asso-
ciated with high levels of DNA adducts in
human blood cell DNA and that DNA
adduct levels drop when the ambient PAH
levels decrease significantly. Precise human
DNA adduct dosimetry has been difficult
to achieve with PAHs because of the com-
plex nature of the exposures involved; how-
ever, correlating DNA adducts with other
exposure biomarkers such as urinary
metabolites and hemoglobin adducts may
substantiate ambient B[a]P measurements
and approach dosimetry. Correlations with
human mutagenesis and metabolic poly-
morphisms also suggest the importance of
a battery of biomarkers in elucidating toxic
mechanisms. It is likely that some toxic,
noncarcinogenic compounds may have
genotoxic effects and that adverse health
outcomes other than cancer may be corre-
lated with DNA adduct formation.
Therefore, the studies presented here may
serve as useful prototypes for exploration of
other toxic end points.

Environmental Health Perspectives * Vol 104, Supplement 5 * October 1996888



HUMAN DNAADDUCT MEASUREMENTS

REFERENCES

1. Yuspa SH, Poirier MC. Chemical carcinogenesis: from animal
models to molecular models in one decade. Adv Cancer Res
50:25-70 (1988).

2. Beland FA, Poirier MC. DNA adducts and carcinogenesis. In:
Pathobiology of Neoplasia (Sirica AE, ed). New York:Plenum
Press, 1989;57-80.

3. Wogan GN. Markers of exposure to carcinogens. Environ
Health Perspect 81:9-17 (1989).

4. Poirier MC, Beland FA. DNA adduct measurements and
tumor incidence during chronic carcinogen exposure in animal
models: implications for DNA adduct-based human cancer risk
assessment. Chem Res Toxicol 5:749-755 (1992).

5. Poirier MC, Gupta-Burt S, Litterst CL, Reed E. Detection of
cisplatin-DNA adducts in humans. In: Immunoassays for
Monitoring Human Exposure to Toxic Chemicals.
(Vanderlaan M, ed). Washington:American Chemical Society;
300-307.

6. Terheggen PM, Dijkman R, Begg AC, Dubbelman R, Floot
BG, HartAA, den Engelse L. Monitoring of interaction prod-
ucts of cis-diamminedichloroplatinum(II) and cis-
diammine(1,1-cyclobutane-dicarboxylato)platinum(II) with
DNA in cells from platinum-treated cancer patients. Cancer
Res 48:5597-5603 (1988).

7. Hsieh LL, Hsu SW, Chen DS, Santella RM. Immunological
detection of aflatoxin B1-DNA adducts formed in vivo. Cancer
Res 48:6328-6331 (1988).

8. Reddy MV, Randerath KK. Nuclease P1-mediated enhance-
ment of sensitivity of 32P-postlabeling test for structurally
diverse DNA adducts. Carcinogenesis 7:1543-1551 (1986).

9. Beach AC, Gupta RC. Human biomonitoring and the
32P-postlabeling assay. Carcinogenesis 13:1053-1074 (1992).

10. Weston A, Bowman ED, Manchester DK, Harris CC.
Fluorescence detection of lesions in DNA. In: DNA Damage
and Repair in Human Tissues (Sutherland BM, Woodhead
AD, eds). New York:Plenum Press; 1990;63-81.

11. Shuker DEG, Prevost V, Friesen MD, Lin D, Ohshima H,
Bartsch H. Urinary markers for measuring exposure to endoge-
nous and exogenous alkylating agents and precursors. Environ
Health Perspect 99:33-37 (1993).

12. Reed E, Sauerhoff S, Poirier MC. Quantitation of platinum-
DNA binding after therapeutic levels of drug exposure. Atomic
Spectroscopy 9:93-95 (1988).

13. Reed E, Ozols RF, Tarone R, Yuspa SH, Poirier MC. The
measurement of cisplatin-DNA adduct levels in testicular
cancer patients. Carcinogenesis 9:1909-1911 (1988).

14. Floyd RA, Watson JJ, Wong PK, Altmiller DH, Rickard RC.
Hydroxyl free radical adduct of deoxyguanosine: sensitive
detection and mechanisms of formation. Free Radic Res
Commun 1:63-172 (1993).

15. Poirier, MC. Antibodies to carcinogen-DNA adducts. J Natl
Cancer Inst 67:515-519 (1981).

16. Poirier MC. The use of carcinogen-DNA adduct antisera for
quantitation and localization of genomic damage in animal
models and the human population. Environ Mol Mutagen
6:879-887 (1984).

17. Muller R, Rajewsky MF. Sensitive radiommunoassay for detec-
tion of 06-ethyldeoxyguanosine in DNA exposed to the car-
cinogen ethylnitrosourea in vivo or in vitro. Z Naturforsch
33:897-901 (1978).

18. Leng M, Sage E, Fuchs RP, Duane MP. Antibodies to DNA
modified by the carcinogen N-acetoxy-N2-acetylamino-
fluorene. FEBS Lett 92:207-210 (1978).

19. Strickland PT, Boyle JM. Immunoassay of carcinogen-modified
DNA. Prog Nucleic Acid Res Mol Biol 31:1-58 (1984).

20. Phillips DH. Modern methods of DNA adduct determination.
In: Handbook of Experimental Pharmacology. Vol 94:1
(Cooper CS, Grover PL, eds). Berlin:Springer-Verlag,
1990;503-546.

21. Santella RM, Yang XY, Hsieh LL, Young TL. Immunologic
methods for the detection of carcinogen adducts in humans.
Prog Clin Biol Res 340C:247-257 (1990).

