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The natural estrogen 171-estradiol (E2) has a profound influence on proliferation and neoplastic
transformation of mammary epithelium. The role of cellular metabolism of E2 in mammary
carcinogenesis, however, remains to be elucidated. Explant culture and cell culture models
developed from noncancerous human mammary tissue were used to examine modulation of E2
metabolism in response to treatment with prototype rodent mammary carcinogens and the ability
of the naturally occurring phytochemical indole-3-carbinol (13C) to influence E2 metabolism and
regulate aberrant proliferation. In the two models, treatment with the chemical carcinogens
7,12-dimethylbenz[alanthracene and benzolalpyrene altered the metabolism of E2 as determined
from the radiometric (tritium release) and gas chromatography-mass spectrometry (GC-MS)
assays. This alteration in E2 metabolism was accompanied by aberrant proliferation and
abrogation of apoptosis as determined by the extent of replicative DNA synthesis, S-phase
fraction and Sub Go (apoptotic) peak. Exposure of carcinogen-initiated cultures to 13C resulted in
induction of C2-hydroxylation of E2 and of apoptosis and downregulation of hyperproliferation.
Determination of altered cellular metabolism of E2 in response to initiators and modulators of
carcinogenesis and evaluation of cell cycle related markers for proliferation and apoptosis may
provide a mechanism-oriented approach to validate E2 metabolism as an endocrine biomarker for
induction and prevention of human mammary carcinogenesis. - Environ Health Perspect
105(Suppl 3):559-564 (1997)
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Introduction
Breast cancer is one of the prevalent causes Laboratory investigations on animal
of death in women in the United States. models have provided compelling but cir-
The American Cancer Society has estimated cumstantial evidence that human mammary
a 31% incidence of breast cancer (184,300 carcinogenesis may be a multifactorial and
new breast cancer cases) and about 17% multistep process involving early-occurring
mortality (44,300 cancer related deaths) in molecular, biochemical, and cellular events
1996 (1). These estimates emphasize a need that represent preneoplastic transformation
to identify markers for risk, early detection, and late-occurring epigenetic events that
and effective prevention. represent promotion and progression of the
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preneoplastic phenotype to tumorigenic
phenotype with metastatic potential (2,3).
Identification and validation of biomarkers
for preneoplastic transformation, therefore,
may provide important leads not only for
identifying markers of risk for developing
breast cancer but also for evaluating effective
primary or secondary prevention (4-9).

In the estrogen-responsive mammary
tissue, the natural estrogen 171-estradiol
(E2), in concert with other steroid and
polypeptide hormones that have mam-
motropic or lactogenic effects, supports
epithelial cell proliferation and neoplastic
transformation (6-8). The mitogenic stim-
ulus mediated via E2 may predispose
nontransformed cells for initiation of
carcinogenesis, while in preinitiated cells,
this stimulus may promote the expression
of the transformed cell phenotype
(2,3,5-8,10-12).

The cellular biotransformation of E2
represents a complex enzymatic process by
which metabolically competent cells con-
vert the mitogenic estrogen E2 to its less
active metabolites. Cytochrome P450
(cyp450)-dependent steroid hydroxylases
are critical for E2 metabolism, while estro-
gen receptor, a nuclear transcription factor,
is indispensable for transcriptional activa-
tion, expression of early response genes c-
fos, c-jun, c-myc, and resultant E2-mediated
positive regulation of growth (12-16).

Our studies on murine mammary
explant cultures and on immortalized non-
tumorigenic mammary epithelial cell cul-
tures have demonstrated that treatment
with chemical carcinogens and transfection
with oncogenes results in altered cellular
metabolism of E2 and aberrant hyperprolif-
eration in vitro prior to tumorigenicity in
vivo (17-19). In these studies alteration in
E2 metabolism was detected by specific and
significant increase in C16a-hydroxylation,
with a concomitant decrease in C2-hydrox-
ylation pathways, while aberrant hyperpro-
liferation was quantified by the relative
extent of cell proliferation in anchorage-
dependent and anchorage-independent
conditions of growth. Altered cellular
metabolism of E2 and aberrant hyperprolif-
eration, therefore, represent biochemical
and cellular surrogate end point biomarkers
for mammary carcinogenesis (4,9,17-21).
The clinical relevance of these biochemical
and cellular perturbations, however,
depends on extrapolation and therefore is
largely equivocal. Clinical investigations on
breast cancer patients, disease-free subjects,

