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The molecular epidemiology of p53 mutations allows the possibility of correlating particular
mutations with specific environmental carcinogens and establishing one step in the causal path-
way between exposure to carcinogens and the development of cancer. A striking example is the
G>T transversion at the third base pair of codon 249 observed in liver cancer patients possibly
exposed to high levels of aflatoxins in their agricultural products. In this paper, we describe a sys-
tematic review of the literature and assess the quality of the available data. We found method-
ologic limitations in the studies. In particular, the key independent variable, aflatoxin exposure,
was not assessed in these studies, with the exception of one study that measured a marker of
exposure. Instead, nationality, geographic residence, or geographic site of hospital were used as
surrogate markers for exposure. Patients from areas with high aflatoxin levels were more likely to
have p53 mutations than were patients from areas with low aflatoxin levels. In the group with
53 mutations, patients from areas with high aflatoxin levels had higher proportions of muta-
tions with codon 249 G>T transversions. The differences in proportions with »53 mutations
were significant, as were the differences in proportions of codon 249 G>T transversions among
patients with p53 mutations. Aflatoxin may increase the proportion of p53 mutations by causing
a single mutation, the codon 249 G>T transversion, thus explaining some of the excess liver can-
cer associated with aflatoxin exposure. However, it is premature to conclude that »53 mutations
are established markers for environmental carcinogens. Key words: cancer, epidemiology, gene,
hepatocellular carcinoma, meta-analysis, molecular epidemiology, mutation, p53. Environ
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The molecular epidemiology of p53 muta-
tions allows the possibility of correlating
particular mutations with specific environ-
mental carcinogens and establishing one
step in the causal pathway between expo-
sure to carcinogens and the development of
cancer. Three key characteristics of p53
mutations may make this possible: 1) the
p53 gene may be the most frequently
mutated gene reported in human cancers;
2) the p53 gene codes for a protein that
appears to control processes that play a role
in carcinogenesis; and 3) considerable varia-
tion has been reported in p53 mutations by
base pair site, base pair change, and muta-
tion type (1-9). Thus, many have suggested
that »53 mutations are the fingerprint of
environmental carcinogens (10-13).

While molecular biologists have enthu-
siastically embraced this possibility, claim-
ing that “the p53 gene has become a valu-
able molecular biomarker in etiologic stud-
ies...” (14), epidemiologists might take a
more circumspect view of the accumulated
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data regarding p53 mutations and specific
environmental carcinogens. One of the
most striking examples of a p53 mutation
associated with a specific environmental
carcinogen and cancer is that of the G>T
transversion at the third base pair of codon
249 observed in liver cancer patients living
in areas of the world with high levels of
aflatoxins in their agricultural products
(15,16). This observation may be consis-
tent with epidemiologic research showing
an association between primary hepatocel-
lular carcinoma (HCC) and aflatoxin
exposure in ecologic studies and in nested
case—control studies measuring individual
biomarkers of exposure (17-19) and with
laboratory studies that have demonstrated
that aflatoxin B, induces a G>T transver-
sion at the third position of codon 249 in
human HCC cells (20).

Early studies reported a high occur-
rence of the mutation in tissue samples
from HCC patients living in areas such as
Qidong, China, where the risk of aflatoxin

