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In assessing the distribution and metabolism of toxic compounds in the body, measurements are
not always feasible for ethical or technical reasons. Computer modeling offers a reasonable
alternative, but the variability and complexity of biological systems pose unique challenges in
model building and adjustment. Recent tools from population pharmacokinetics, Bayesian
statistical inference, and physiological modeling can be brought together to solve these problems.
As an example, we modeled the distribution and metabolism of benzene in humans. We derive
statistical distributions for the parameters of a physiological model of benzene, on the basis of
existing data. The model adequately fits both prior physiological information and experimental
data. An estimate of the relationship between benzene exposure (up to 10 ppm) and fraction
metabolized in the bone marrow is obtained and is shown to be linear for the subjects studied.
Our median population estimate for the fraction of benzene metabolized, independent of
exposure levels, is 52% (90% confidence interval, 47-67%). At levels approaching occupational
inhalation exposure (continuous 1 ppm exposure), the estimated quantity metabolized in the bone
marrow ranges from 2 to 40 mg/day. — Environ Health Perspect 104(Suppl 6):1405-1411 (1996)
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Introduction

Benzene is carcinogenic in animals and
humans via one or several of its metabolites
(1). Thus, the fraction metabolized is likely
to be a better measure of toxic exposure
than benzene exposure itself. However, the
extent of benzene intake metabolized at low
exposure levels in humans is still unknown.
For humans this fraction is difficult to
measure directly, but can be estimated with
a physiological toxicokinetic model (2-5).
These compartmental models (Figure 1)
allow the simulation of a variety of end
points in specific organs, while providing
the opportunity to use relevant prior infor-
mation on physiological parameters, such as
blood flows, organ volumes, etc. (6).
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Many of the model parameters, typically
those controlling metabolism, are not
known with precision. Proper statistical
inference about the value of these parame-
ters is therefore necessary, while conserving
the strong prior information conferred by
their physiological definition. Bayesian
statistics also provide a natural way to merge
a priori knowledge, gained by implementing
a physiological model, with the experimen-
tal data. In addition, our interests reside in
inference about benzene metabolism in
humans, i.e., in a diverse population, rather
than in any one individual studied in pub-
lished experiments. We therefore designed a
statistical model describing the relationships
between individual and population physio-
logical parameters to estimate population
variability (7-10). Linking a statistical
model to a physiological mechanistic model
may seem a daunting task, given the num-
ber of parameters involved. In fact, up to
now, little consideration has been given to
statistical issues when using such models
(11); however, for such difficult problems,
Bayesian numerical methods can provide
solutions (10). We describe the application
to our model of Markov-chain Monte
Carlo simulation, which is a simple and
powerful tool. As a result we report predic-
tions and confidence bounds on various

measures of benzene metabolism in a
human population. We discuss how this
information can improve our understanding
of benzene toxicology.

Methods
Data and Models

The data consisted of the concentrations of
benzene in exhaled air and venous blood,
and phenol in urine, for three male volun-
teers exposed to benzene in an inhalation
chamber during 4 hr (12). Data were col-
lected during exposure and over the follow-
ing 2 days. Two exposure levels were used:
1.7 ppm (5.2 pg/liter) and 10 ppm
(30 pg/liter). Phenol concentrations were
recorded only at the 10 ppm exposure level
and were corrected for urine density. Two
unreliable phenol measurements were
discarded from this analysis (the corre-
sponding urine density was low and density
correction would not apply well). The small
(barely detectable) contamination of the
subjects’ exhaled air prior to the 1.7-ppm
exposure was ignored. This contamination
cannot be a carryover from the previous
10-ppm exposure because 1 month sepa-
rated the two experiments. In addition, the
body weight of each individual was
recorded (55, 73, and 90 kg, for subjects 1,
2, and 3, respectively), as well the minute
volume for subject 2 (11 liters/min + 10%).
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Figure 1. Schematic representation of the five-
compartment physiological model used to simulate the
distribution and metabolism of benzene.
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We used a physiologically based
pharmacokinetic (PBPK) model in which
the human body is divided into five com-
partments: poorly perfused tissues, well-
perfused tissues, fat, bone marrow, and
liver (Figure 1). These compartments are
assumed to be homogeneous and distribu-
tion limited by blood flow. Pulmonary
exchanges are modeled by assuming instan-
taneous equilibrium between alveolar
air, venous blood, and arterial blood.
Differential equations of the form

o F(CM_Q)
or V. P

i

describe the time dependence of the
concentration Ci of benzene in each
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compartment  as a function of blood flow,
F;, volume, V,, arterial blood concentra-
tion, C,,, and partition coefficient, P;.
These equations are linear, except for the
bone marrow and liver compartments, in
which a Michaelis-Menten term describes
the metabolic clearance of benzene. For
these compartments:

9 _Efc G
A,

where Vipax; is the maximum rate of
metabolism and K,; the Michaelis-Menten
coefficient. The model also describes the
endogenous formation of phenolic metabo-
lites in the liver (at a constant rate, K})

These metabolites are supposed to be

V w:C

max; i

Km,‘ +C1Vl

Table 1. Prior distributions of the population means and standard deviations for the scaling coefficients of

benzene model parameters in humans.?

Scaling Prior on p

Scaled parameter function® exp(M) exp(S) exp(Xg)  Truncation
Body weight (bw)¢ — 73 — 1.5 20-250
Ventilation over perfusion ratio (VPR) — 1.6 1.3 1.3 0.73-3.5
Blood flows per unit mass

Well-perfused tissues(pr) SCx Viyp 03 1.1 1.1 0.225-0.4

Poorly perfused tissues (Fy,) SCx Vpp 0046 11 1.1 0.035-0.06

Fat (F)d SCx V4x0.92 0028 11 1.1 0.02-0.037

Bone marrow (Fp,) SCx Vi 019 11 1.1 0.14-0.25

Liver (F) SCx 1 1.1 1.1 0.75-1.33
Volumes

Well-perfused tissues (V) SCx LM 02 1.1 1.1 0.15-0.26

Poorly perfused tissues (V,,)® — — — — —

Fat (Vy)? SC x bw/0.92 017 15 15 0.05-0.58

Bone marrow (V) SCx LM 005 11 1.1 0.038-0.067

Liver (V) SCx LM 003 11 1.1 0.023-0.04
Blood/air partition coefficient (Py,) — 15 15 13 4.4-50
Tissue/blood partition coefficients

Well-perfused tissues (P,y,) —_ 15 15 13 0.45-5

Poorly perfused tissues (Fp,) — 15 15 13 0.45-5

Fat (Py) — 30 1.5 13 9-100

Bone marrow (Py,) — 5 15 13 1.5-17

Liver (P) — 15 1.5 13 0.45-5
Maximal rates of metabolism

Liver (Vmax) SCxLMO0.7 0.1 5 2 0.0008-12.5

Bone marrow (Vimaxym) SC x Vinax 008 2 2 0.02-0.3
Michaelis-Menten coefficients

Liver (Km;) Vimaxi/SC 005 5 2 0.0004-6.25

Bone marow (Kmp,) Vimaxpm/SC 005 5 2 0.0004-6.25
Endogenous metabolites formation rate (Kj) — 0.007 2 1.5 0.00087-0.056
Metabolites excretion rate constant (K,) — 0003 2 1.5  0.00037-0.024
Urine formation rate (F,) — 0001 15 1.5  0.0003-0.0034
Phenol fraction of excreted metabolites (,) — 08 11 13 0.6-1

aFor all parameters the scaling coefficients are assumed to be lognormally distributed. #Scaled parameter = f(SC)
where SC is the scaling coefficient (no scaling function means that no scaling is made). Units: weights in kg, flow
in liters/min, volumes in liters, V5, in mg benzene/min, K;, in mg benzene, K;in mg benzene/min; K, in min™", £, in
liters/min. LM is the lean body mass (body mass—fat mass). €The body weights from Pekari et al. were used (72).
The distribution given was used for the population extrapolations. The density of fat tissues is assumed to be
0.92. ¢This parameter was set at each Monte Carlo iteration so that the sum of the organ masses (plus skeleton,

17% of LM) matched the imposed or sampled body weight.
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eliminated from the liver and bone marrow
to urine by a first-order process (with con-
stant K}). Phenol itself represents a fraction,
fp of the urmary metabolites. Computmg
the concentration of phenol in urine
requires defining the urine formation rate,
F,. Alist of the parameters is given in Table
1. The differentials were solved numeri-
cally using our own software, MCSim. The
model allows us to compute, for given
parameter values and initial exposure con-
ditions, various quantities relevant for our
purpose: concentration of benzene in blood
or exhaled air, concentration of phenol in
urine (during baseline conditions and ben-
zene exposure), and quantity of benzene
metabolized in a given period of time in the
liver or bone marrow.