Environmental Health Perspectives * Vol 105, Supplement 3 * April 1997 559



TELANG ET AL.

and subjects at risk have demonstrated a
correlation between elevated C16a-hydrox-
ylation of E2, presence of atypical hyperpla-
sia or proliferative breast disease and
increased risk for developing breast cancer
(2,5,6-8,13,14,20,21). Thus, altered E2
metabolism may represent a biochemical or
endocrine marker for breast cancer develop-
ment. A systematic investigation of this
aspect using appropriate human tissue-
derived models should provide important
leads that will help researchers evaluate the
clinical relevance of specific molecular, bio-
chemical, endocrine, and cellular biomark-
ers for human mammary carcinogenesis
and its prevention (4,9,22).

The present report provides an overview
of the experiments designed on explant and
cell culture models developed from
noncancerous human mammary tissue to
establish potential clinical relevance of
E2 metabolism as a biochemical or an
endocrine biomarker for effective chemopre-
vention ofhuman mammary carcinogenesis.
Experimental Systems
and Biomarker Assays
Human Mammary Explant Culture and
Cell Culture Models. The mammary
explant culture system and mammary
epithelial cell culture system provide useful
in vitro models to examine the responsive-
ness of noncancerous mammary tissue to
agents that affect cell proliferation, cytodif-
ferentiation, and neoplastic transformation
at the molecular, biochemical, and cellular
levels (2,4,17-19). The tissue culture tech-
nology and biomarker assays established for
the murine models have been optimized
for human mammary tissue (4,22,23).

The explant cultures were prepared
from human mammary terminal duct lob-
ular unit (TDLU) obtained from surgical
samples. The TDLU are the endocrine
responsive and proliferatively active intact
organoids that represent target tissue for
carcinogenesis (2,4,8). These organoids
were maintained in a chemically defined,
serum-free Waymouth's MB 752/1
medium (GIBCO/BRL, Grand Island,
NY) supplemented with 5 pg/ml insulin,
1 ng/ml E2, 2 mM L-glutamine, and
antibiotics. The medium was routinely
changed every 48 hr and the cultures were
maintained in a humidified atmosphere of
95% air: 5% CO2 at 37°C.

The human mammary epithelial 184-B5
cell line was maintained in chemically
defined, serum-free KBM-MEM medium
(Clonetics Corp., San Diego, CA, and
GIBCO/BRL) supplemented with 10 pg/ml

insulin, 10 ng/ml epidermal growth factor,
10 pg/mI transferrin, 0.5 pg/ml hydrocorti-
sone, and 5 pg/ml gentamycin (24,25). The
medium was routinely changed every 48 hr
and the cells were subcultured by a 1:4 split
when approximately 70% confluent.

Chemical Carcinogens and
Chemopreventive Agent. The stock
solutions (IOOOx) of the chemical carcino-
gens 7,1 2-dimethylbenz[a] anthracene
(DMBA) and benzo[a]pyrene (B[a]P) were
made up in dimethyl sulfoxide (DMSO).
The stock solution of the naturally occur-
ring phytochemical indole-3-carbinol
(I3C), to be used as the chemopreventive
test compound, was made up in 100%
ethanol. These stock solutions were appro-
priately diluted with the culture medium
to obtain the effective nontoxic concentra-
tions. The selection of chemical carcino-
gens and of the naturally occurring
phytochemical was based on their docu-
mented tumorigenic or tumor modulating
effects on the rodent models (3,10,26-28).

Cellular Metabolism of173-estradiol
The metabolism of E2 by TDLU and
184-B5 cultures was determined by the
radiometric assay that measures the tritium
exchange from specifically labeled E2 to
form 3H20 (4,17,19) and by the gas chro-
matography-mass spectrometry (GC-MS)
assay that involves product isolation and
identification of the metabolites (29).