exposure is high (15,16), and lower occur-
rences in samples from countries such as
Great Britain or Germany, where aflatoxin
exposure levels are low (21,22). After these
studies appeared, some investigators con-
cluded that the codon 249 base 3 G>T
transversion is a consequence of aflatoxin
exposure and a step in the development of
liver cancer in patients exposed to aflatoxin.
Since then, this conclusion has been fre-
quently and firmly expressed, but the corre-
lation between aflatoxin exposure, the
codon 249 G>T transversion, and liver can-
cer has not been quantified or fully
described. Is liver cancer in individuals
exposed to aflatoxin B, always associated
with the codon 249 G>T transversion?
Does the codon 249 G>T transversion in
liver cancer patients ever occur in the
absence of aflatoxin exposure? Is the excess
liver cancer associated with endemic afla-
toxin exposure explained by the occurrence
of codon 249 G>T transversions? What
variables modify the occurrence of codon
249 G>T transversions? From an epidemio-
logic perspective, it is desirable to assess the
strength of association between the pre-
sumed causal variable, aflatoxin exposure,
the intermediate variable, codon 249 G>T
transversion at the third base pair, and the
outcome variable, liver cancer. Quantifying
these relationships is a step toward making
predictive statements with implications for
reducing liver cancer incidence in popula-
tions exposed to high aflatoxin levels and
using codon 249 G>T transversions as
markers of aflatoxin exposure.
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In this paper, we describe a systematic
review of the literature and assess the quali-
ty of the data with respect to the above
questions. More than 20 studies in the past
5 years have described the occurrence of
codon 249 G>T transversions in HCC
patients living in geographic areas with
varying levels of aflatoxin exposures. We
describe an analysis of the data from multi-
ple small studies that relied primarily on
ethnicity and/or nationality as a surrogate
indicator of possible aflatoxin exposure.

Methods

A Medline search for the years 1991-1995
produced a data set of 123 abstracts of arti-
cles referring to p53 gene mutations or pro-
tein expression in hepatocellular carcino-
ma. References were obtained and included
in the analysis if the article described p53
mutations in a sample of patients with
hepatocellular carcinoma. Research was
excluded that measured p53 protein expres-
sion as markers for genetic mutation, but
did not describe gene sequencing. Review
articles, letters, and animal studies were
also excluded. Twenty-seven studies were
retrieved and reviewed for inclusion in the
analysis (14-16,21-44). Studies were
excluded if they did not provide sufficient
information on all patients for analysis
(33,41,45) or if they measured mutations
at codon 249 without reporting the total
number of p53 mutations in the sample
population (15,16,32,35). These included
some of the first studies to have noted a
high occurrence of mutations at codon
249. The final sample included 20 studies
published between 1991 and 1995 that
describe p53 mutations in patients with
hepatocellular carcinoma. The study sam-
ple sizes ranged from 12 to 140 with an
average sample size of 31.

In early studies, it was common to
sequence small fragments of the p53 gene
or to measure specific mutations, but in the
last few years it has become standard to
sequence exons 5-8, if not the entire p53
gene. This may mean that early studies
underestimated the occurrence of muta-
tions in the p53 gene. The first studies
quickly identified the frequent occurrence
of the G>T transversion at the third base
pair of codon 249 in liver cancer patients,
which lead to subsequent studies measur-
ing this particular mutation-only. This
research focus may have led to an overesti-
mate of the proportion of p53 mutations
occurring at codon 249 in liver cancer. In
the last few years, the trend has been
toward more extensive sequencing of the
gene. Variation in the extent of sequencing
may bias estimates of the prevalence of p53
mutations, as well as estimates of the pro-

Table 1. Proportions of HCC patients with p53 mutations, by categorization of aflatoxin exposure

