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Twenty-four organic compounds currently undergoing testing within cancer bioassays under the
aegis of the U.S. National Toxicology Program (NTP) were submitted to the computer automated
structure evaluation (CASE) and multiple computer automated structure evaluation (MULTICASE)
system for predictions of activity. Individual predictions resulting from the NTP combined rodent,
NTP mouse, Carcinogenic Potency Database (CPDB) combined rodent, and CPDB mouse data-
bases were combined using Bayes' theorem to yield an overall probability of rodent carcinogenicity.
Based upon an arbitrary probability cut-off of 0.50, nine compounds were predicted to be rodent
carcinogens. The predicted carcinogens are chloroprene, 1-chloro-2-propanol, codeine, emodin,
furfuryl alcohol, isobutyraldehyde, primaclone, sodium xylenesulfonate, and t-butylhydroquinone.
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Introduction

This article presents the results of the
predictions of carcinogenicity in rodents of
a group of organic molecules currently
undergoing cancer bioassays under the
aegis of the U.S. National Toxicology
Program (NTP). We apply the computer
automated structure evaluation (CASE) and
the multiple computer automated structure
evaluation (MULTICASE) structure—activ-
ity relational expert systems (SAR) (1,2)
using several carcinogenicity SAR models
(e.g., NTP carcinogenicity, Carcinogenic
Potency Data Base [CPDB]). The results
obtained with the different models are
combined into a single prediction by the
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application of Bayes’ theorem (3-5) to the
sensitivities and specificities determined for
the individual SAR models.

Methodology
CASE/MULTICASE

Detailed descriptions of the algorithms
employed in CASE and MULTICASE
have been published previously (1,2). The
necessary input to the CASE/MULTI-
CASE system consists of a database com-
prised of the chemical structures of
biologically active compounds as well as
experimentally measured values of the
activity. The experimental values are
expressed in terms of CASE and MULTI-
CASE units ranging from 10 (inactive) to
99 (extremely active). In addition to this
quantitative scale, compounds can be sim-
ply entered as inactive or active. The
CASE/MULTICASE system automatically
fragments each molecular structure into
units of 2 to 10 heavy atoms together with
their associated hydrogens. Accordingly, to
be predictable by CASE/MULTICASE, a
molecule must consist of at least 3 nonhy-
drogen atoms. The CASE/MULTICASE
system accommodates fragments with
branching at one position along the linear
atomic chain. The resulting fragments are

cataloged according to their origins (parent
compounds). Fragments arising from
active compounds are labeled as activating,
while inactive compounds give rise to inac-
tivating fragments.

The CASE/MULTICASE system
performs a statistical analysis to identify
those molecular fragments that are relevant
to the observed activity. A binomial distri-
bution is assumed, and any considerable
deviation from a random distribution of a
fragment among the active and inactive
classes of compounds indicates potential
significance to biological activity.

CASE utilizes the set of statistically
significant fragments in predictions of the
activity or inactivity of compounds. Pre-
dictions of activity/inactivity are expressed
as probabilities and are based on the
observed fragment distributions encoun-
tered within the learning set. Quantitative
estimation of the potency (quantitative
structure—activity relationship [QSAR]) for
all the compounds within a database is
achieved by a multivariate linear regression
analysis based on the stepwise selection of a
subset of molecular fragments. In addition,
calculated values of the logarithm of the
partition coefficient and its squared value
(log P, log P?) are included as potential
variables. The coefficient of each of the
molecular fragments within the QSAR is a
measure of the activating/inactivating con-
tribution made to the activity by the
presence of the fragment.

MULTICASE, on the other hand,
utilizes the set of statistically significant
molecular fragments to find a descriptor
(biophore) accounting for the majority of
the active class of compounds. In addition
to molecular fragments, MULTICASE
considers two-dimensional distance
descriptors. Compounds containing the
primary biophore (fragment or distance)
are removed from further consideration,
and subsequent biophores are selected that
explain the activity of the remaining com-
pounds. This iterative process of selection
is continued until either all the active com-
pounds are accounted for or no significant
descriptors remain. The presence or
absence of relevant biophores determines
the prediction of activity/inactivity.