For the radiometric assay, cultures were
incubated with 8.0 x 10-10 M [C2-3H] E2
or [Cl6a-3H] E2 for 48 hr at 370C.
Aliquots of 500 pl of the incubation
medium were diluted to 3.0 ml with dis-
tilled water and lyophilized to separate
3H20 from the residual radioactive E2.
The relative extent of 3H20 formed pro-
vided an indirect measure of 2-hydroxy-
estrone (2-OHE1) or 166a-hydroxyestrone
(16a-OHE1) formed via the C2-hydroxyla-
tion and C16a-hydroxylation pathways of
E2 metabolism, respectively. Based on the
stoichiometric conversion and the specific
activity of labeled E2, the amounts of the

metabolites formed were calculated. The
data were expressed as pmol metabolite/48
hr/mg tissue.

For the GC-MS assay, cultures were
incubated for 48 hr at 37°C with 10-8 M
nonradioactive E2. Fifteen milliliters of
incubation medium was added with
deuterated E2 as an internal standard and
processed for solid phase extraction. The
extracted sample was derivatized in the
presence of 50 1il dry pyridine and 10 Ill
bis (trimethylsilyl) trifluoroacetamide
(BSTFA). The derivatized samples were
analyzed under select ion mode and mass
ion, and GC elution times of the metabo-
lites were determined (29). The data were
expressed as relative abundance of E2
metabolites per 107 cells.

Cell Cycle Analysis and Cellular
Apoptosis. The effect of initiators and
modulator of carcinogenesis on alteration
in cell cycle progression and on the relative
extent of cellular apoptosis was examined
on 184-B5 cells using the fluorescence-
assisted cell sorting (FACS) flow cytomet-
ric assay. For this assay, trypsinized cell
suspensions fixed in 2% formaldehyde and
subsequently in ice-cold 70% ethanol were
stained with propidium iodide according
to the published procedure (30). The
extent of proliferation was expressed as per-
cent synthesis (S)-phase fraction, while the
extent of apoptosis was expressed as the
intensity of Sub Go (apoptotic) peak
obtained from FACS analysis.

Results
Effect of Chemical Carcinogens on
Terminal Duet Lobular Units. The exper-
iment presented in Table 1 was performed
on explant cultures of human mammary
TDLU to examine the effects of well
known rodent carcinogens DMBA and
B[a]P on the cellular metabolism of E2.
The relative extent of E2 metabolism via
C2-hydroxylation and C16a-hydroxylation
pathways was determined using the radio-
metric assay. The results obtained from

Table 1. Effect of chemical carcinogens on the metabolism of 173-estradiol (E2) in explant cultures of human
mammary terminal duct lobular units.

E2 Metabolite,bpmol/mg tissue
Treatmenta 2-OHEl 16a-OHE1 C2/C1 6a ratio

DMSO 2.32 ± 0.24c 0.48 ± 0.08f 4.83 ± 0.30
DMBA 1.36 ± 0.24d 2.24 ± 0.72g 0.61 ± 0.20
B[a]P 1.12 ± 0.086 3.12 ± 0.241 0.36 ± 0.10

'Explant cultures incubated with 0.1% DMSO, 39 pM DMBA, or 39 pM B[a]P for 24 hr and with 10-10M [C2-3H]E2
or [Cl6a-3H]E2 for the subsequent 48 hr. The culture medium was processed for the radiometric assay.
bCalculated from the stoichiometric convertibility and the specific activity of [3H]-E2. Values are mean ± SD; n= 12.
c , c- p= 0.005. f-9, 14p = 0.001.
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this experiment clearly demonstrate that
both the carcinogens DMBA and B[a]P
inhibit 2-OHE, formation and increase
16ac-OHE, formation. This alteration in
metabolism leads to an 87.4 and a 92.5%
decrease by DMBA and B[a]P, respec-
tively, in C2IC16a-hydroxylation ratio
relative to that observed in the solvent-
treated control cultures. The preliminary
experiments on the TDLU explant culture
system were designed to examine whether
the solvents DMSO or ethanol used to sol-
ubilize DMBA, B[a]P, and I3C, respec-
tively, influence E2 metabolism. The extent
of C2/C16a-hydroxylation ratios obtained
from untreated cultures (master controls)
and those treated with 0.1% DMSO or
0.1% ethanol (solvent controls) was 5.7 ±
1.1, 4.9 ± 0.2, and 5.1 ± 0.1, respectively.
The lack of substantial difference in the
ratios from the three groups indicates that
the two solvents at 0.1% concentrations
did not influence the constitutive level of
E2 metabolism.