22. Poirier MC, Yuspa SH, Weinstein IB, Blobstein S. Detection
of carcinogen-DNA adducts by radioimmunoassay. Nature
270:186-188 (1977).

23. Poirier MC, Weston A. DNA adduct determination in
humans. Prog Clin Biol Res 372:205-218 (1991).

24. Santella RM, Hsieh LL, Lin CD, Viet S, Weinstein IB.
Quantitation of exposure to benzo[a]pyrene with monoclonal
antibodies. Environ Health Perspect 62:95-99 (1985).

25. Poirier MC. Development of Immunoassays for the Detection
of Carcinogen-DNA Adducts. In: Molecular Dosimetry and
Human Cancer (Skipper PL, Groopman JD, eds). Boca Raton,
FL:CRC Press 1991;211-229.

26. Poirier MC. Immunochemical methods for assaying carcino-
gen-DNA adducts. In: Human Carcinogen Exposure (Garner
RC, Farmer PB, Steel GT, Wright AS, eds). Oxford:Oxford
University Press, 1991 ;69-83.

27. Lee HS, Sarosi I, Vyas GN. Aflatoxin B1 formamidopyrimidine
adducts in human hepatocarcinogenesis: a preliminary report.
Gastroenterology 97:1281-1287 (1989).

28. Groopman JD, Donahue PR, Zhu JQ, Chen JS, Wogan GN.
Aflatoxin metabolism in humans: detection of metabolites and
nucleic acid adducts in urine by affinity chromatography. Proc
Natl Acad Sci USA 82:6492-6496 (1985).

29. Sun TT, Wu SM, Wu YY, Chu Y. Measurement of individual
aflatoxin exposure among people having different risk to pri-
mary hepatocellular carcinoma. In: Diet, Nutrition and Cancer
(Hyaishi Y, Nagao M, Sugimura T, Takayama S, Tomatis L,
Wattenberg W,Wogan GN, eds). Tokyo:Japan Scientific
Society Press 1986;225-235.

30. Talaska G, al-Juburi AZ, Kadlubar FF. Smoking related car-
cinogen-DNA adducts in biopsy samples of human urinary
bladder: identification of N-(deoxyguanosin-8-yl)-4-amino-
biphenyl as a major adduct. Proc Natl Acad Sci USA
88:5350-5354 (1991).

31. Roberts DW, Benson RW, Groopman JD, Flammang TJ,
Nagle WA, Moss AJ, Kadlubar FF. Immunochemical
quantitation ofDNA adducts derived from the human bladder
carcinogen 4-aminobiphenyl. Cancer Res 48:6336-6342
(1988).

32. Umbenhauer D, Wild CP, Montesano R, Saffhill R, Boyle JM,
Huh N, Kirstein U, Thomale J, Rajewsky MF, Lu SH.
06-Methyldeoxyguanosine in oesophageal DNA among indi-
viduals at high risk of oesophageal cancer. Int J Cancer 36:
661-665 (1985).

33. Huh NH, Satoh MS, Shiga J, Rajewsky MF, Kuroki T.
Immunoanalytical detection of 04-ethylthymine in liver DNA
of individuals with or without malignant tumors. Cancer Res
49:93-97 (1989).

34. Kyrtopoulos SA, Ampatzi P, Davaris P, Haritopoulos N,
Golematis B. Studies in gastric carcinogenesis. IV:
06-Methylguanine and its repair in normal and atrophic biopsy
specimens of human gastric mucosa. Correlation of 06-alkyl-
guanine-DNA alkyltransferase activities in gastric mucosa and
circulating lymphocytes. Carcinogenesis 11:431-436 (1990).

35. Haugen A, Becher G, Benestad C, Vahakangas K, Trivers GE,
Newman MJ, Harris CC. Determination of polycyclic aro-
matic hydrocarbons in the urine, benzo[a]pyrene diol epoxide-
DNA adducts in lymphocyte DNA, and antibodies to the
adducts in sera from coke oven workers exposed to measured
amounts of polycyclic aromatic hydrocarbons in the work
atmosphere. Cancer Res 46:4178-4183 (1986).

36. van Schooten FJ, Hillebrand MJ, van Leeuwen FE, Lutgerink
JT, van Zandwijk N, Jansen HM, Kriek E. Polycyclic aromatic
hydrocarbon-DNA adducts in lung tissue from lung cancer
patients. Carcinogenesis 11: 1677-1681 (1990).

Environmental Health Perspectives - Vol 104, Supplement 5 * October 1996 889



POIRIER AND WESTON

37. Perera FP, Hemminki K, Young TL, Brenner D, Kelly G,
Santella RM. Detection of polycyclic aromatic hydrocarbon-
DNA adducts in white blood cells of foundry workers. Cancer
Res 48:2288-2291 (1988).

38. Poirier MC, Egorin MJ, Fichtinger-Schepman AM, Yuspa SH,
Reed E. DNA adducts of cisplatin and carboplatin in tissues of
cancer patients. IARC Sci Publ 313-320 (1988).

39. Souliotis VL, Kaila S, Boussiotis VA, Pangalis GA, Kyrtopoulos
SA. Accumulation of 06-methylguanine in human blood leuko-
cyte DNA during exposure to procarbazine and its relationships
with dose and repair. Cancer Res 50:2759-2764 (1990).

40. van Delft JH, van den Ende AM, Keizer HJ, Ouwerkerk J,
Baan RA. Determination of N7-methylguanine in DNA of
white blood cells from cancer patients treated with dacarbazine.
Carcinogenesis 13:1257-1259 (1992).