The statistical model describing uncer-
tainties and variabilities was constructed
using a hierarchical population approach
(9,13), as illustrated in Figure 2. It has two
major components: the individual level and
the population level. At the individual’s
level, for each of three subjects, exhaled
air and blood benzene concentrations or
urinary phenol concentrations (y) were
measured experimentally. The expected
values of these concentrations are a func-
tion (f) of exposure level (E), time (t), a set
of physiological parameters of unknown
values (0), and a set of measured, covariate
parameters (@). E, t, 0, and ¢ are subject
specific. The function fis the nonlinear

M ({2
£ =\
E

\

iject 1 / /

O %\0/

Figure 2. Graph of the statistical model describing
the dependence relationships between several
groups of variables. @, prior distributions; p, mean
population parameters; X2, variances of the parame-
ters in the population; E, benzene exposure concen-
trations; t, experimental sampling times; 6, unknown
physiological parameters; @, measured physiological
parameters; £, toxicokinetic model; y, measured ben-
zene concentrations in blood or exhaled air; 62, vari-
ance of the experimental measurements.

Environmental Health Perspectives = Vol 104, Supplement 6 = December 1996



physiological model, described above. The
concentrations actually observed are also
affected by measurement errors, which are
assumed, as usual, to be independent and
log-normally distributed, with a mean of
zero and a variance 62 (on the log scale).

The varlance vector 62 has three compo-
nents, o 2 for the measurements 1n blood,

0’2 for thosc in exhaled air, and 65 2 for those
in urine, because these measurements have
different experimental protocols and there-
fore are likely to have different precisions.
Given its relatively large imprecision, the
minute volume for subject 2 was consid-
ered as a data point, with a fixed variance
on the log scale (the value chosen corre-
sponds to a 10% coefficient of variation
([CV]) in natural space).

Three types of nodes are featured in
Figure 2: 4) square nodes represent vari-
ables for which the values are known by
observation, such as y or @; were fixed by
the experimenters, such as E and t; or were
fixed by ourselves, such as the prior on p
and X2 b) circle nodes represent unknown
variables, such as 0, 62, y, or £2; ¢) follow-
ing the notation of Thomas et al. (14), the
triangle represents the deterministic physio-
logical model f. An arrow between two
nodes indicates a direct statistical depen-
dence between the variables of those nodes.

A Priori Parameter Distributions

To take into account known physiological
dependencies between the toxicokinetic
model parameters (e.g., between organ vol-
umes and body weight, or alveolar ventila-
tion rate and cardiac output) several of
them were linked to the lean body mass or
other parameter values via scaling functions
(15-18) (Table 1). For example, volumes
are input as fractions of the lean body
weight, and the maximum rate of metabo-
lism in liver as a power function of lean
body weight. Note that cardiac output is
computed as the sum of the organ flows.
The scaling coefficients were the actual
parameters used in input.

At the population’s level, we assumed
that each component of the 6 parameter
set is distributed log-normally, with popu-
lation averages p and variances £? (in log
scale). We have some 4 priori knowledge of
p and X2, at least in the form of standard
values. We assigned a priori truncated nor-
mal distributions (with parameters M and
Sin log scale) to the population means p,
and inverse  gamma distributions (with
parameter x?) for the population variances
Xa. We defined prior value for the hyper-
parameters M, S, and X} on the basis of the
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literature. The choice of values for these
parameters and the bounds for truncation
are summarized in Table 1. Truncations
correspond for most parameters to 3 SDs
to be subtracted or added to the mean.
They are all biologically plausible. The
exceptions are the two fractions Vv, and
fp» for which such truncation would be
meanmgless, and the body weight. In set-
ting uncertainties (but not for variabilities),
we tried to be conservative and set the
prior variances higher rather than lower
when there was ambiguity in the biological
literature (for example, with the metabolic
parameters). This weights down the prior
variances to “let the data speak.” For con-
venience we give in Table 1 the value of
exp(M) (i.e., the geometric mean of the
scaling coefficients) exp(S) and exp(Z,),
which lie on the natural scale.