In the explant cultures of TDLU the
epithelial component is surrounded by
intralobular and extraductular stroma. It is
therefore not possible to demonstrate
whether the epithelial component is
directly responsible for E2 metabolism. In
addition, the radiometric assay measures
the reaction kinetics of C2- and C16a-
hydroxylation pathways and therefore
represents an indirect assay for the forma-
tion of 2-OHE, or 16a-OHE,. In an
attempt to eliminate the above-mentioned
limitations, experiments were conducted

Table 2. Effect of chemical carcinogens on the metabolism of 17)-estradiol (E2) in human mammary epithelial
184-B5 cells.

E2 Metabolite,b
relative abundance /107 cells

Treatmenta 2-OHE, 16a-OHE, C2/C16a ratio
DMSO 342 ± 73c 53 ± 13f 6.45 ± 0.20
DMBA 52±3d 65±59 0.80±0.20
B[aJP 45 ± 5e 78 ± 86 0.58 0.10

Cell cultures incubated with 0.1% DMSO, 39 pM DMBA or 39 pM B[ajP for 24 hr and with 10 M E2 for the sub-
sequent 48 hr. The culture medium was processed for the product isolation and identification by the GC-MS
assay. bValues are mean ± SD; n = 4. c, c-p= 0.001.'NS14p= 0.01.

on human mammary epithelial 184-B5
cells, and E2 metabolism was evaluated by
the GC-MS assay that measures the spe-
cific metabolites formed.

Effeet of Chemical Careinogens on
184-B5 Cells. The data presented in Table
2 demonstrate that treatment of 184-B5
cells with DMBA and with B[a]P results in
a decreased abundance of 2-OHE1 relative
to that observed in the solvent-treated con-
trol cultures. Furthermore, B[a]P was more
effective in upregulating 16a-OHEI for-
mation than was DMBA. Because of the
observed distinct effects of DMBA and
B[a]P on the metabolic pathways, the car-
cinogen-mediated alteration in the 184-B5
system also resulted in an 87.6 and a 91%
inhibition in the C2/C16a-hydroxylation
ratio, respectively, relative to that observed
in the solvent-treated controls. The effect
of DMBA and B[a]P on cellular apoptosis
in confluent cultures of 184-B5 cells is
presented in Figures lA-C. The differen-
tial effects of DMBA and B[a]P were also

evident on the cell cycle progression.
Treatment of 184-B5 cells with DMBA
exhibited 63.3 ± 10.5% S-phase fraction
and 5.8 ± 1.3% apoptosis. In contrast,
treatment with B[a]P resulted in 34.5 ±
0.3% S-phase fraction and 1.6 ± 0.9%
apoptosis, in comparison with 26.1 ± 3.6%
S-phase fraction and 15.1 ± 3.1% apopto-
sis that was observed in 0.1% DMSO-
treated solvent controls. It is possible that
the two carcinogens enhance aberrant
hyperproliferation and inhibit cellular
apoptosis via distinct mechanisms.
Additional experiments focused on the spe-
cific cell cycle regulatory gene expression
may elucidate the possible mechanisms
responsible for effects ofDMBA and B[a]P
on 184-B5 cells.