Unlike CASE, MULTICASE attempts
to derive a QSAR only within each group
of compounds sharing a common biophore.
These local QSARs identify molecular fea-
tures that modulate the activity/potency of
compounds containing the biophore. The
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modulators are selected from the associated
pool of molecular fragments, distance
descriptors, calculated electronic indices
(lowest unoccupied molecular orbital,
highest occupied molecular orbital, etc.),
and calculated transport parameters (log P,
water solubility, molecular weight). The
contribution (positive or negative) of the
modulators to the activity is valid only
within the context of compounds contain-
ing the relevant biophore.

At this point, the analyzed CASE/
MULTICASE database can be queried
regarding predictions of the activity of
chemicals not present in the learning data
set or experimentally untested agents. For
each compound both CASE and MULTI-
CASE predictions are made according to
the respective SAR model. Compounds
containing structural fragments not
encountered in the learning set are flagged
as “warnings” since the contribution of
these unknown functionalities to biological
activity is uncertain.

A typical example of a CASE/MULTI-
CASE prediction is shown in Figure 1.
CASE/MULTICASE predictions are shown
for furfuryl alcohol tested against the CPDB
mouse carcinogen database. The first part of
the output deals with MULTICASE predic-
tions. Furfuryl alcohol contains the bio-
phore O—C=CH—CH= present in 13
carcinogenic compounds within the learn-
ing database. The compound also contains
an extra biophore (O—CH=). The overall
conclusion from MULTICASE is that fur-
furyl alcohol has a 97% chance of being a
carcinogen with an activity calculated to be
55 units, corresponding to a TDsq value of
0.17 mmol/kg/day. The CASE results are
listed in the second half of the output. The
overall conclusion from CASE is a probabil-
ity of 89% with a calculated activity of 54
(0.20 mmol/kg/day).

Carcinogenicity Databases
Carcinogenicity databases used in the
present study to predict the activity of
chemicals currently undergoing experimen-
tal evaluation consist of results obtained
from previous NTP evaluations (6) and
the CPDB data assembled by Gold and
associates (7—11). Data for both the rat
and the mouse are available in both compi-
lations. Furthermore, the rat and mouse
data have also been combined into a rodent
database whereby a chemical carcinogenic
to either rat or mouse is classified as a
rodent carcinogen. In the present study,
only the NTP and CPDB rodent and
mouse databases were used.
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Because of the nature of the CASE/
MULTICASE system, only organic
molecules can be analyzed. Furthermore,
these molecules must consist of more than
two heavy atoms (e.g., formaldehyde
would not be suitable for analysis).
Neither inorganics nor mixtures of
organic compounds can be evaluated by
CASE/MULTICASE.

Presently our NTP rodent database
contains 313 compounds (173 active, 39
equivocal, 101 inactive). The NTP mouse
and rat compilations consist of 319 (131
active, 20 equivocal, 168 inactive) and
316 (131 active, 28 equivocal, 157 inac-
tive) chemicals, respectively. The CPDB
rodent database consists of 433 com-
pounds (261 active, 10 marginally active,
162 inactive), while the separate mouse
and rat databases consist of 636 (291
active, 11 marginal, 334 inactive) and 745
(383 active, 14 marginal, 348 inactive)
compounds, respectively.

gy

HO o

Furfuryl alcohol

Predictions based on MULTICASE
The molecule contains the biophore (occurrence = 1):

0—¢C
N\
\CH
/
CH”

* 13 of the known 13 molecules (100%) containing
such biophore are mouse carcinogens with an
average activity of 57. (confidence level =100%)

Constant is 66.3

¢ The following modulator is also present:
hard/soft index is = 0.70;
its contribution is —10.8

e The molecule also contains the biophore:

0—CH=

o The probability that this molecule is a mouse
carcinogen is 93.3%
increased to 97.0% due to the presence of the
extra biophore

* The compound is predicted to be Very active,

o The projected mouse carcinogenic activity is 55.0
MULTICASE units

Predictions based on CASE

* 89% chance of being ACTIVE due to substructure
(confidence level=99%) :
0—CH=
e (Qverall, the probability of being a mouse carcino-
gen is 89.0%
e The compound is predicted to be VERy active
® The predicted activity is 54.0 CASE units

Figure 1. Example of a CASE/MULTICASE prediction.