Codon 249 G>T
transversions
Exons Age p53 in patients with  Specimen
References sequenced Gender range mutations  p53mutations? source?
Low aflatoxin exposure
Shietal. (74) 58 NI NI 0.31(13/42) 0(0/13) Singapore
Bourdon et al. (25) -1 16m,4f 28-68  0.30(6/20) 0(0/6) Italy
De Benedetti et al. (26) 5-8 Im,3f 975 0(0/12) 0(0/0) Alaska
Fujimoto (27) 6-8 NI NI 0.29 (4/14) 0(0/4) Asahikawa, Japan
Diamantis et al. (28) 5-8 NI NI 0.42(16/38) 0.19(3/16) Taiwan, China
Ng etal. (29 5-9 28m,3f 3872  0.23(6/26) 0.33(2/6) Hong Kong
) Chinese
Volkmann et al. (24) 5-8 NI 2-68  0.32(6/19) 0.17(1/6) Europe
Nose etal. (23) 2-9 18m,2f 28-67  0.15(3/20) 0(0/3) Japan
Hosono et al. (30} 5-8 20m 3071 0.15(3/20) 0(0/3) Taiwan Chinese
Nishida et al. (37) 4-10 4Om13f NI 0.32(17/53) 0(0/17) Kyoto, Japan
Shieh et al. (34) 58 12m,6f 2-74  0.06(1/18) 0(0/1) United States
Tanaka et al. (37) 5-8 NI NI 0.29(10/34) 0.30(3/10) Kyusha, Japan
Lietal. (38 7-8 NI NI 0.16 (3/18) 0.33(1/3) Shanghai, China
Hollstein et al. (39 5-8 12m,3f 17-713  0.13(2/15) 0.50(1/2) Thailand
Challen etal. (27) 6-7 9m,10f 21-76  0.11(2/19) 0(0/2) British
Oda et al. (40) 5-8 NI NI 0.33(46/140) 0.04 (2/46) Tokyo, Japan
Sheu et al. (42) 5-8 Om,21f 35-72  0.33(20/61) 0.15(3/20)  Taiwan
Kress et al. (22) 48 10m, 3f 1-72  0.15(213) 0(0/2) Germany
High aflatoxin exposure
Lietal. (38 7-8 NI NI 0.45 (9/20) 1.0(9/9) Qidong, China
Bressac et al. (43) 58 NI NI 0.50 (5/10) 0.80 (4/5) Southern Africa
Hsuetal. (42) 58 12m,4f 31-65  0.50(8/16) 0.88(7/8) Qidong, China

Abbreviations: HCC, hepatocellular carcinoma; NI, no information; m, male; f, female.
3Proportion of patients; number in parenthesis is number of patients.

bEthnicity, nationality, or geographic location.

portion of codon 249 mutations, although
the degree of bias has not been assessed. Of
the studies analyzed below, 12 reported
sequencing exons 5-8, 5 reported sequenc-
ing more than exons 5-8, and 3 sequenced
exons 6-8, 7-8, and 67 only.

The studies relied on the patient’s
nationality or the country that supplied the
tumor samples as surrogate markers for
exposure. The patients were not inter-
viewed to determine their diets, food
sources, or previous residences; no study
measured actual agricultural exposure, and
only one study reported measuring bio-
markers of aflatoxin exposure. Hollstein
and colleagues measured DNA adducts in
the liver and serum albumin of their 15
HCC patients in Thailand (39). For the
purpose of this review, patients were cate-
gorized as having high or low presumed
aflatoxin exposure based on the authors’
assessment of aflatoxin exposure and the
International Agency for Research on
Cancer monograph designating countries
as areas of high or low aflatoxin exposure
(19). Thus, exposure was not actually mea-
sured, but nationality or geographic resi-
dence were used as surrogates for exposure.

The assignment of nationality was itself a
problem in some studies, many of which
relied on stored tumor specimens at universi-
ty hospitals where patients may have come

Environmental Health Perspectives « Volume 105, Number 4, April 1997

from wide geographic areas. For example,
the study by Oda and colleagues relied on
tumor samples obtained from 140 patients at
the National Cancer Center Hospital, in
Tokyo, Japan (40). Of the patients, 128
were Japanese, 6 were Korean, 4 were
Indonesian, and 2 were Taiwanese. The
authors considered the group of patients to
have been “mainly Japanese” and to have
had low exposure to aflatoxin B,. Although
the authors described nationalities of the
patients, it was not clear whether the non-
Japanese patients were immigrants living in
Japan or foreigners coming to Japan for
treatment. The data were not presented by
nationality and there was no way for a reader
to remove the non-Japanese patients from
the study sample. Thus, the entire group col-
lected by Oda and colleagues was categorized
as Japanese and as having low aflatoxin expo-
sure, which leaves open the possibility that
some patients in the group may have had
high aflatoxin exposure but were misclassi-
fied as low exposure. Misclassification was a
possibility in all these studies, a fact that is of
concern because even nondifferential mis-
classification can bias the measure of effect,
usually towards the null hypothesis (46,47).
Despite the limitations of the exposure
data, we proceeded with the analyses
because the literature so frequently cites the
example of aflatoxin, codon 249 G>T
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transversions, and liver cancer as demon-
strating that »53 mutations are markers for
exposure. In our analyses, we relied on
nationality as a surrogate of exposure and
found that studies reported data for a total
of 628 HCC patients, 46 of whom were
categorized as high aflatoxin exposure, and
582 of whom were categorized as low afla-
toxin exposure. The high aflatoxin group
included patients from Qidong, China, and
southern Africa. The low aflatoxin group
included patients from Singapore, Italy,
Alaska, Japan, Taiwan, Europe, Shanghai,
Thailand, Great Britain, and Germany.