41. Santella RM, Hemminki K, Tang DL, Paik M, Ottman R,
Young TL, Savela K, Vodickova L, Dickey C, Whyatt R,
Perera FP. Polycyclic aromatic hydrocarbon-DNA adducts in
white blood cells and urinary 1-hydroxypyrene in foundry
workers. Cancer Epidemiol Biom Prev 2:59-62 (1993).

42. Santella RM, Yang XY, DeLeo VA, Gasparro FP. Detection
and quantification of 8-methoxypsoralen-DNA adducts. In:
Methods for Detecting DNA Damaging Agents in Humans
Applications in Cancer Epidemiology and Prevention. Vol 89
(Bartsch H, Hemminki K, O'Neill IK, eds). Lyon:International
Agency for Research on Cancer, 1988;333-340.

43. Degan P, Shigenaga MK, Park EM, Alperin PE, Ames BN.
Immunoaffinity isolation of urinary 8-hydroxy-2'-deoxyguano-
sine and 8-hydroxyguanine and quantitation of 8-hydroxy-2'-
deoxyguanosine in DNA by polyclonal antibodies.
Carcinogenesis 12:865-871 (1991).

44. Bruze M, Emmett EA, Creasey J, Strickland PT. Cyclobuta-
dithymidine induction by solar-simulating UV radiation in
human skin. II: Individual responses. J Invest Dermatol
93:341-344 (1989).

45. Terheggen PMAB, Begg AC, Emondt JY, Dubbelman R, Floot
BGJ, den Engelse L. Formation of interaction products of car-
boplatin with DNA in vitro and in cancer patients. Br J Cancer
63:195-200 (1991).

46. Yang XY, DeLeo V, Santella,RM. Immunological detection
and visualization of 8-methoxypsoralen-DNA photoadducts.
Cancer Res 47:2451-2455 (1987).

47. Yang XY, Gas parro FP, DeLeo VA, Santella RM.
8-Methoxypsora ten-DNA adducts in patients treated with
8-methoxypsoralen and ultraviolet A light. J Invest Dermatol
92:59-63 (1989).

48. Roza L, De Gruijl FR, Bergen Henegouwen JB, Guikers K,
Van Weelden H, Van Der Schans GP, Baan RA. Detection of
photorepair of UV-induced thymine dimers in human epider-
mis by immunofluorescence microscopy. J Invest Dermatol
96:903-907 (1991).

49. Weston A. Physical methods for the detection of carcinogen-
DNA adducts in humans. Mutat Res 288:19-29 (1993).

50. Kang HI, Konishi C, Eberle G, Rajewsky MF, KurokiT, Huh
NH. Highly sensitive, specific detection of 06-methylguanine,
04-methylthymine, and 04-ethylthymine by the combination
of high-performance liquid chromatography prefractionation,
32P-postlabeling, and immunoprecipitation. Cancer Res
52:5307-5312 (1992).

51. Kato S. Petruzzelli S, Bowman ED, Turteltaub KW, Blomeke
B, Weston A, Shields PG. 7-Alkyldeoxyguanosine adduct
detection by two-step HPLC and the 32P-postlabeling assay.
Carcinogenesis 14:545-550 (1993).

52. Cuzick J, Routledge MN, Jenkins D, Garner RC. DNA
adducts in different tissues of smokers and nonsmokers. Int J
Cancer 45:673-678 (1990).

53. Geneste 0, Camus AM, Castegnaro M, Petruzzelli S,
Macchiarini P, Angeletti CA, Giuntini C, Bartsch H.
Comparison of pulmonary DNA adduct levels, measured by
32P-postlabelling and aryl hydrocarbon hydroxylase activity in
lung parenchyma of smokers and ex-smokers. Carcinogenesis
12:1301-1305 (1991).

54. Hemminki K, Perera FP, Phillips DH, Randerath K, Reddy,
MV, Santella RM. Aromatic deoxyribonucleic acid adducts in
white blood cells of foundry and coke oven workers. Scand J
Work Environ Health 14(Suppl 1):55-56 (1988).

55. Hemminki K, Perera FP, Phillips DH, Randerath K, Reddy
MV, Santella RM. Aromatic DNA adducts in white blood cells
of foundry workers. IARC Sci Publ 89:190-195 (1988).

56. Perera FP, Hemminki K, Gryzbowska E, Motykiewicz G,
Michalska J, Santella RM, Young TL, Dickey C, Brandt-Rauf,
DeVivo P, Blaner I, Tsai WY, Chorazy M. Molecular and
genetic damage in humans from environmental pollution in
Poland. Nature 360:256-258 (1992).

57. Shields PG, Povey AC, Wilson VL, Weston A, Harris CC.
Combined high-performance liquid chromatography/32P-post-
labeling assay of N7-methyldeoxyguanosine. Cancer Res
50:6580-6584 (1990).

58. Shields PG, Harris CC, Petruzzelli S, Bowman ED, Weston A.
Standardization of the 32P-postlabeling assay for polycyclic aro-
matic hydrocarbon DNA adducts. Mutagenesis 8:121-126
(1993).

59. Gorelick NJ. Application of HPLC in the 32P-postlabeling
assay. Mutat Res 288:5-18 (1993).

60. Moller L, Zeisig M, Vodicka P. Optimization of an HPLC
method for analyses of 32P-postlabeled DNA adducts.
Carcinogenesis 14:1343-1348 (1993).

61. Weston A, Bowman ED. Fluorescence detection of benzo[a]-
pyrene-DNA adducts in human lung. Carcinogenesis
12:1445-1449 (1991).

62. Weston A, Bowman ED. Shields PG, Trivers GE, Poirier MC,
Santella RM, Manchester DK. Detection of polycyclic aromatic
hydrocarbon-DNA adducts in human lung. Environ Health
Perspect 99:257-259 (1993).