The values used for organ masses, when
expressed as fractions of lean body weight,
are usually considered as reference values
for 35-year-old males (19,20). Volumes in
liters and masses in kilograms have the same
values since a density of 1.0 is assumed for all
tissues, except for fat (density 0.92). Both
the uncertainty on p and the heterogeneity
of the fraction volumes in the population
are estimated to be of the order of 10 to
15% (coefficient of variation), depending
on the tissue group. As a consequence of
scaling, the organ volumes are constrained
by definition and have to sum to the lean
body weight, not including bones, for each
individual. We compute the volume of the
poortly perfused compartment by difference
so that the constraint is automatically satis-
fied at each iteration.

The geometric means of the perfusion
rates per unit mass for the different com-
partments were set to usually accepted
reference values (19,20). The mean venti-
lation over perfusion ratio (VPR) was set at
1.6 (21), since the subjects were allowed
some activity after exposure. Exp(S) and
exp(Zg) were set at 1.1 for the flows to var-
ious tissues, and 1.3 for VPR. This corre-
sponds approximately to 10 and 30%
variability, respectively. Using perfusion
rates accounts for the covariance between
total organ perfusion and organ weight.

The geometric means used for benzene
blood/air and tissue over blood partition
coefficient are taken from ranges and values
previously published (22-25). Partition
coefficients may vary by a factor of 2 with
hematocrit or depending on fasting, for
example (26). Therefore, exp(S) was set at
1.5 for all partition coefficients. Exp(Z)
was set to 1.3.

Prior estimates for the scaling coefficients
for the population’s maximum rates of
metabolism in the liver and bone marrow,
Vmasxts Vmaxpms and for the ratios of the
maximum rates to the Michaelis-Menten
coefficients, Kmj Kmp,» were taken from
the literature (22,23,25). A large uncer-
tainty is still associated with these num-
bers, and we chose a value of 5 for exp(S),
except for Vimaxy,, which is the ratio of
marrow to liver metabolism. We set exp(Zg)
at 2. Thus, we believe these parameters to
vary in the population of Pekari et al. sub-
jects by about a factor of 2, but we are
uncertain by a factor of 5 as to their popu-
lation means. It would be difficult to
express this sort of uncertainty without an
explicit hierarchical model.

Prior variance for the average urine
flow, F,, was set on the basis of Rowland
and Tozer (27), with likely uncertainty
and variability of about 50%. The fraction
of phenol in the urinary metabolites, £,
ranges from 0.6 to about 1 (25), and we
set its geometric mean to 0.8, with exp(S)
at 1.1 and exp(Zy) at 1.3. The excretory
half-life of phenol, K, is 4.5 hr (28), so we
set the excretion rate to 0.003/min, with a
large uncertainty and a 50% CV for vari-
ability. The average amount of phenol in
urine of subjects unexposed to benzene is 6
mg/liter and ranges from about 1 mg/liter
to 40 mg/liter (12): given that at equilib-
rium Kf (phenol concentration) X F,/ ];, it
can be deduced that the mean of K¢ should
be approx1mately 0.007 mg/min; we set
uncertainty and variability to the plausible
values used for K.

At the individual level, we had no prior
information for most of the parameters
(except for the measured covariates), so
information about the distribution of an
individual’s © parameter values is given by
the experimental data and by the population
parameters, p and X2.

Statistical Computations

A Bayesian analysis allowed us to combine
two forms of information: “prior knowl-
edge” from the scientific literature, and
“data” from Pekari’s experiments, in the
context of the physiological compartmental
model. Neither source of information is
complete. If prior knowledge were sufficient,
the experiments would not have had to be
done, but Pekari’s data alone are insufficient
to pin down the parameters to reasonable
values. Our goal was to fit the data using
scientifically plausible parameter values.