The studies provided little information
on variables that may be associated with
the causal, intervening, or outcome vari-
ables, or variables that may modify the
effect of aflatoxin exposure on the occur-
rence of codon 249 G>T transversions.
Seven of the 20 studies provided no infor-
mation on the gender or age of the
patients. Information on gender was avail-

-able for 317 patients, 242 of whom were
males (76%) and 75 of whom were females
(Table 1). In most studies, p53 data were
not cross-tabulated with gender, thus pre-
cluding the analysis of data by gender. In
studies that presented tables of raw data,
the reader had the option of reanalyzing
the data by age; in most studies, informa-
tion about the age of the patient was pre-
sented as a range describing the entire
patient group. Four studies included
patients under 10 as well as patients over
70; 7 studies included patients in their 20s
through 70s. Two studies reported patients
in their 30s through 70s. It would be desir-
able to restrict patients to those with onset
in adulthood. The inclusion of patients
whose cancer may have had strong heredi-
tary components rather than environmen-
tal etiologies would bias the measure of
effect by underestimating the proportion of
codon 249 G>T transversions in a group of
liver cancer patients. In our analyses it was
not possible to remove childhood cancer
patients from the patient groups.

Thirteen studies provided information
about hepatitis B serology that was cross-
tabulated with p53 data. Hepatitis B sur-
face antigens were measured in 11 of the
studies and hepatitis B viral DNA was mea-
sured in 2 of the studies. Data were avail-
able describing hepatitis B serology for 449
patients; thus it was possible to assess the
role of hepatitis B exposure as a potential
confounder of the relationship between
aflatoxin exposure and p53 codon 249
G>T transversions. Because ecologic data
show a correlation between hepatitis B sur-
face antigen positivity and the incidence of
liver cancer and there is some geographic
overlap with the areas of high aflatoxin
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exposure, it would be useful to separate the
associations of hepatitis B and aflatoxin
with p53 mutations, and the codon 249
G>T transversion in particular.

Only 1 study of the 20 reviewed mea-
sured p53 mutations in two groups of
patients—one with high probability of
exposure to aflatoxin and the second with a
lower probability of exposure to aflatoxin.
The remaining 19 studies measured p53
mutations in patient groups that were
either high or low exposure and compared
their results to those obtained in other
studies. Thus, it was not possible to calcu-
late measures of effect within studies, and
approaches involving weighted averages of
stratum specific effects (e.g., Mantel-
Haenszel) could not be used.

Results
Aflatoxin and p53 mutations. The data are

summarized in Table 1. Eighteen studies
described patients with presumed low levels
of aflatoxin exposure and three studies
described patients with high levels of aflatox-
in exposure (one study described two groups
of patients). Data were reported from a total
of 628 patients: 582 with low aflatoxin expo-
sure and 46 with high aflatoxin exposure.
The proportions of HCC patients with p53
mutations ranged from 0 to 0.42 in the low-
exposure group and from 0.45 to 0.50 in the
high-exposure group (p = 0.0077, Wilcoxon

rank test), indicating an association between
253 mutations and higher presumed aflatox-
in exposure.

53 mutations were reported in 183
HCC patients, 36 of whom had G>T
transversions at the third base of codon
249. In the low aflatoxin exposure group,
the proportion of codon 249 G>T trans-
versions out of all 53 mutations ranged
from 0 to 0.50 in the 18 studies. In the
high aflatoxin exposure group the propor-
tion ranged from 0.80 to 1.0 (» = 0.0055,
Wilcoxon rank test). These data suggest
that high presumed aflatoxin exposure is
associated with higher proportions of
codon 249 G>T transversions in HCC
patients with »53 mutations.

