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Introduction
We have been using a rule induction pro-
gram to analyze the relationship between
rodent carcinogencinity and many features
of chemicals such as responses in short-
term assays and physical chemical proper-
ties. Recently we investigated the predictive
strength of organ-specific toxicity for
rodent carcinogenicity and noncarcino-
genicity (1). The organ-specific toxicity
was modeled by the presence or absence of
124 lesions observed at the end of sub-
chronic studies by oral administration.
Each lesion relates an organ with a mor-
phological effect, and the 124 lesions were
regrouped into a total of 32 organs and 43
morphological effects. We used the rule
learning (RL) induction program to learn
rules predicting rodent carcinogenicity and
noncarcinogenicity from the organ-specific
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toxicities of 88 chemicals consisting of 60
carcinogens and 28 noncarcinogens. Four
sets of rules were learned, each ofwhich was
obtained using different combinations of
assumptions and features in rule formation.
We applied two of the four sets of rules to a
group of 30 chemicals undergoing rodent
cancer bioassays, which also forms the
subject of the Second NIEHS Predictive-
Toxicology Evaluation (PTE-2) experi-
ment. In the present article, we report
predictions of rodent carcinogenicity and
noncarcinogenicity of these 30 chemicals.

Organ-specific Toxicity
of 30 Chemicals
Table 1 shows the organ-specific toxicity
along with the response in the Salmonella
mutagenicity assay (SAL) of each of the 30
chemicals. "+", "-", and "?" refer to posi-
tive, negative, and unknown responses in
SAL, respectively. For each chemical,
observed lesions (a pair of an organ and a
morphological effect) are listed. Note that
not all observed lesions were applicable
because they were not among the 124
lesions on which rules were based.

Methodology: Rule Induction
The RI Program

RL (2) is a knowledge-based inductive rule
learning program that induces one or more
IF-condition-THEN-class rules from
specific examples of classes. For example,

to make predictions of rodent carcinogenic-
ity, the RL program is given a set of car-
cinogens and noncarcinogens and induces
one or more rules that classify them. RL's
heuristic search can examine a much larger
number of identification (or classification)
criteria than can be examined by manual
analysis. Also, prior domain knowledge
such as facts, heuristics, or assumptions
used by scientists can be included during
the search to learn rules that are plausible
biologically as well as statistically.

The main strength of RL is its flexibil-
ity. Given a learning problem, many prob-
lem models and assumptions can be tested.
This flexibility is partly achieved through
the use of a domain model, called the par-
tial domain model, which can guide RL's
rule search separately from the guidance
implicit in the statistics of training examples.
The domain model contains definitions of
attributes to be used in representing exam-
ples and rules, a list of classes, assumptions,
and constraints on rules being sought, and
domain knowledge relevant to a particular
problem. The values of attributes may be
symbolic or numeric, or they may be
binary. Constraints and domain knowledge
usually take the form of preference criteria
characterizing desirable properties of rules
to be learned. Thus, induction in RL is
guided not only by syntactic similarity and
dissimilarity of features of examples but
also by constraints and prior domain
knowledge in the domain model.

Given a learning problem, i.e., the
names of one or more target classes, a set of
their examples, and a partial domain model
of the problem, RL searches for rules by
examining a large but limited number of
combinations of features. An example is
represented as a vector of attribute-value
pairs, each of which describes a feature of
the example. For example, the representa-
tion of methyleugenol is shown below,
which means that methyleugenol is associ-
ated with degeneration of testes; necrosis,
hyperplasia, and inflammation of liver; but
did not cause inflammation of kidney, ....
and its rodent carcinogenicity is unknown.

((Name methyleugenol) (testes
degeneration +) (liver necrosis +) (liver
hyperplasia +) (liver inflammation +)
(kidney inflammation -) ... (rodent ?))

The RL induction program searches for
rules by generating and evaluating many
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Table 1. Organ-specific toxicity of the 30 chemicals in the Second Predictive-Toxicology Evaluation experiment and their responses in the Salmonella mutagenicity assay.