The second interesting feature of the
Bayesian approach is that it produces a
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posterior distribution for the parameters,
rather than a mere point estimate. Thus, the
analysis outputs distributions of parameter
values that are consistent with both the
data and the prior information. Our statis-
tical analysis yields distributional estimates
(posterior distributions) of the parameters
for each subject and for the population.
Current standard practice in Bayesian
statistics is to summarize a complicated
high-dimensional posterior distribution by
random draws of the vector of parameters,
in this case, from the distribution P(0, p,
%2, 62ldata prior). The simulations can
then be used to compute posterior distrib-
utions of estimands of interest, including
individual parameters, and also derived
quantities such as the proportion of ben-
zene metabolized under specified condi-
tions. Because 0 has many components, we
use a combination of Gibbs sampling and
Metropolis-Hasting Monte Carlo sampling
to perform a random walk through the
posterior distribution. These samplings are
iterative procedures particularly convenient
in the case of hierarchical models. They
belong to a class of Markov-chain Monte
Carlo techniques that has recently received
much interest (8,10,29-31). Five indepen-
dent Monte Carlo runs were performed.
Convergence was monitored using the
method of Gelman and Rubin (32).
Population Extrapolation
The distributions of the fraction of benzene
metabolized in the bone marrow or liver at
various continuous exposure levels to ben-
zene (0.001 ppm to 10 ppm) were obtained
by simulation over 3 weeks. We verified that
equilibrium was always reached in those con-
ditions (the amounts metabolized over the
last day differed at most by half a percent
from the previous day). To compute the
fraction metabolized over the last day, the
amount metabolized was divided by the
amount inhaled on the same day (i.e., the
product of the alveolar ventilation volume
for a day by the benzene inhalation level).
These simulations were performed for the
population by sampling one random para-
meter vector from N(p,Z) for each of the
5000 estimates of p and X. This accounts
for parameter covariance since the 5 X 1000
individual and population parameter sets
are random draws from their joint (multi-
variate) distribution, not just from the mar-
ginal distributions, as would be the case in
simple Monte Carlo simulations. For these
simulations, body mass was also sampled

lognormally (with geometric mean and
standard deviation given in Table 1) (20).
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Results and Discussion
Model Fit

The use of the Markov chain simulations,
which reached approximate convergence in
about 20,000 iterations, has allowed us to
obtain a very good fit to the data of Pekari
et al., while maintaining scientifically plausi-
ble parameter values. Figure 3 shows the
data values predicted for each individual
versus their observed counterparts (all data
values are concentrations). Predictions were
made with the highest posterior parameter
values. This iteration is not much better
than any of the last 5000 and is quite repre-
sentative of the set. For an optimal fit, all
points would fall on the diagonal, but such
an adjustment is not expected given the ana-
lytical measurement errors in the data. The
deviations here are small and the fit seems
reasonable. Figures 4 and 5 give the simu-
lated time profiles for subject 1, together
with the data points. The experimental SDs
estimates are 0.22 + 0.016, 0.17 + 0.013,
and 0.22 + 0.017 (in log space) for the
venous blood, exhaled air, and urinary
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phenol measurements, respectively. These
correspond approximately to CVs of 24,
19, and 24%. The data points are bracketed
in the figures by 2 SDs to give an idea of
their precision. Fits for the other subjects
are similar in quality.
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Figure 3. Predicted versus observed data values (blood
and exhaled air benzene concentrations, and urinary
phenol concentrations) for the best iteration of the last
5000 Markov-chain Monte Carlo runs.
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Figure 4. Simulated and observed time course of the venous blood and exhaled air concentrations of benzene in
subject 1 [data of Pekari et al. (72)]. Exposures were to 10 ppm (A, C) and 1.7 ppm (B, D) for 4 hr. The data points
are bracketed by + 2 estimated SDs. Results are similar for the other two subjects. :
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Figure 5. Simulated and observed time course of uri-
nary phenol concentrations for subject 1 [data of Pekari
et al. (72)]. Exposure was 10 ppm (30 pg/liter) for 4 hr,
starting at time zero. The data points are bracketed by
+ 2 estimated SDs. Results are similar for the other
two subjects.

In its present form, the model accounts
for uncertainty and intersubject variability
but not for intrasubject variability. The
second exposure was performed 1 month
after the first, and subject variability is the
most likely explanation for the slight under-
or overestimations of the terminal slopes. A
problem is that intrasubject variability con-
founds the dose effect. A better experimen-
tal design would have exposed the subjects

BENZENE TOXICOKINETICS IN HUMANS

twice to each benzene concentration level.
The parameter values found for each
subject should therefore be considered as
approximate averages for that individual.

Posterior Distributions:
Parameter Values

Among the results are the posterior
distributions of all parameter values for
individuals (whose precision is affected by
measurement errors) and for the population
(whose precision depends on population
heterogeneity). The posterior distributions
of the individuals’ and population’s para-
meters are summarized in Table 2 (the last
1000 iterations of the five runs were
pooled, and the distributions are established
with 5000 values).