CASE/MULTICASE Predictions
Submission of an unknown molecule to the
CASE/MULTICASE system yields predic-
tions based on both CASE and MULTI-
CASE SAR models (Figure 1). Specifically
the predictions generate MULTICASE
potency units (MCu), MULTICASE prob-
abilities (MC%), CASE potency units
(Cu), and CASE probabilities (C%). To
maximize the use of the information within
these four predictive indices, each was
evaluated individually as to its predictivity.
This was accomplished by performing
n—fold cross-validation studies using a
range of threshold values (corresponding
to CASE/MULTICASE potency units and
probabilities) serving as demarcations
between actives and inactives. Indices that
consistently resulted in poor sensitivities
or specificities were eliminated from con-
sideration. As a result of these studies, we
were able to assign optimum threshold val-
ues to the acceptable CASE/MULTICASE
potency units and probabilities. These val-
ues served to classify compounds as active
(+) or inactive (=) and were used to deter-
mine the respective sensitivities and speci-
ficities of each individual index (MCu,
MC%, Cu, C%). The individual activity
classifications (+ or —) corresponding to the
four individual prediction indices can be
combined according to Bayes’ theorem to
provide an overall predicted probability of
activity within each SAR model.

For the NTP rodent, mouse, and rat
databases, complete leave-one-out valida-
tion studies were performed. These
involved removing one compound at a
time from the complete database and
rederiving a CASE/MULTICASE SAR
model for the remaining compounds. The
compound originally removed was subse-
quently submitted for a prediction of its
activity. This procedure was performed »
times, where 7 represented the total num-
ber of compounds within each of the
respective databases. The predicted values
of Cu, C%, MCu, and MC% for each of
the chemicals were tabulated for compari-
son with the actual experimental activity.
Because of the large size of the CPDB set, a
complete leave-one-out cross-validation
was not attempted. Alternatively, only
57 randomly selected compounds were
removed one at a time from the rodent,
mouse, and rat databases.

The optimal threshold values for
classifying a compound as active (carcino-
genic) or inactive (noncarcinogenic) were
based on the Cu, C%, MCu, and MC%
obtained from the above validation studies.

Environmental Health Perspectives = Vol 104, Supplement 5 = October 1996



The selection of optimal threshold values
for each of the prediction indices was per-
formed in isolation; e.g., the value chosen
for MCu was independent of the values
selected for MC%, Cu, and C%. The
chemicals for which predictions were made
during the cross-validation studies were
used as the calibration set for determining
predictions of activity/inactivity on the
basis of the threshold value being consid-
ered. Comparison with the experimentally
observed activities yielded the respective
concordances, sensitivities, and specificities
for each value being considered as a cut-
off. The optimal threshold values as well as
the corresponding concordances, sensitivi-
ties, and specificities are listed in Table 1
for the NTP and CPDB rodent and mouse
databases. The NTP and CPDB rat models
were found to lack sufficient concordance
to be included in the battery of SAR mod-
els used for prediction. The NTP rodent
and mouse SAR models employ only the
MCu, MC%, and C% as predictive
indices to arrive at a conclusion of activity.
The CPDB rodent and mouse SAR
models, on the other hand, use all four
indices. This is not unexpected; for the
NTP-derived models, the assigned poten-
cies reflect a spectrum of carcinogenic
activities, while for the CPDB models,
they reflect TDsq values expressed as
mmole/kg/day (12).