Chemical SALa Applicable lesions Inapplicable lesionsb

Anthraquinone
Chloroprene

1 -Chloro-2-propanol
Cinnamaldehyde
Citral
Cobalt sulfate heptahydrate

Codeine
D&C Yellow No.1 1

Diethanolamine

1 ,2-Dihydro-2,2,4-
trimethylquinoline
Emodin
Ethylbenzene
Ethylene glycol monobutyl ether

Furfuryl alcohol

Gallium arsenide

Isobutene
Isobutyraldehyde

Methyleugenol

Molybdenum trioxide
Nitromethane

Oxymethalone

Phenolphthalein

Primaclone

Pyridine

Scopolamine hydrobromide
trihydrate
Sodium nitrite

+

+

+

No data available
Degeneration, metaplasia, and inflammation in
nasal cavity; necrosis and hemosiderin pigment in
liver; hyperplasia in forestomach

Cytoplasmic vacuolization in liver; regeneration in kidney
No data available
Hyperplasia and metaplasia in nasal cavity
Inflammation and metaplasia in larynx; inflammation in
lung; metaplasia in trachea; inflammation,degeneration,
and metaplasia in nasal cavity; degeneration in testes
No lesions
Pigmentation and degeneration in liver; pigmentation
in kidney

Ulceration, hyperkeratoses, and inflammation on skin;
nephropathy, necrosis, and mineralization in kidney;
degeneration in brain; necrosis in liver; degeneration in heart

Inflammation and hyperkeratoses on skin; cytoplasmic
vacuolization in liver

Nephropathy, hyperplasia, and pigmentation in kidney
No lesions
Regeneration, hemosiderin pigment, necrosis, and
degeneration in liver; hematopoiesis and hemosiderin
pigment in spleen; degeneration and hemosiderin pigment
in kidney; hyperplasia in bone marrow; necrosis, ulceration,
inflammation, and hyperplasia in forestomach; degeneration
in testes

Metaplasia, hyperplasia, degeneration, exudate, and
inflammation in nasal cavity

Hemosiderin pigment in spleen; inflammation and hyperplasia
in lung; hemosiderin pigment and regeneration in liver;
metaplasia in larynx; hyperplasia in bone marrow; hyperplasia
in lymph node

No applicable lesions
Necrosis, inflammation, degeneration, and metaplasia in nasal
cavity; inflammation and metaplasia in larynx; inflammation
and metaplasia in trachea; necrosis in spleen; degeneration
in testes

Inflammation, degeneration, and necrosis in stomach glandular;
pigmentation, necrosis, hyperplasia, and inflammation in liver;
atrophy in uterus; degeneration in testes
No lesions
Degeneration in nasal cavity; degeneration in sciatic nerve;
degeneration in spinal cord; hematopoiesis in spleen
Degeneration in heart; regeneration and mineralization in kidney;
cytoplasmic vacuolization in adrenal; atrophy in ovary

Cellular depletion in bone marrow

Hypertrophy in liver; nephropathy and regeneration in kidney;
hematopoiesis in spleen

Degeneration, hypertrophy, inflammation, and pigmentation in
liver; nephropathy in kidney

No applicable lesions

Hyperplasia in forestomach; hematopoiesis in spleen;
degeneration in testes

Hyperplasia in skin
Hyperplasia and inflammation in nasal cavity; pigmentation in
spleen; mineralization in kidney; hyperplasia in skin;
hyperplasia in forestomach

Inflammation in forestomach; atrophy in uterus

+

+

Sodium xylenesulfonate
t-Butylhydroquinone

Tetrahydrofuran

Vanadium pentoxide Hyperplasia and inflammation in lung; inflammation, hyperplasia,
and metaplasia in nasal cavity

Degeneration and fatty change in pancreas

Proliferation in larynx and lung; hyperplasia
in lymph node

Cytologic alteration in liver, salivary depletion
in spleen, thymus, and lymph node; conges-
tion in adrenal; and cytoplasmic alteration