The location of many parameters is
noticeably different from the corresponding
prior mean. However, the posterior distrib-
utions for most parameters are consistent
with their prior distributions. The most
important shifts are observed for the volume
of fat, the partition coefficients and the
metabolic parameters. The partition coeffi-
cients are quite close to those found by
Watanabe et al. (25). However, the values
of the scaling coefficients for the metabolic
parameters V,,,. and K, in the liver and
bone marrow are different from what has

Table 2. Summary of the posterior (fitted) distributions for the scaling coefficients of the model parameters.

been previously assumed or found. The
mean of the scaling coefficient of the maxi-
mum rate of metabolism in the liver is
about 60 times higher than the prior mean.
The maximum rate in the bone marrow is
expressed as a fraction, about 16%, of that
in liver and therefore follows a similar
trend. A tension between prior and data
can even be noticed: the population mean
for these parameters is lower that the indi-
vidual values. This is because the prior
constrains the population mean more than
the individual values, which are more
influenced by the data. The prior pulls
down the estimated population average.
The explanation of these findings is the fol-
lowing: as will be illustrated below, ben-
zene metabolism is essentially linear in the
dose range studied. The estimates of V,,,,
and K, are therefore driven up by the esti-
mation process. Only the V,,,./K,, scaling
coefficients retain a meaning as they corre-
spond to the first order rate of metabolism
in the organs. The posterior mode (the
point of highest probability) of the mean
population V,,,,/K,, ratio for the liver is
0.6/min, with a population average of
0.76/min (Figure 6). For the bone marrow
the mode is 2.8/min and the population
average 1.12/min, which indicates that
metabolism is significant in this organ.

Scaling coefficient value

Population geometric mean,

Population SD,

Scaled parameter Subject 1 Subject 2 Subject 3 exp(u) exp(Z)?
VPR 1.8+0.23 16+0.15 1.8+0.25 17+0.20 114 x+£1.02
pr 0.35+0.025 0.34 +£0.025 0.34+0.025 0.34 +0.022 1.05x £ 1.01
Fop 0.040 + 0.0028 0.041 +0.003 0.040 +0.003 0.041 +0.0026 1.05 x +1.01
F 0.029 + 0.0028 0.029 + 0.0028 0.028 + 0.003 0.029 + 0.0024 1.05x +1.01
Fom 0.20+0.018 0.19+0.018 0.20+0.018 0.19+0.016 1.05 x £ 1.01
F 1.0+0.10 1.0+ 0.095 1.0+0.095 1.0+0.084 1.05 x +1.01
Viup 0.23+0.016 0.23+0.017 0.23+0.017 0.23+0.015 1.05 x +1.01
Vi 0.27 £0.029 0.24 +0.028 0.27 +0.030 0.25+0.035 1.21:x £ 1.02
Vm 0.05+0.005 0.052 +0.005 0.052 +0.005 0.052 + 0.004 1.05 x +1.01
V 0.032 +0.003 0.031 +0.0029 0.031 +0.003 0.031 +0.0026 1.05x+1.01
Pps 91+0.49 10+£0.55 9+054 9.65+0.77 114 x+1.01
Pwp 094+0.18 1.0+£0.19 1.0+£019 1.0+0.18 1.14x£1.02
Poo 1.7+0.23 16+0.19 1.7+022 1.7+0.20 1.14x+1.01
Ps 19+2.1 17+£21 21+£23 19+23 114 x +1.02
P 18+2.7 78+26 78+26 767+25 1.14x£1.02
P 194072 18+0.71 19071 1.8+0.66 1.14x+£1.02
/- 6.3+2.8 63+2.8 6.3+2.8 58+24 1.41 x + 1.05
maxy 0.17 £0.063 0.17 +0.063 0.17 +0.063 0.16 + 0.054 141 x+1.04
Koy 0.63+0.38 0.59+0.34 0.66 +0.40 0.60+0.35 139x+1.04
K’"bm 31+14 30+14 3114 28+1.2 1.41 x+£1.05
K 0.015+0.0029 0.011 £0.0023 0.018 £ 0.004 0.014 +0.0027 1.25x+1.04
K 0.0018 + 0.0004 0.0020 + 0.0004 0.0011 + 0.0004 0.0016 + 0.0004 1.28 x+1.05
F 0.0026 + 0.0004 0.0025 + 0.0003 0.0029 + 0.0003 0.0025 + 0.0003 1.22x+£1.02
f 0.79+0.084 0.79 £ 0.085 0.72 +0.073 0.78 +0.06 1.14 x +1.01

The means and SDs of the posterior distributions were established using the last 1000 iterations of the five runs performed. The transformation 1 — exp(Z) gives an approxi-

mate coefficient of variation.
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Figure 6. Estimated distribution of the mean rate con-
stant of benzene metabolism in liver for a human popu-
lation. The histogram is based on 5000 Markov-chain
Monte Carlo runs, and represents uncertainty in the
mean value.