63. Harris CC, LaVeck G, Groopman J, WilsonVL, Mann D.
Measurement of aflatoxin B1, its metabolites, and DNA
adducts by synchronous fluorescence spectrophotometry.
Cancer Res 46:3249-3253 (1986).

64. Vahakangas K, Haugen A, Harris CC. An applied synchronous
fluorescence spectrophotometric assay to study benzo[a]pyrene-
diolepoxide-DNA adducts. Carcinogenesis 6:1109-1115 (1985).

65. Harris CC, Vahakangas K, Newman MJ, Trivers GE,
Shamsuddin A, Sinopoli N, Mann DL, Wright WE. Detection
of benzo[a]pyrene diol epoxide-DNA adducts in peripheral
blood lymphocytes and antibodies to the adducts in serum from
coke oven workers. Proc Natl Acad Sci USA 82:6672-6676
(1985).

66. Weston A, Rowe ML, Manchester DK, Farmer PB, Mann DL,
Harris CC. Fluorescence and mass spectral evidence for the for-
mation of benzo[a]pyrene anti-diol-epoxide-DNA and -hemo-
globin adducts in humans. Carcinogenesis 10:251-257 (1989).

67. Corley J, HurtubisemRJ, Bowman ED, Weston A. Solid
matrix, room temperature phosphorescence identification and
quantitation of the tetrahydrotetrols derived from the acid
hydrolysis of benzo[a]pyrene-DNA adducts from human lung.
Carcinogenesis 16:423-426 (1995).

68. Corley JS, Hurtubise RJ. Luminescence properties and analyti-
cal figures of merit of the tetrols of benzo[a]pyrene-DNA
adducts adsorbed on a-, P- and t- cyclodextrin/NaCl mixtures
[Abstract]. Anal Lett 25:1559-1572 (1993).

69. Groopman JD, Sabbioni G, Wild CP. Molecular dosimetry of
human aflatoxin exposures. In: Molecular Dosimetry and
Human Cancer (Groopman JD, ed). Boca Raton, FL:CRC
Press. 1991 ;303-324.

70. Herron DC, Shank RC. Methylated purines in human liver
DNA after probable dimethylnitrosamine poisoning. Cancer
Res 40:3116-3117 (1993).

71. Watson WP, Smith RJ, Huckle KR, Wright AS. Comparison
of hydrocarbon DNA adducts formed in mouse and human
skin following treatment with benzo[a]pyrene. Arch Toxicol
(Suppl 11):93-98 (1987).

72. Farmer PB, Shukern EG, Bird I. DNA and protein adducts as
indicators of in vivo methylation by nitrosatable drugs.
Carcinogenesis 7:9-52 (1986).

890 Environmental Health Perspectives - Vol 104, Supplement 5 a October 1996



HUMAN DNA ADDUCT MEASUREMENTS

73. Farmer PB, Bailey E, Green JA, Leung CS, Manson MM.
Biomonitoring of human exposure to alkylating agents by mea-
surement of adducts to haemoglobin or DNA. IARC Sci Publ
109:71-77 (1991).

74. Bryant MS, Skipper PL, Tannenbaum SR, Maclure, M.
Hemoglobin adducts of 4-aminobiphenyl in smokers and non-
smokers. Cancer Res 47:602-608 (1987).

75. Bryant MS, Vineis P, Skipper PL, Tannenbaum SR.
Hemoglobin adducts of aromatic amines: associations with
smoking status and type of tobacco. Proc Natl Acad Sci USA
85:9788-9791 (1988).

76. Hecht SS, Haley NJ, Hoffman D. Monitoring exposure to
tobacco products by measurement of nicotine metabolites and
derived carcinogens. In: Molecular Dosimetry and Human
Cancer (Groopman JD, ed). Boca Raton, FL:CRC Press,
1991;325-361.

77. Shuker DE. Nucleic acid-carcinogen adducts in human
dosimetry. Arch Toxicol Suppl 13:55-65 (1989).

78. Farmer PB. Analytical approaches for the determination of pro-
tein-carcinogen adducts using mass spectrometry. In:
Molecular Dosimetry and Human Cancer UD Groopman, ed).
Boca Raton, FL:CRC Press, 1991; 189-210.

79. Stillwell WG, Glogowski J, Xu HX, Wishnok JS, Zavala D,
Montes G, Correa P, Tannenbaum SR. Urinary excretion of
nitrate, N-nitrosoproline, 3-methyladenine, and 7-methylgua-
nine in a Colombian population at high risk for stomach
cancer. Cancer Res 51:190-194 (1991).

80. Prevost V, Shuker DE, Friesen MD, Eberle G, Rajewsky MF,
Bartsch H. Immunoaffinity purification and gas chromatogra-
phy-mass spectrometric quantification of 3-alkyladenines in
urine: metabolism studies and basal excretion levels in man.
Carcinogenesis 14:199-204 (1993).

81. Foiles PG, Akerkar SA, Carmella SG, Kagan M, Stoner GD,
Resau JH, Hecht SS. Mass spectrometric analysis of tobacco-
specific nitrosamine-DNA adducts in smokers and nonsmok-
ers. Chem Res Toxicol 4:364-368 (1991).

82. Manchester, DK, Weston A, Choi JS, Trivers GE, Fennessey
PV, Quintana E, Farmer PB, Mann DL, Harris CC. Detection
of benzo[a]pyrene diol epoxide-DNA adducts in human pla-
centa. Proc Natl Acad Sci USA 85:9243-9247 (1988).