Application of Bayes’ Theorem

To combine all four predictions into a
single overall conclusion, we sequentially

Table 1. Optimal threshold values.

PREDICTIONS OF CARCINOGENICITY

applied Bayes’ theorem (5). Bayes’ theo-
rem is based on the fact that the joint
probability of two events can be written as
the product of the probability of one of
the events and the conditional probability
of the second event, given the first event.
If we designate the two events as “A” (or
“not A”) and “+” (or “=”), the form of
Bayes’ theorem is as follows:

P(+/A)*P(A)

P(A/+)= P(+/A)* P(A) + P(+/notA) * P(not A)

The left side of Bayes’ theorem is the
probability that we are dealing with the
state “A,” given that we have observed the
data “+.” The probability P(+/A) repre-
sents the probability of the observed data
“+,” given that we are dealing with “A.”
Finally, P(A) is our current belief concern-
ing the probability of “A”. In the above
form, P(A/+) is termed the posterior prob-
ability, i.e., the updated probability, given
that we have observed a “+”. P(A) and
P(not A) are termed prior probabilities
because they are decided on before any
new data are known to us.

When we are in the diagnostic or
predictive setting, Bayes’ theorem takes on
the following form:

P(Active/+) =
Sensitivity * P Active)
Sensitivity * P(Active) + (1 - Specificity) * P(not Active)

Using this form of Bayes’ theorem, estimates
of sensitivity and specificity associated with
the prediction models and an estimate of the
probability of activity of the chemical, we
can estimate the new probability that a
chemical is active, given that we have
obtained a positive prediction when we
apply our model. For the purpose of the pre-
sent analysis, we have assumed a prior proba-
bility of 0.50, which reflects the prevalence
of carcinogens in the NTP database. Similar
expressions are available for P(Active/-),
P(not Active/+), and P(not Active/—) (13).

Each additional application of Bayes’
theorem uses the previously estimated pos-
terior probability of activity as the new
prior probability and the relevant estimates
of sensitivity and specificity from the new
source. By sequentially assimilating the
data through Bayes’ theorem, we obtain an
increasingly updated estimate of the proba-
bility of activity for the chemical under
consideration. This probability is based on
the consideration of all four metrics (prob-
abilities and units) obtained from the
CASE/MULTICASE SAR models. Table 2
lists the calculated probabilities for the
NTP/CPDB rodent/mouse SAR models
that result from combining the activity
classifications (+/-) with respect to MCu,
MC%, Cu, and C%. The overall proba-
bilities for each possible activity pattern
were calculated by Bayes’ theorem with
the appropriate values of sensitivity and
specificity (Table 1).

The Bayesian approach can further be
used in situations in which more than one

MULTICASE unit MULTICASE probability CASE unit CASE probability

Database ~ Cut-off  Conc.  Sens.  Spec.  Cutoff Conc.  Sens.  Spec. Cut-off Conc. Sens. Spec. Cut-off Conc. Sens. Spec.
N_rod. 22 0.61 0.61 0.62 72% 061 0.55 0.67 Unusable 58% 056 065 045
N_mice 30 064 033 0.85 57% 065 0.40 0.82 Unusable 53% 058 046 066
N_rat Unusable

G_rod. 30 054 053 0.56 68% 058 0.69 0.56 20 060 066 052  58% 058 053 0.56
G_mice 29 0.67 0.42 0.85 50% 0.68 0.46 0.85 20 074 054 0.88 66% 0.70 067 073
G_rat Unusable

N_rod., NTP rodent carcinogenicity database; N_mice, NTP mouse carcinogenicity database; N_rat, NTP rat carcinogenicity database; G_rod., CPDB rodent carcinogenicity
database; G_mice, CPDB mouse carcinogenicity database; G_rat, CPDB rat carcinogenicity database; conc., concordance; sens., sensitivity; spec., specificity.

Table 2. Probabilities of possible combinations of predictions.