However, a very large uncertainty affects
this value: the bone marrow is a “hidden”
compartment (from the point of view of
the data at hand), and little information is
available about its metabolism in humans.
Uncertainty (summarized by the SDs given
in Table 2), however, is largely reduced (by
comparison to the prior S) for most of
the other parameters, indicating that the
data brought important information
about them.

Interindividual variabilities are measured
by the population standard deviations X,
also given in Table 2. Those SDs corre-
spond to factor 1.2 to 1.4 for the metabolic
parameters. They are lower for the physio-
logic scaling coefficients. However, only
three young white subjects were observed,
and wider variations would certainly be
found when observing a larger population.
We noted above that it is likely that intra-
subject variability affects the parameters
(such as partition coefficients or metabolic
parameters), but we did not attempt to
estimate, as the data seemed insufficient for
that purpose.

Posterior Distributions: Fraction
of Benzene Metabolized

The relationship between inhalation expo-
sure level and fraction of benzene metabo-
lized per unit time in the bone marrow,
after 3 weeks of continuous exposure, is
presented in Figure 7. A similar relationship
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Figure 7. Simulated relationship between benzene
exposure concentration and bone marrow metabolism
in humans. The solid line gives the geometric mean
population relationship; the dashed and dotted lines
correspond to +1 and +3 population SDs, respectively
(including uncertainty and variability). A linear relation-
ship is also obtained for the liver.

is obtained in the liver. This relationship is
linear over the data range and beyond.
However, the curve above 10-ppm expo-
sure levels is an extrapolation into a region
in which saturation could occur, and inter-
pretation should be careful in this respect.
Watanabe et al. (25) found that saturation
could occur beyond 100 ppm. They also
found slight nonlinear effects (S-shaped
curving) in the relationship, which we do
not see here. The data of Pekari et al. is of far
better quality than those used by Watanabe
et al., and we put more confidence in the
present results. However, nonlinearity may
still be found in other populations or if
more subjects were to be studied. Further,
linearity in primary metabolism does not
imply linearity in the subsequent enzy-
matic transformations of the metabolites.
Recent work by McDonald et al. (33) also
support the notion that benzene metabo-
lism is linear at low levels: see also the
review by Smith (34). It is reassuring that,
regardless of slight differences in the shape
of the relationship, the quantities of
metabolites predicted by Watanabe et al.
and by us are close (geometric mean 10 mg
per day with SD corresponding to a factor
1.6, at 1 ppm exposure).

The population distribution of the
total fraction metabolized is spread over a

| 1 T 1 T 1
30 40 50 60 10 80 90

Fraction benzene metabolized per day, %

Figure 8. Estimated population distribution of the frac-
tion of benzene metabolized by humans. This fraction
is independent of the exposure level (at least up to 10
ppm exposure). The histogram is based on 5000
Markov-chain Monte Carlo runs and represents both
uncertainty and variability.

relatively narrow range. At low exposure
(0.001 ppm), the mean of 5000 Monte
Carlo estimates of this fraction is 57% (SD
6%) and the 5th and 95th percentiles are
47 and 67%, respectively (Figure 8). The
same results are obtained at high exposure
(up to 10 ppm) because the relationship
between amount metabolized and inhala-
tion exposure is linear. It would be interest-
ing to check what fraction of this variability
can be explained by differences in P4502E1
activity, as measured, for example, by the
chlorzoxazone assay (35,36).

These results are indeed conditioned by
the use of a small data set, with only three
subjects of similar characteristics. While
uncertainty could be reduced by additional
analyses, population variability, which in this
study is approximately as large as uncertainty
about individual subjects, could increase
when more subjects are included. This type
of analysis requires a population pharmaco-
kinetic approach and is more sophisticated
than simple Monte Carlo simulations for
uncertainty assessment. The results of the
population approach are far more reliable
because they rely as heavily on human data
as on a priori physiological information.
The method is of general applicability and
provides a basis for statistically valid infer-
ence with physiological models.
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