83. Lin D, Lay JO, Bryant MS, Malaveille C, Friesen M, Bartsch
H, Lang NP, Kadlubar FF. Analysis of 4-aminobiphenyl-DNA
in human urinary bladder and lung by alkaline hydrolysis and
negative ion gas chromatography-mass spectrometry. Environ
Health Perspect 102:11-16 (1993).

84. Friesen MD, Kaderlik K, Lin D, Garren L, Bartsch H,
Lang NP, Kadlubar FF. Analysis of DNA adducts of
2-amino-i -methyl-6-phenylimidazo [4,5- b]pyridine in rat
and human tissues by alkaline hydrolysis and gas chromatog-
raphy-electron capture mass spectrometry: validation by com-
parison with 32P-postlabeling. Chem Res Toxicol 7:733-739
(1994).

85. Fichtinger-Schepman AMJ, van der Velde-Visser SD, van Dijk-
Knijnenburg HCM, van Oosterom AT, Baan RA, Berends F.
Kinetics of the formation and removal of cisplatin-DNA
adducts in blood cells and tumor tissue of cancer patients
receiving chemotherapy: comparison with in vitro adduct for-
mation. Cancer Res 50:7887-7894 (1990).

86. Poirier MC, Reed E, Litterst CL, Katz D, Gupta-Burt S.
Persistence of platinum-ammine-DNA adducts in gonads and
kidneys of rats and multiple tissues from cancer patients.
Cancer Res 52:149-153 (1992).

87. Plooy AC, Fichtinger-Schepman AM, Schutte HH, van Dijk
M, Lohman PH. The quantitative detection of various Pt-
DNA-adducts in Chinese hamster ovary cells treated with cis-
platin: application of immunochemical techniques.
Carcinogenesis 6:561-566 (1985).

88. Reed E, Gupta-Burt S, Litterst CL, Poirier MC.
Characterization of the DNA damage recognized by an anti-
serum elicited against cis-diamminedichloroplatinum (II)-
modified DNA. Carcinogenesis 11:2117-2121 (1990).

89. Dahman EAMF. Introduction. In: Electroanalysis: Theory and

Applications in Aqueous and Non-aqueous Media and in
Automated Chemical Control. Amsterdam:Elsevier, 1986;3-9.

90. Stulik K, Pacakova V. Selected applications of electrochemical
detectors in flowing liquids. In: Electroanalytical Measurements
in Flowing Liquids (Chalmers RA, Masson M, Miller JN, eds).
Chichester, U.K.:Ellis Horwood, 1987;1 1-26.

91. Stulik K, Pacakova V. Selected applications of electrochemical
detectors in flowing liquids. In: Electroanalytical Measurements
in Flowing Liquids (Chalmers RA, Masson M, eds).
Chichester, U.K.:Ellis Horwood, 1987;204-279.

92. Kasai H, Crain PF, Kuchino Y, Nishimura S, Ootsuyama A,
Tanooka H. Formation of 8-hydroxyguanine moiety in cellular
DNA by agents producing oxygen radicals and evidence for its
repair. Carcinogenesis 7:1849-1851 (1986).

93. Shigenaga MK, Gimeno CJ, Ames BN. Urinary 8-hydroxy-2'-
deoxyguanosine as a biological marker of in vivo oxidative
DNA damage. Proc Natl Acad Sci USA 86:9697-9701 (1989).

94. Kiyosawa H, Suko M, Okudaira H, Murata K, Miyamoto T,
Chung MH, Kasai H, Nishimura S. Cigarette smoking induces
formation of 8-hydroxydeoxyguanosine, one of the oxidative
DNA damages in human peripheral leukocytes. Free Radic Res
Commun 11:23-27 (1990).

95. Wilson VL, Basu AK, Essigmann JM, Smith RA, Harris CC.
06-Alkyldeoxyguanosine detection by 32P-postlabeling and
nucleotide chromatographic analysis. Cancer Res 48:2156-2161
(1988).

96. Santella RM, Weston A, Perera FP, Trivers GT, Harris CC,
Young TL, Nguyen D, Lee BM, Poirier MC. Interlaboratory
comparison or antisera and immunoassays for benzo[a]pyrene-
diol-epoxide-I-modified DNA. Carcinogenesis 9:1265-1269
(1988).

97. Weston A, Beland FA, Manchester DK, Parker NB, Harris CC,
Poirier MC. Development of preparative immunoaffinity chro-
matography for the isolation of aromatic amine-DNA adducts
from humans. Proc Am Assoc Cancer Res 30:134 (1989).

98. Weston A, Manchester DK, Poirier MC, Choi JS, Trivers GE,
Mann DL, Harris CC. Derivative fluorescence spectral analysis
of polycyclic aromatic hydrocarbon-DNA adducts in human
placenta. Chem Res Toxicol 2:104-108 (1989).

99. Manchester DK, Wilson VL, Hsu IC, Choi JS, Parker NB,
Mann DL, Weston A, Harris CC. Synchronous fluorescence
spectroscopic, immunoaffinity chromatographic and 32P-post-
labeling analysis of human placental DNA known to contain
benzo[a]pyrene diol epoxide adducts. Carcinogenesis
11:553-559 (1990).

100. Shields PG, Bowman ED, Harrington AM, Doan VT, Weston
A. Polycyclic aromatic hydrocarbon-DNA adducts in human

- lung and cancer susceptibility genes. Cancer Res 53:3486-3492
(1993).

101. Bianchini F, Montesano R, Shuker DEG, Cuzick J, Wild CP.
Quantification of 7-methyldeoxyguanosine using immuno-
affinity purification and HPLC with electrochemical detection.
Carcinogenesis 14:1677-1682 (1993).