Acanthosis in skin; fibrosis in lung

Fibrosis in kidney

Hypertrophy in nasal cavity

Atrophy in testes

Hypertrophy in nasal cavity
Depletion in spleen; osteodystrophy in bone

Cytologic alteration in liver; hypertrophy
in adrenal; cytoplasmic alteration

Hyperplasia in mammary gland; hydrometra
in uterus

Necrosis and pigmentation in bone marrow;
atrophy in testes

Cytoplasmic alteration in adrenal

Degeneration in adrenal

Acanthosis in forestomach; degeneration in
adrenal

Exudate and fibrosis in lung
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8+, -, and ? indicate positive, negative, or unknown response, respectively, in the Salmonella mutagenicity assay. blnapplicable lesions are lesions that were observed among
the 30 chemicals but were not used in learning rules.
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combinations of features. It starts with sin-
gle features and successively specializes rules
by adding new features or specializing val-
ues associated with features. The choice and
order of feature combination are in general
dependent on their concordance with train-
ing data. For example, a combination of
features with higher positive predictive val-
ues may be evaluated prior to other combi-
nations of features. On the other hand, it is
also possible to provide RL with a set of
assumptions that guide it such that specific
types of rules are excluded or included. For
example, in predicting rodent carcinogenic-
ity of nongenotoxic chemicals, rules includ-
ing responses in short-term assays were
preferred (3). Thus, the plausibility of a
rule is determined by its performance (how
accurately it classifies examples) and its con-
cordance with assumptions, constraints,
and domain knowledge.

The result of rule search is a set of IF-
condition-THEN-class rules, where condi-
tion is a conjunction ("AND") of features.
For example, the following rule uses two
features to predict rodent carcinogenicity:

IF (liver +) AND
(kidney +) THEN (rodent C),

which is interpreted as if a chemical causes
any morphological effect on liver and kid-
ney, then it is classified as a carcinogen.
Such IF-THEN rules are very easy to
understand, unlike numerical weights and
nodes in a neural network; and the com-
prehensibility of rules permits the facile
verification of rules by experts. Unless a
learning problem is simple enough to clas-
sify all training examples with a single rule,
RL finds a disjunctive set of rules, each of
which classifies a subset of training exam-
ples. Such rules are then used collectively
to make predictions on new cases.

RL is a descendant of the Meta-DEN-
DRAL system (4), which specialized in
finding rules of mass spectrometry in
chemistry. However, unlike the Meta-
DENDRAL, RL is a general purpose learn-
ing program that can be applied to many
problems in different domains. RL has
been applied successfully in several real-
world problems, including predicting
rodent carcinogenicity with short-term
assays (3), predicting human developmen-
tal toxicity based on the results of animal
toxicity assays (5), triggering design in high
energy physics (6), and analyzing massive
quantities of data on infant mortality (7).
RL is written in C programming language.
An export version of RL is available on

request. However, the export version does
not include new features that are under
further development and some of which
were used in the present study.

Rules
In our previous study, which investigated
the relationship between organ-specific
toxicity and rodent carcinogenicity, we
reported four sets of rules, two of which
were learned using the responses in SAL in
addition to organ-specific toxicity (1). Of
the four sets learned in the previous study,
we used two sets to make predictions for
the 30 chemicals presented in the second
PTE experiment. Both rule sets were
learned using only the organ-specific toxic-
ity and did not include responses in SAL.
Since these two rule sets correspond to the
first and third rule sets reported previously
(1), we will refer to them as RI and R3,
respectively. Both rule sets were learned
from 88 chemicals, of which 60 were car-
cinogens and 28 were noncarcinogens.
None of the 30 chemicals in the second
PTE experiment were included in the
training data. The main differences
between RI and R3 are the assumptions
the RL induction program used in evaluat-
ing and learning rules. For RI, RL gave
greater weight to liver and kidney toxicities

than to other organs, while RL gave equal
weights to all organs for rules in R3. In
other words, when a chemical caused an
effect in liver or kidney, it was taken more
seriously (for carcinogenicity) than an
effect in another organ. The choice of kid-
ney and liver was made because it was
found that they were the two organs most
indicative of carcinogenicity, and the bat-
tery of these two organs was even more
accurate in classifying the 88 chemicals.
The details of assumptions as well as the
analysis have been described (1).

Tables 2 and 3 show rules in RI and
R3, respectively. Both rule sets contain
eight rules, three of which predict rodent
carcinogenicity. For each rule, its condi-
tion and the class it predicts are shown
along with three statistics. #C and #NC
refer to the number of carcinogens and
noncarcinogens in the training data that
were covered by a rule. CF refers to a cer-
tainty factor. For a rule predicting rodent
carcinogenicity, CF is calculated by
(#C - 0. 5) / (#C + #NC); similarly, for a rule
predicting noncarcinogenicity, CF is
obtained by (#NC-0.5)/(#C + #NC).