Effect of 13C on Chemical
Carcinogenesis in Terminal Duet
Lobular Units. Having demonstrated that
treatment of TDLU explant cultures or
184-B5 cell cultures with the chemical
carcinogen B[a]P results in decreased
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Figure 1. Cell cycle analysis of 184-85 cells. (A) A 24-hr treatment with 0.1% DMSO (solvent control); (B) A 24-hr treatment with 39 pM DMBA; (C) A 24-hr treatment with
39 pM B[a]P. Note the inhibition of Sub Go (apoptotic) peak in cells treated with DMBA or B[a]P.
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Table 3. Effect of 13C on chemical carcinogen-treated
human mammary explant cultures.

Replicative DNA
synthesis,b E2 Metabolism,c

Treatmenta cpm x 106/mg DNA C2/C16a ratio

DMSO 3.0 ± 0.4d 4.3 ± 0.79
B[a]P 6.3 ± 0.3e 0.5 ± 0.1h
B[a]P + 13C 3.6 ± 0.9f 6.5 ± 1.6i

¶Explant cultures incubated with 0.1% DMSO or 39 pM
B[a]P for 24 hr and were maintained with or without
50 pM 13C for the subsequent 10 days. bPulse labeled
with 5 pci/ml of 3H-thymidine between days 9 and 10 of
culture. Radioactivity was determined as trichloroacetic
acid precipitable counts. cDetermined by the radiometric
assay as in Table 1. "1Mean ± SD, n = 6 per treatment
group. d' '1-tp = 0.001. P4Mean ± SD, n = 18 per treat-
ment group. 9hp= 0.0001. *4p= 0.005.

Table 4. Effect of 13C on chemical carcinogen-treated human mammary epithelial 184-B5 cells.

S-Phase fractionb, Apoptosis,b E2 Metabolismc
Treatmenta % % (C2/C166a ratio)

DMS0 29.9 ± o.gd 14.9 ± 1.29 3.7 ± 0.5'
B[a]P 34.5 ± 0.3e 1.6 ± 0.h 0.6 ±0.1k
B[a]P + 13C 17.0 ± 1.7f 5.1 ± 0.5i 2.6 ± 0.3'

8Cell cultures were incubated with 0.1% DMSO or 39 pM B[a]P for 24 hr and were maintained with or without
50 pM 13C for the subsequent 48 hr. bDetermined from propidium iodide-stained cell suspensions using FACS.
Mean ± SD, n = 8/treatment group. cDetermined by the radiometric assay as in Table 1. Mean ± SD, n = 4/treat-
ment group. "p = 0.01. °p = 0.001. UAp = 0.001. b'ip = 0.005. f .k4p = 0.001.
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C2/Cl6a-hydroxylation ratio, it was
important to provide evidence for valida-
tion of E2 metabolism as an endocrine
marker for preventive efficacy of agents
known to inhibit rodent mammary car-
cinogenesis. In the experiment presented in
Table 3, the naturally occurring plant
product I3C represented the chemopreven-
tive test compound, while replicative DNA
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independent markers for quantitation.
Treatment ofTDLU explant cultures with
50 pM I3C resulted in a 3H-thymidine
uptake of 3.6 ± 0.9 cpm x 106/mg DNA
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ity and in decreased C2/C16a-hydroxyla-
tion ratio. The B[a]P-initiated explant
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ited a 42.8% decrease in replicative DNA
synthesis and a 12-fold increase in
C2/C16a-hydroxylation ratio. These
results indicate that I3C by itself does not
influence the constitutive status of the bio-
markers; however, this agent is able to
reverse the hyperproliferative effects of
B[a]P, in part, by upregulating the
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Effect of 13C on Chemical
Carcinogenesis in 184-B5 Cells. The
experiment presented in Table 4 was
conducted on the 184-B5 cells to examine
the effect of 13C on B[a]P-induced cellular
and biochemical alterations. Treatment of
184-B5 cells with B[a]P resulted in
increased S-phase fraction, inhibited Sub
Go (apoptotic) peak and decreased
C2/C16a-hydroxylation ratio. In the 184-
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Figure 2. Effect of 13C on cellular apoptosis in B[a]P-initiated 184-B5 cells. (A) A 24-hr treatment with 39 pM B[a]P;
(B) A 24-hr treatment with 39 pM B[a]P + 50 pM 13C. Note the presence of Sub Go (apoptotic) peak in cells treated
with B[a]P + 13C, but not in cells treated with B[a]P alone.