102. Groopman JD, Hasler JA, Trudel LJ, Pikul A, Donahue PR,
Wogan GN. Molecular dosimetry in rat urine of aflatoxin-N7-
guanine and other aflatoxin metabolites by multiple
monoclonal antibody affinity chromatography and immuno-
affinity-high performance liquid chromatography. Cancer Res
52:267-274 (1992).

103. Groopman JD, Zhu JQ, Donahue PR, Pikul A, Zhang LS,
Chen JS, Wogan GN. Molecular dosimetry of urinary
aflatoxin-DNA adducts in people living in Guangxi
Autonomous Region, People's Republic of China. Cancer Res
52:45-52 (1992).

104. Cooper DP, Griffin KA, Povey AC. Immunoaffinity
purification combined with 32P-postlabeling for the detection
of 06-methylguanine in DNA from human tissues.
Carcinogenesis 13:469-475 (1992).

105. Hemminki K, Randerath K, Reddy MV, Putman KL, Santella
RM, Perera F, Young TL, Phillips DH, Hewer A, Savela K.
Postlabeling and immunoassay analysis of polycyclic aromatic
hydrocarbons-adducts of deoxyribonucleic acid in white blood

Environmental Health Perspectives * Vol 104, Supplement 5 a October 1996 891



POIRIER AND WESTON

cells of foundry workers. Scand J Work Environ Health
16:158-162 (1990).

106. Poirier MC, Schoket B, Weston A, Rothman N, Scott B,
Deeter DP. Blood cell polycyclic aromatic hydrocarbon (PAH)-
DNA adducts and PAH urinary metabolites in soldiers exposed
to Kuwaiti oil well fires. Proc Am Assoc Cancer Res 35:569:95
(1994).

107. Grzybowska E, Hemminki K, Szeliga J, Chorazy M. Seasonal
variation of aromatic DNA adducts in human lymphocytes and
granulocytes. Carcinogenesis 14:2523-2526 (1993).

108. Mumford JL, Lee X, Lewtas J, Young TL, Santella RM. DNA
adducts as biomarkers for assessing exposure to polycyclic aro-
matic hydrocarbons in tissues from Xuan Wei women with
high exposure to coal combustion emissions and high lung
cancer mortality. Environ Health Perspect 99:83-87 (1993).

109. van Schooten FJ, van Leeuwen FE, Hillebrand MJ, de Rijke
ME, Hart AA, van Veen HG, Oosterink S, Kriek E.
Determination of benzo[a]pyrene diol epoxide-DNA adducts
in white blood cell DNA from coke-oven workers: the impact
of smoking. J Natl Cancer Inst 82: 927-933 (1990).

110. Hemminki K, Grzybowska E, Chorazy M, Twardowska-
Saucha K, Sroczynski JW, Putman KL, Randerath K, Phillips
DH, Hewer A, Santella RM, Young TLl, Perera FP. DNA
adducts in human environmentally exposed to aromatic com-
pounds in an industrial area of Poland. Carcinogenesis
11:1229-1231 (1990).

111. Poirier MC, Santella R, Weinstein IB, Grunberger D, Yuspa S.
Quantitation of benzo[a]pyrene-deoxyguanosine adducts by
radioimmunoassay. Cancer Res 40:412-416 (1980).

112. Schoket B, Doty WA, Vincze I, Strickland PT, Assennato G,
Poirier MC. Increased sensitivity for determination of polycyclic
aromatic hydrocarbon-DNA adducts in human DNA samples
by dissociation-enhanced lanthanide fluoroimmunoassay
(DELFIA). Cancer Epidemiol Biomark Prev 2:349-353 (1993).

113. Rothman N, Correa-Villasenor A, Ford DP, Poirier MC, Haas
R, Hansen JA, O'Toole T, Strickland PT. Contribution of
occupation and diet to white blood cell polycyclic aromatic
hydrocarbon-DNA adducts in wildland firefighters. Cancer
Epidemiol Biomark Prev 2:341-348 (1993).

114. Groopman JD, Trudel LJ, Donahue PR, Marshak-Rothstein A,
Wogan GN. High-affinity monoclonal antibodies for aflatoxins
and their application to solid-phase immunoassays. Proc Natl
Acad Sci USA 81:7728-7731 (1984).

115. Poirier MC, Reed E, Zwelling LA, Ozols RF, Litterst CL,
Yuspa SH. The use of polyclonal antibodies to quantitate cis-
diamminedichloroplatium (II)-DNA adducts in cancer patients
and animal models. Environ Health Perspect 62:89-94 (1985).

116. Reed E, Yuspa SH, Zwelling LA, Ozols RF, Poirier MC.
Quantitation of cisplatin-DNA intrastrand adducts in testicular
and ovarian cancer patients receiving cisplatin chemotherapy.
J Clin Invest 77:545-550 (1986).

117. Kyrtopoulos SA, Souliotis VL, Valavanis C, Boussiotis VA,
Pangalis GA. Accumulation of 06-methylguanine in human
DNA after therapeutic exposure to methylating agents and its
relationship with biological effects. Environ Health Perspect
99:143-147 (1993).

118. Poirier MC. Human DNA adduct determinations:
Applications in clinical treatment. In: Therapeutic Aspects and
Analytical Methods in Cancer Research (Constantin E, ed).
Strasbourg, France:Amudes Publications, 1994;19-35.

119. Alexandrov K, Rojas M, Geneste 0, Castegnaro M, Camus
AM, PetruzzelliS, Giuntini C, Bartsch H. An improved fluoro-
metric assay for dosimetry of benzo[a]pyrene diol-epoxide-
DNA adducts in smokers' lung: comparisons with total bulky
adducts and aryl hydrocarbon hydroxylase activity. Cancer Res
52:6248-6253 (1992).