Predictions
Table 4 shows the predictions for the 30
chemicals in the second PTE experiment

Table 2. Eight rules in rule set Rl learned by the RL induction program.a

Rule Rule condition Class Coverage
no. IF THEN #C #NC CF

1-1 (Kidney +) and (degeneration-) C 18 1 0.92
1-2 (Liver +) and (syncytial-alteration-) C 27 2 0.91
1-3 (Kidney +) and (nasal cavity -) C 33 3 0.90
1-4 (Liver -), (regeneration -) and (inflammation +) NC 6 12 0.64
1-5 (Kidney-), (liver-) and (hyperplasia +) NC 2 6 0.69
1-6 (Liver -), (regeneration -) and (bone-marrow +) NC 1 3 0.62
1-7 (Liver -4, (nasal cavity +) and (necrosis +) NC 1 4 0.70
1-8 (Kidney-) and (brain +) NC 2 4 0.58

8#C, #NC, and CF refer to the number of carcinogens and noncarcinogens (in the training data) covered by each
rule and a certainty factor, respectively.

Table 3. Eight rules in rule set R3 learned by the RL induction program.a

Rule Rule condition Class Coverage
no. IF THEN #C #NC CF
3-1 (Liver +) C 29 4 0.86
3-2 (Kidney +) C 35 5 0.86
3-3 (Spleen +) C 12 2 0.82
3-4 (Liver -), (regeneration -) and (inflammation +) NC 6 12 0.64
3-5 (Kidney -), (liver-) and (hyperplasia +) NC 2 6 0.69
3-6 (Karyomegaly -), (brain +) and (degeneration-) NC 0 3 0.83
3-7 (Spleen -) and (cellular depletion +) NC 1 3 0.62
3-8 (Nasal cavity +), (exudate -) and (necrosis +) NC 1 4 0.70

8#C, #NC, and CF refer to the number of carcinogens and noncarcinogens (in the training data) covered by each
rule and a certainty factor, respectively.
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Table 4. Predictions made by rule sets, Rl and R3.a

Predictions
CAS Chemical SAL Rl R3

84-65-1 Anthraquinone + ?a ?
126-99-8 Chloroprene - C C
127-00-4 1 -Chloro-2-propanol + C C
104-55-2 Cinnamaldehyde ? ? ?
5392-40-5 Citral - NC NC
10026-24-1 Cobalt sulfate + NC NC

heptahydrate
76-57-3 Codeine ? ? ?
8003-22-3 D&C Yellow No. 11 + C C
111-42-2 Diethanolamine - C C
147-47-7 1,2-Dihydro-2,2,4- - C C

trimethylquinoline
518-82-1 Emodin + C C
100-41-4 Ethylbenzene - ? ?
111-76-2 Ethylene glycol - C C

monobutyl ether
98-00-0 Furfuryl alcohol - NC NC
1303-00-0 Gallium arsenide - C C
115-11-7 Isobutene - ? ?
78-84-2 Isobutyraldehyde - NC NC
93-15-2 Methyleugenol - C C
1313-27-5 Molybdenum trioxide -
75-52-5 Nitromethane - ? C
434-07-1 Oxymethalone - C C
77-09-8 Phenolphthalein - NC NC
125-33-7 Primaclone + C C
110-86-1 Pyridine - C C
6533-68-2 Scopolamine hydro- - ? ?

bromide trihydrate
7632-00-0 Sodium nitrite + NC C
1300-72-7 Sodium xylenesulfonate - NC NC
1948-33-0 t-Butylhydroquinone - C C
109-99-9 Tetrahydrofuran - NC NC
1413-62-1 Vanadium pentoxide - NC NC
'? indicates an inability to predict.

made by the two rule sets, Ri and R3. The
table also contains the responses in the
Salmonella mutagenicity assay. The model
of organ toxicity from which RL learned
rules is not exactly equal to the model
under which the organ toxicities of the 30
chemicals in the PTE were observed. In
fact, in Table 1, we already indicated that
some lesions caused by some chemicals
were not applicable because there were no
matching lesions in the 124 lesions on
which the rules were based.

Neither RI nor R3 makes predictions
for all 30 chemicals; RI and R3 made pre-
dictions for 22 and 23 chemicals, respec-
tively. Of the 22 chemicals predicted by RI,
13 were predicted to be carcinogens and 9
were to be noncarcinogens. R3 predicted 15
of 23 chemicals to be carcinogens and 8 to
be noncarcinogens. RI and R3 agreed on
predictions for 21 chemicals but disagreed
on two chemicals, nitromethane and sodium
nitrite. While RI was not able to make any

Table 5. Rules in each set that provide evidence of carcinogenicity or noncarcinogenicity.