B5 cell culture system, treatment with
50 pM I3C exhibited 29.7 ± 0.7% S-phase
fraction, 15.5 ± 0.6% apoptosis, and a
C2/C16a-hydroxylation ratio of 4.1 ± 0.3.
These data were comparable to those
observed in untreated master controls and
in 0.1% ethanol-treated solvent controls
(data not shown). Thus, I3C, at the dose
level tested, does not appear to influence
the constitutive status of the biochemical
and cellular quantitative end points.

Treatment of B[a]P-initiated cells with
I3C exhibited inhibition of the S-phase
fraction, increase in cellular apoptosis, and
increase in C2/Cl6a-hydroxylation ratio
of E2 metabolism. The induction of cellu-
lar apoptosis by I3C in B[a]P-initiated
184-B5 cells was also evidenced by a sub-
stantial increase in Sub Go (apoptotic) peak
in cells treated with B[a]P+I3C relative to
those treated with B[a]P alone (Figure
2A,B). Thus, the ability of I3C to inhibit
the effect of B[a]P may, in part, be due to
growth regulation by decreased prolifera-

tion, increased apoptosis, and increased
C2-hydroxylation of E2.

The effect of DMBA appears to be
distinct from that of B[a]P in the present
experimental system. It will therefore be
of considerable interest to examine
whether 13C in DMBA initiated cells
downregulates the status of S-phase-
specific gene expression.
Discussion
The experiments in this study were
conducted on in vitro models for human
mammary carcinogenesis to examine the
role of E2 metabolism in chemical
carcinogen-induced initiation of tumori-
genic transformation and to validate E2
metabolism as a surrogate end point bio-
marker for efficacy of chemopreventive
agents. Human mammary TDLU explant
cultures and 184-B5 cell cultures repre-
sented the experimental systems derived
from noncancerous human mammary
tissue. Biochemical determination of E2
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metabolism by radiometric and GC-MS
assays, replicative DNA synthesis by
[3H]thymidine uptake assay, and cell cycle
analysis by FACS flow cytometry assay
represented the quantitative parameters.

The observed increase in replicative
DNA synthesis or S-phase fraction in
response to the chemical carcinogens may
be due to a combination of replicative
DNA synthesis and DNA repair synthesis.
Mammary tissue has been reported to
effectively metabolize the procarcinogens
and generate DNA-damaging oxidative
metabolites that may induce DNA repair
synthesis (2,18,31-35).

In the multistep process of mammary
carcinogenesis, the natural estrogen E2
functions as a potent tumor promoter,
acting prevalently during the late-occur-
ring, postinitial (promotional) stage of
tumorigenesis (3,6,7, 10). The possible
mechanisms responsible for the positive
growth regulation by E2 include mito-
genic signal transduction via upregulation
of early response genes c-jun, c-fos, and c-
myc; induction of DNA synthesis in qui-
escent cells; and activation of nuclear
transcriptional factors estrogen receptor
and nuclear factor (12,15,16,36). In con-
trast, the biological activity of various
oxidative metabolites of E2 is pleiotropic
depending upon the experimental systems
(37-41), and therefore the role of E2
metabolites in mammary carcinogenesis
remains equivocal.

The experiments on TDLU explant
culture system clearly demonstrated that
prototypic rodent carcinogens DMBA
and B[a]P decrease the C2/C16a-hydrox-
ylation ratio of E2 metabolism. This
observation is consistent with our previ-
ous studies that demonstrated a similar
perturbation in in vitro models of rodent
mammary carcinogenesis in response to
DMBA or c-myc (17,18,20,21,31,32). In
addition, clinical investigations on patients
with breast cancer, as well as laboratory
investigations on noncancerous breast tis-
sue, or on human mammary carcinoma-
derived cell lines, have provided
convincing evidence for a role of E2

metabolism in breast cancer development
(4,13,14,20,22,23,40-42). Taken together,
these observations suggest that altered
metabolism of E2 may represent an
endocrine biomarker for carcinogenic
insult to the mammary tissue.