120. Santella RM, Perera, FP, Young TL, Zhang YJ, Chiamprasert
S, Tang D, Wang LW, Beachman A, Lin JH, DeLeo VA.
Polycyclic aromatic hydrocarbon-DNA and protein adducts in
coal tar treated patients and controls and their relationship to
glutathione S-transferase genotype. Mutat Res 334:117-124
(1995).

121. Jongeneelen FJ. Biological monitoring of environmental expo-
sure to polycyclic aromatic hydrocarbons; 1-hydroxypyrene in
urine of people. Toxicol Lett 72:205-211 (1994).

122. VanRooij JG, Bodelier-Bade MM, Hopmans PM, Jongeneelen
FJ. Reduction of urinary 1-hydroxypyrene excretion in coke-
oven workers exposed to polycyclic aromatic hydrocarbons due
to improved hygienic skin protective measures. Ann Occup
Hyg 38:247-256 (1994).

123. Weston A, Bowman ED, Carr P, Rothman N, Strickland PT.
Detection of metabolites of polycyclic aromatic hydrocarbons
in human urine. Carcinogenesis 14:1053-1055 (1993).

124. Strickland PT, Kang D, Bowman ED, Fitzwilliam A, Downing
TE, Rothman N, Groopman JD, Weston A. Identification of 1-
hydroxypyrene glucuronide as a major pyrene metabolite in
human urine by synchronous fluorescence spectroscopy and gas
chromatography-mass spectrometry. Carcinogenesis 15:483-487
(1994).

125. Day BW, Naylor S, Gan LS, Sahali Y, Nguyen TT, Skipper
PL, Wishnok JS, Tannenbaum SR. Molecular dosimetry of
polycyclic aromatic hydrocarbon epoxides and diol epoxides via
hemoglobin adducts. Cancer Res 50:4611-4618 (1990).

126. Melikian AA, Sun P, Amin S, Hecht SS. Gas chromatography-
mass spectrometry (GC-MS) characterization of polycyclic aro-
matic hydrocarbon (PAH)-derived globin adducts in smokers.
Proc Am Assoc Cancer Res 36:667:112 (1995).

127. Ferreira MF Jr, Tas S, dell'Omo M, Goormans G. Buchet JP
Lauwerys R. Determinants of benzo[a]pyrenediol epoxide
adducts to haemoglobin in workers exposed to polycyclic aro-
matic hydrocarbons. Occup Environ Med 51:451-455 (1994).

128. Perera FP, Tang DL, O'Neill JP, Bigbee WL, Albertini RJ,
Santella R, Ottman R, Tsai WY, Dickey C, Mooney LA.
HPRT and glycophorin A mutations in foundry workers: rela-
tionship to PAH exposure and to PAH-DNA adducts.
Carcinogenesis 14:969-973 (1993).

129. Perera FP, Dickey C, Santella R, O'Neill JP, Albertini RJ,
Ottman R, Tsai WY, Mooney LA, Savela K, Hemminki K.
Carcinogen-DNA adducts and gene mutation in foundry work-
ers with low-level exposure to polycyclic aromatic hydrocar-
bons. Carcinogenesis 15:2905-2910 (1994).

130. Wilson VL, Weston A, Manchester DK, Trivers GE, Roberts
DW, Kadlubar FF, Wild CP, Montesano R, Willey JC, Mann,
DL, Harris CC. Alkyl and aryl carcinogen adducts detected in
human peripheral lung. Carcinogenesis 10:2149-2153 (1989).

131. Fichtinger-Schepman AM, van Oosterom AT, Lohman PH,
Berends F. cis-Diamminedichloroplatinum(II)-induced DNA
adducts in peripheral leukocytes from seven cancer patients:
quantitative immunochemical detection of the adduct induc-
tion and removal after a single dose of cis-diamminedichloro-
platinum(II). Cancer Res 47:3000-3004 (1987).

132. Rothman N, Poirier MC, Baser ME, Hansen JA, Gentile C,
Bowman ED, Strickland PT. Formation of polycyclic aromatic
hydrocarbon-DNA adducts in peripheral white blood cells dur-
ing consumption of charcoai-broiled beef. Carcinogenesis
11:1241-1243 (1990).

133. Schoket B, Horkay I, Kosa A, Paldeak L, Hewer A, Grover PL,
Phillips DH. Formation of DNA adducts in the skin of psoria-
sis patients, in human skin in organ culture, and in mouse skin
and lung following topical application of coal-tar and juniper
tar. J Invest Dermatol 94:241-246 (1990).

134. Kato S, Yamashita K, Kim T, Tajiri T, Onda M, Sato S. Modi-
fication of DNA by mitomycin C in cancer patients detected
by 32P-postlabeling analysis. Mutat Res 202:85-91 (1988).

135. Kaderlik KR, Talaska G, DeBord DG, Osorio AM, Kadlubar
FF. 4,4'-Methylene-bis(2-chloroaniline)-DNA adduct analysis
in human exfoliated urothelial cells by 32P-postlabeling. Cancer
Epidemiol Biomark Prev 2:63-69 (1993).

136. Pfohl-Leszkowicz A, Grosse Y, Castegnaro M, Nicolov IG,
Chernozemsky IN, Bartsch H, Betbeder AM, Creppy EE,
Dirheimer G. Ochratoxin A-related DNA adducts in urinary
tract tumours of Bulgarian subjects. In: Postlabeling Methods
for Detection of DNA Adduct (Phillips DH, Castegnaro M,
Bartsch H, eds). 1993;141-148.