NTP rodent NTP mouse CPDB rodent CPDB mouse
Pattern Probability Pattern Probability Pattern Probability Pattern Probability Pattern Probability Pattern Probability
++%+ 0.7597 ++%+ 0.8687 +++ 0.7769 — 0.1819 +H++ 0.9897 —— 0.0929
+4+%— 0.6754 4% - 0.8000 +4—— 0.6554 ———t 0.2894 - 0.9459 -t 0.3599
+=*+ 0.5603 +="+ 0.6853 -+ 0.6235 ——t— 0.3187 ++—+ 0.9176 ——4— 0.4686
+=%— 0.4561 +=*— 0.5684 ++—— 0.4749 ——++ 0.4614 +—— 0.6699 ——++ 0.8288
——*- 0.2473 —*— 0.3206 +—++ 0.5515 —4—— 0.3865 +—++ 0.9521 —4—— 0.3309
——*+ 0.3330 —*+ 0.4383 +—4— 0.4017 —+—+ 0.5357 +—4— 0.7835 —+—+ 0.7308
—+*- 0.4492 —+*— 0.5890 +——+ 0.3689 —t+— 0.5699 +——+ 0.6976 —++— 0.8098
—+%+ 0.5534 -+ 0.7033 == 0.2420 —+++ 0.7082 - 0.2959 —+++ 0.9590
The pattern is ordered as MCu, MC%, Cu, C%:; asterisk represents a discarded index. Probability > 0.5 is scored as “+.”
Environmental Health Perspectives s Vol 104, Supplement 5 = October 1996 1047



SAR model is available. This is especially
relevant to the prediction of carcinogenic-
ity, wherein several databases can be used
in making assessments of carcinogenic
activity. Given the complexity of carcino-
genicity, we do not expect a single SAR
model to be as effective as the use of a bat-
tery of carcinogenic SAR models. Indeed,
we expect that using such a battery for an
overall prediction will overcome some of
the limitations associated with individual
SAR models.

In the present study, the carcinogenicity
of the target compounds was predicted
based on four carcinogenicity databases for
which predictive SAR models had been
derived: NTP rodent, NTP mouse, CPDB
rodent, and CPDB mouse. To make an
overall prediction of carcinogenicity, we
applied Bayes’ theorem using the predic-
tions from the four models and their
respective sensitivities and specificities (cal-
culated from the n-fold cross validation
studies). Table 3 lists the calculated proba-
bilities resulting from combining all the
possible predictions using the four carcino-
genic SAR models. Elevated overall proba-
bilities can be assumed to be indicative of
an increased potential for rodent carcino-
genicity. In the present analysis we arbi-
trarily selected a probability cut-off of 0.50
to classify compounds as carcinogens.

Results and Discussion

Our previously established CASE/MULTI-
CASE SAR models (14,15) pertaining to
NTP rodent, NTP mouse, CPDB rodent,
and CPDB mouse data were used to rank
the potential for carcinogenic activity of 24
organic compounds currently undergoing
testing (Table 4). Organic salts were
analyzed as the free bases/acids. The four
inorganic compounds (cobalt sulfate
heptahydrate, gallium arsenide, molybde-
nium trioxide, vanadium pentoxide) are not
amenable to CASE/MULTICASE analyses.
Predictions were also not made for
nitromethane and sodium nitrite because
these compounds are too small for CASE/
MULTICASE analyses (above). All possible
isomers of sodium xylenesulfonate were
analyzed individually since commercial
samples of xylene are a mixture of the
ortho-, meta- and para-isomers.

Table 4 lists the results of our analysis
of the carcinogenic potential exhibited by
the chemicals of interest. Predictions of
carcinogenic activity within each individual
CASE/MULTICASE SAR model used in
this study (Table 1) are shown, as well as
the overall calculated probability resulting
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from the sequential application of Bayes’
theorem as outlined above. Individual SAR
model predictions may differ from one
another because the SAR models differ (the
fragments identified within the mouse
model are not necessarily identical to the
rodent fragments). The chemicals and their
overall predictions are listed in terms of the
increasing probability of exhibiting carcino-
genicity. If we arbitrarily assign a probabil-
ity value of 20.50 to indicate a potential
for carcinogenicity (+), nine compounds
would be classified as such. Our SAR mod-
els, however, are based on oral administra-
tion and hence the predictions are based on
the same assumption.