Rules matching each chemical8
Rl R2

CAS Chemical C NC C NC
84-65-1 Anthraquinone
126-99H8 Chloropr e 2 : - 1 8
127-00-4 1-Chloro-2-propanol 1,2,3 - 1,2 -

104-55-2 -Cinnamaldehyde
5392-40-5 Citral - 5 - 5
10026-24-1 C^Cobt steJsI":hepte hydrate - 4,5 - 4,5
76-57-3 Codeine
8003-22- &CYeloW w o.11 2,3 - 1,2 -
11142-2 Diethanolamine 2,3 - 1,2
14747-7 .2-Dhydro,24trimtyquinoline 2 - 1
518-82-1 Emodin 1,3 - 2
1.0104-41 EtlbWnee.- ben:- - .- --..
111-76-2 Ethylene glycol monobutyl ether 2,3 - 1,2,3
98-00:- Furuyalol :; 4,5 . - 4,5
1303-00-0 Gallium arsenide 2 - 1,3
115-11-7 ISo ee : - - -
78-84-2 Isobutyraldehyde - 5,7 3 5,8
93-15-2 . 1M*I -:g- -2 - 1 -
1313-27-5 Molybdenum trioxide -

75-2-5: Nitiri hanel :-: - 3 - :-3
434-07-1 Oxymethalone 3 - 2 -

77098: ::henolphthlein :: ::: : -: 6::: - 7
125-33-7 PrimacJone 1,2,3 - 1,2,3
t10-86 yvdine .: : :2 - :1,2
6533-68-2 Scopolamine hydrobromide trihydrate
7632-0-0 Sodiu'ml:n--i:trit:e- - 5 3 5
1300-72-7 Sodium xylenesulfonate 5 - 5
1948-33-0 t-B Iyhydrquin 1: 4,5 2.3 4
109-99-9 Tetrahydrofuran - 4 - 4
1413-62-1 VanadumdpMitox d:e - : 45 4,5
- indicates no matching rules. "Rules are referred to by rule numbers shown in Tables 2 and 3.

predictions for nitromethane, R3 predicted
it to be a carcinogen. Also, while RI pre-
dicted sodium nitrate to be a noncarcinogen,
R3 predicted it to be a carcinogen.

The rules in each set that match each
chemical are shown in Table 5. Rules are
referred to by the numbers assigned to them
in Tables 2 and 3. For example, in RI,
chloroprene matches rule-2 (which predicts
carcinogenicity) and no rules predicting
noncarcinogenicity. In other words, rule-2
in RI provides the evidence that chloroprene
is a carcinogen, and there is no evidence that
it is a noncarcinogen. On the other hand, in
R3, while evidence for carcinogenicity is pro-
vided by rule-1, rule-8 also provides the evi-
dence for noncarcinogenicity. However,
since the certainty (CF) of rule-I is greater
than that for rule-8, chloroprene was
predicted to be a carcinogen.

Let us look at the two chemicals,
nitromethane and sodium nitrite, for
which the predictions of Ri and R3 did
not agree. While there are no rules in RI
matching nitromethane, in R3, rule-3

matches the chemical. Thus, RI did not
make a prediction for nitromethane, and
R3 predicted it to be a carcinogen because
of the evidence provided by the training
data, i.e., there were 12 (of 60) carcinogens
that caused spleen toxicity but only 2 (of
28) noncarcinogens that caused spleen tox-
icity. For sodium nitrite, RI predicted it to
be a noncarcinogen because of the evidence
for noncarcinogenicity provided by rule-5,
i.e., a chemical is more likely to be a non-
carcinogen if it does not affect liver and
kidney but causes hyperplasia on other
organs. On the other hand, R3 predicted
sodium nitrate to be a carcinogen because
the evidence for carcinogenicity provided
by rule-3 (i.e., the presence of spleen toxic-
ity) is greater than the evidence for noncar-
cinogenicity provided by rule-S (i.e., no
effects on liver and kidney and the pres-
ence of hyperplasia on other organs). In
other words, despite the fact that sodium
nitrite did not cause liver or kidney toxic-
ity, it is predicted to be a carcinogen by R3
due to the lesion in the spleen.
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