892 Environmental Health Perspectives * Vol 104, Supplement 5 * October 1996



HUMAN DNA ADDUCT MEASUREMENTS

137. Lewtas J, Mumford J, Everson RB, Hulka B, Wilcosky T,
Kozumbo W, Thompson C, George M, Dobias L, Sram R.
Comparison of DNA adducts from exposure to complex mix-
tures in various human tissues and experimental systems.
Environ Health Perspect 99:89-97 (1993).

138. Schoket B, Phillips DH, Poirier MC, Vincze I. DNA adducts
in peripheral blood lymphocytes from aluminum production
plant workers determined by 32P-postlabeling and by enzyme-
linked immunosorbent assay (ELISA). Environ Health Perspect
99:307-309 (1993).

139. Jahnke GD, Thompson CL, Walker MP, Gallagher JE, Lucier
GW, DiAugustine RP. Multiple DNA adducts in lymphocytes
of smokers and nonsmokers determined by 32P-postlabeling
analysis. Carcinogenesis 11:205-211 (1990).

140. Bodell WJ, Pongracz K, Kaur S, Burlingame AL, Liu SF,
Rappaport SM. Investigation of styrene oxide-DNA adducts
and their detection in workers exposed to styrene. Prog Clin
Biol Res 340C:271-282 (1990).

141. Vodicka P, Vodickova L, Trejbalova K, Sram RJ, Hemminki
K. Persistence of 06-guanine DNA adducts in styrene-exposed
lamination workers determined by 32P-postlabeling.
Carcinogenesis 15:1949-1953 (1994).

142. Horvath E, Pongracz K, Rappaport S, Bodell WJ. 32P-postla-
beling detection of DNA adducts in mononuclear cells of
workers occupationally exposed to styrene. Carcinogenesis
15:1309-1315 (1994).

143. Savela K, Hemminki K. DNA adducts in lymphocytes and
granulocytes of smokers and nonsmokers detected by the
2P-postlabeling assay. Carcinogenesis 12:503-508 (1991).

144. Holz 0, Krause T, Scherer G, Schmidt-Preuss U, Rudiger
HW. 32P-postlabeling analysis of DNA adducts in monocytes
of smokers and passive smokers. Int Arch Occup Environ
Health 62:299-303 (1990).

145. Randerath K, Miller RH, Mittal D, Randerath E. Monitoring
human exposure to carcinogens by ultrasensitive postlabeling
assays: application to unidentified genotoxicants. IARC Sci
Publ 89:361-367 (1988).

146. Phillips DH, Hewer A, Grover PL, Jass JR. An aromatic DNA
adduct in colonic mucosa from patients with colorectal cancer.
IARC Sci Publ 89:368-371 (1988).

147. Phillips DH, Hewer A, Grover PL. Aromatic DNA adducts in

human bone marrow and peripheral blood leukocytes.
Carcinogenesis 7:2071-2075 (1986).

148. Jones NJ, McGregor AD, Waters R. Detection of DNA
adducts in human oral tissue: correlation of adduct levels with
tobacco smoking and differential enhancement of adducts
using the butanol extraction and nuclease P1 versions of
32P-postlabeling. Cancer Res 53:1522-1528 (1993).

149. Spigelman AD, Scates DK, Venitt S, Phillips RK. DNA
adducts, detected by 32P-postlabeling, in the foregut of patients
with familial adenomatous polyposis and in unaffected con-
trols. Carcinogenesis 12:1727-1732 (1991).

150. Groopman JD, Hall AJ, Whittle H, Hudson GJ, Wogan GN,
Ruggero M, Wild CP. Molecular dosimetry of aflatoxin-N7-
guanine in human urine obtained in the Gambia, West Africa.
Cancer Epidemiol Biomark Prev 1:221-227 (1992).

151. Weston A, Shields PG, Bowman ED. Isolation of polycyclic
aromatic hydrocarbon-DNA adducts from human lung. In:
Polycyclic Aromatic Compounds (Garrigues P, Lamotte M,
eds). Bordeaux, France:Gordon and Breach Science Publishers,
1991;937.

152. Chaudhary AK, Nokubo M, Reddy GR, Yeola SN, Morrow
JD, Blair IA, Marnett LJ. Detection of endogenous malondi-
aldehyde-deoxyguanosine adducts in human liver. Science
265:1580-1582 (1994).

153. Reed E, Parker RJ, Gill I, Bicher A, Dabholkar M, Vionnet JA,
Bostick-Bruton F, Tarone R, Muggia FM. Platinum-DNA
adduct in leukocyte DNA of a cohort of 49 patients with 24 dif-
ferent types of malignancies. Cancer Res 53:3694-3699 (1993).

154. Anonymous. Tobacco smoking. In: IARC Monographs on the
Evaluation of the Carcinogenic Risk of Chemicals to Humans.
Lyon:International Agency for Research on Cancer,
1986;83-126.

155. Ichiba M, Hagmar L, Rannug A, Hogstedt B, Alexandrie A-K,
Carstensen U, Hemminki K. Aromatic DNA adducts,
micronuclei and genetic polymorphism for CYPlAI and GST1
in chimney sweeps. Carcinogenesis 15:1347-1352 (1994).

156. Rothman N, Shields P, Poirier MC, Harrington A, Ford DP,
Strickland PT. The impact of glutathione S-transferase MI and
cytochrome P450 lAI genotypes on white blood cell polycyclic
aromatic hydrocarbon-DNA adduct levels in humans. Mol
Carcinogenesis 14:63-70 (1995).

Environmental Health Perspectives * Vol 104, Supplement 5 * October 1996 893