Five chemical compounds are predicted
as carcinogens in at least two of the CASE/
MULTICASE SAR models (1-chloro-2-

propanol, emodin, furfuryl alcohol, pri-
maclone, and #butylhydroquinone).
Furfuryl alcohol and #butylhydroquinone
are predicted to be carcinogenic in three
and four, respectively, of the SAR models.
The remaining compounds (chloroprene,
codeine, isobutyraldehyde, and sodium
xylenesulfonate) are concluded to be car-
cinogenic by virtue of being so predicted
by the CPDB mouse SAR model.

In the case of sodium xylenesulfonate,
only the 1,3-dimethyl-4-sulfonate and
1,4-dimethyl-2-sulfonate isomers yielded
positive predictions. Assuming that sodium
xylenesulfonate is a mixture, the isomers
responsible for carcinogenicity may not
reach critical levels to induce carcinogenicity
under experimental conditions.

Table 3. Predictions based upon combining carcinogenicity SAR models.

Pattern Probability Pattern Probability Pattern Probability Pattern Probability
e+ 0.9429 +—++ 0.8447 —_— 0.1535 —+— 0.3553
+++— 0.7204 +—4— 0.4633 ———+ 0.5332 —+—+ 0.7764
++—+ 0.9029 +——+ 0.7536 —t— 0.2238 —t++— 0.4949
+—— 0.5906 +—— 0.3268 ——++ 0.6701 —+++ 0.8606
The order is NTP rodent, NTP mouse, CPDB rodent, and CPDB mouse. Probability > 0.5 is scored as “+.”
Table 4. Predictions of carcinogenic activity resulting from oral administration.26.¢

NTPE ~ cppBf Overall
Compound Rodent Mouse Rodent Mouse probability?
Cinnamaldehyde - - - — 0.15(-)
Citral - - - - 0.15(-)
D&C Yellow 11 - - — - 0.15(-)
Diethanolamine - - - - 0.15(-)
1,2-Dihydro-2,2,4-trimethylquinoline - - - - 0.15(-)
Ethylbenzene - - - - 0.15(-)
Ethylene glycol monobutyl ether - - — = 0.15(-)
Isobutene - - - - 0.15(-)
Oxymethalone - - - - 0.15(-)
Pyridine - - - - 0.15(-)
Scopolamine hydrobromide trihydrate - - - - 0.15(-)
Tetrahydrofuran - - - 0.22(-)
Phenolphthalein = = 0.33(-)
Anthraquinone - + - 0.36(-)
Methyl eugenol - + - = 0.36(-)
Chloroprene — = = + 0.53(+)
Codeine - - - + 0.53(+)
Isobutyraldehyde - - - + 0.53(+)
Sodium xylenesulfonate” - - - + 0.53(+)
1-Chloro-2-propanol — + - + 0.78(+)
Emodin - + - + 0.78(+)
Primaclone + - + 0.78(+)
Furfuryl alcohol i+ + + 0.86(+)
t-Butylhydroquinone + + + 0.94(+)

aChemicals are listed in ascending probability of carcinogenicity. 2Predictions were not made for the inorganic
compounds cobalt sulfate heptahydrate, gallium arsenide, molybdenum trioxide, and vanadium pentoxide; predic-
tions were also not made for nitromethane and sodium nitrite, since the compounds are too small for CASE/MUL-
TICASE analysis. ¢Salts were tested as the free bases/acids. 9These predictions are based on SAR models using
data restricted to oral administration. NTP refers to the National Toxicology Program. fCPDB refers to the
Carcinogenicity Potency Database. 9Positives (+) have a calculated probability of >0.50; negatives (-) have a cal-
culated probability of <0.50. #All possible isomers were tested; the 1,3-dimethyl-4-sulfonate and 1,4-dimethyl-2-

sulfonate isomers were predicted as positives.