The presence of interlobular and inter-
ductular stroma in the TDLU explant cul-
ture system represents the nontarget
component for mammary carcinogenesis.
This cellular heterogeneity therefore com-
promises the specificity of E2 metabolism
as a biomarker assay. In addition, the
radiometric assay measuring the reaction
kinetics of the two pathways provides an
indirect measurement for the formation of
E2 metabolites. The two technical limita-
tions were eliminated by experiments that
utilized the mammary epithelial 184-B5
cells to determine E2 metabolites by the
GC-MS assay. The experiments on the
184-B5 cell culture system demonstrated
that while both DMBA and B[a]P decrease
2-OHE, formation, upregulation of 16a-
OHE, is observed only in response to
B[a]P. Decrease in C2/Cl6a-hydroxyla-
tion ratio by the two carcinogens in the
two experimental systems is comparable,
and the human mammary tissue is more
susceptible to B[a]P than it is to DMBA.
The observed preferential susceptibility of
human tissue to the polycyclic aromatic
hydrocarbons is consistent with that
reported previously (33-35). The results
obtained from the TDLU explant culture
and 184-B5 cell culture systems, taken
together, suggest that the target epithelial
component responds directly to the
carcinogenic insult.

The naturally occurring plant product
13C represents a major phytochemical in
such cruciferous vegetables as cabbage,
broccoli, and brussels sprouts. Our previ-
ous in vitro and in vivo studies on rodent
models of mammary carcinogenesis have
shown that exposure to I3C protects the
target tissue from chemical carcinogen-
induced transformation or from mammary
tumor virus-induced mammary tumorige-
nesis (27,31). Furthermore, 13C has been
reported to induce C2-hydroxylation of E2

in human mammary carcinoma cells as
well as in human subjects (42-45). We
therefore sought to examine whether 13C is
also an effective inhibitor of carcinogenesis
in human mammary TDLU explant cul-
ture and cell culture models. In the experi-
ments utilizing the TDLU explant culture
system, treatment of cultures with B[a]P
resulted in induction of aberrant prolifera-
tion as evidenced by increased replicative
DNA synthesis, and in altered E2 metabo-
lism, as seen by inhibition of C2/Cl6a-
hydroxylation ratio. B[a]P-initiated
cultures in the presence of I3C exhibited
inhibition of aberrant proliferation and
enhancement of C2/Cl6a-hydroxylation
ratio. In the experiments on 184-B5 cell
culture system, exposure to B[a]P exhib-
ited an increase in S-phase fraction, and a
decrease in cellular apoptosis and in
C2/Cl6a-hydroxylation ratio. The B[a]P-
initiated cultures in the presence of I3C
exhibited downregulation of cell prolifera-
tive activity and upregulation of apoptosis
and of C2/Cl6a-hydroxylation ratio. The
possible mechanisms responsible for the
protective effect of I3C against B[a]P-
induced human mammary carcinogenesis,
however, remain to be identified. In this
context, it is noteworthy that 13C func-
tions as an inducer of cyp4501AI-depen-
dent C2-hydroxylation of estradiol (42)
and 2-OHE1 has been reported to antago-
nize the genotoxic and transforming
effects of DMBA (31). These observa-
tions, taken together, raise the possibility
that increased production of antiprolifera-
tive E2 metabolite 2-OHE1 by 13C in
carcinogen-initiated human mammary tis-
sue may negatively regulate aberrant
hyperproliferation, in part by induction of
cellular apoptosis.

In conclusion, the pre§ent study on
human mammary tissue-derived in vitro
models for carcinogenesis has provided evi-
dence that E2 metabolism and cell cycle-
related markers for proliferation and
apoptosis may represent valuable surrogate
end point biomarkers to evaluate efficacy
of chemopreventive agents for human
mammary carcinogenesis.
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