Environmental Health Perspectives = Vol 104, Supplement 5 = October 1996



Figure 2 contains the chemical struc-
tures of the compounds predicted to be
rodent carcinogens. In addition, the molec-
ular regions identified as associated with
carcinogenicity are indicated. These molecu-
lar regions consist of fragments identified by
the CASE and/or MULTICASE SAR mod-
els of CPDB mouse data. Table 5 lists the
putative carcinogens predicted in this study,
together with known rodent carcinogens
sharing carcinogenic CASE/MULTICASE
fragments used within the CPDB mouse
SAR model. It is presumed that com-
pounds containing identical fragments in
the same molecular environment will

c1
%/g

Chloroprene

Codeine

NG
HO o

Furfuryl alcohol

S

Primaclone

OH

PREDICTIONS OF CARCINOGENICITY

exhibit similar modes of action and conse-
quently exhibit similar biological activities.

Our approach entails the rational evalu-
ation of a chemical’s potential to exhibit
carcinogenic activity on the basis of chemi-
cal structure alone. The quality of predic-
tions depends on the learning set used to
derive the resulting SAR model as well as on
the complexity of the biological phenome-
non modeled. Thus, in a previous study
using a Salmonella mutagenicity SAR
model, the concordance between experi-
mental and predicted CASE/MULTICASE
results for 100 chemicals was 76% (16).
Obviously, given the multiple mechanisms

OH
)\/ cl
1-Chloro-2-propanol

o

OH O OH

HO

Emodin

g

Isobutyraldehyde

o

CH [o]
3
\\/OH

\!
o

Xylenesulfonate (para isomer)

t-Butylhydroquinone

Figure 2. Predicted carcinogens containing carcinogenic fragments. Regions identified by CASE and/or MULTI-
CASE SAR models of CPDB mouse carcinogenicity are shown in bold.
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associated with carcinogenicity, we do not
expect the SAR model for carcinogenicity to
be as good as that for mutagenicity.
However, we anticipate that the use of a
battery of carcinogenic SAR models for an
overall prediction will overcome some of the
limitations associated with individual SAR
models. Indeed, we have compared the
respective concordances, sensitivities, and
specificities of individual SAR model predic-
tions with the carcinogenic SAR model bat-
tery predictions for an independent test set
of compounds (17). The SAR model bat-
tery possessed the highest overall concor-
dance with a significantly enhanced
sensitivity and a comparable specificity.
Furthermore, the SAR model battery pre-
dictions were significantly more accurate
than using Salmonella results alone or in
combination. Finally, the SAR data used to
derive our models are based on the oral
route of administration and may not be
applicable to the prediction of carcino-
genicity by other routes.

Table 5. Some representative rodent carcinogens
containing fragments identified within the predicted
carcinogens.?

Predicted Example of known
carcinogen rodent carcinogen
Chloroprene Vinylidene chloride
Sulfallate
1-Chloro-2-propanol  Melphalan
Chlorambucil
Phenesterin

Estradiol mustard
Phenoxybenzamine

Aramite

Codeine Sterigamatcystin
Aflatoxin
2-Acetylaminofiuorene

Emodin 2-Methyl-1-nitroanthraquinone

1-Amino-2-methylanthraguinone
Chrysazin
Furosemide

Nitrofurazone
2-Amino-4-(5-nitro-2-furyl)-

Furfuryl alcohol

thiazole
Isobutyraldehyde Leupeptin
2-Chloropropanal
Primaclone Phenobarbital
Sodium 2,4-Xylidine
xylenesulfonate p-Cresidine
2,4,6-Trimethylaniline
t-Butylhydroguinone  Luteoskyrin

4CASE/MULTICASE fragments within the CPDB mouse
SAR model were used. "
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