Hepatitis B and aflatoxin. Aflatoxin
exposure is often seen in regions with high
hepatitis B exposure, and it would be impor-
tant to distinguish the separate effects of
these two independent exposures. Thirteen
studies collected data on the occurrence of
253 mutations by hepatitis B serology in
liver cancer patients (Table 2). Data were
available on a total of 449 patients, 201 of
whom had positive hepatitis B serology and
248 of whom had negative hepatitis B serol-
ogy. To determine whether hepatitis B
exposure was associated with aflatoxin expo-
sure, we compared the distribution of posi-
tive hepatitis B serology in the presumed
high and low aflatoxin groups. The propor-

Table 2. Proportions of p53mutations and codon 249 G>T transversions in HCC patients by hepatitis B serology

RR p53 Codon 249 mutations
p53mutations mutations, among patients with
Hepatitis B by hepatitis B hepatitis p53mutations, by
References measure exposure? B +and B- hepatitis B exposure?
Categorized as low B+ B- B+ B-
aflatoxin exposure
Bourdon et al. (25) HbsAg, 2/5(0.4) 3/15(0.2) 2 0/2 0/3
anti-HBc, or
anti-HBs
De Benedetti et al.(26) HbsAg 0/10 0/2 - - -
Ng etal. (29) HbsAG 6/24(0.25) 0/2 - 2/6(0.33) 0/0
Volkmannetal.(24) HBV 2/7(0.29) 4/12(0.33) 0.86 1/2(0.5) 0/4
Nose et al. (23) HbsAG 1/8(0.13) 2/12(0.17) 0.75 01 0/2
Hosono et al. (30) HbsAG 3/17(0.17) 0/3 - 0/3 0/0
Nishida et al. (37) HbsAg 3/7(0.43) 14/46 (0.30) 1.4 0/3 014
Shieh et al. (34) HbsAg, 0/6 1/12.(0.08) = 0/0 01
anti-HBc, or
anti-HBs
Lietal. (38) HBV DNA 3/15(0.2) 0/3 - 1/3(0.33) 0/4
Hollstein et al. (39) HbsAg 2/7(0.29) 0/6 - 1/2(0.5) 0/0
Oda et al. (40) HbsAg 10/30(0.33)  36/98 (0.36) 0.92 1/10(0.1) 1/36 (0.03)
Sheu etal. (42) HbsAG 15/41(0.37) 5/20 (0.25) 1.46 3/15(0.2) 0/5
Categorized as high
aflatoxin exposure
Lietal. (38) HBV DNA 8/16 (0.5) 1/4(0.25) 2 8/8(1.0) 11(1.0
Bressac et al. (43) HbsAg or Ab 5/8 (0.63) 01 - 4/5(0.8) 0/0

and/or anti-HBc

Abbreviations: HCC, hepatocellular carcinoma; RR, relative risk; B+, positive for hepatitis B; B-, negative
for hepatitis B; HbsAg, hepatitis B surface antigen; anti-HBs, anti-hepatitis B surface antigen; HBV, hepat-
itus B virus; HbsAb, hepatitis B surface antibody; anti-HBc, anti-hepatitis B core antigen.

aNumber of patients; number in parenthesis is proportion of patients.
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tion of HCC patients with positive hepatitis
B serology ranged from 13.2 to 92.3% with-
in the presumed low aflatoxin exposure
group and from 80 to 88.9% in the pre-
sumed high aflatoxin exposure group, but
the difference between the two groups was
not statistically significant (p = 0.234,
Wilcoxon rank test). Thus, in these data,
hepatitis B positive serology was not statisti-
cally associated with aflatoxin exposure level,
although high proportions of hepatitis B
positive serology were observed in the high
aflatoxin exposure group.

Aflatoxin and p53 mutations, control-
ling for hepatitis B. The association
between high aflatoxin and p53 mutations
was still observed even after restricting the
analysis to hepatitis B positive patients.
The proportions of p53 mutations were
lower in patients with presumed low afla-
toxin exposure compared to the high expo-
sure group (Table 2; 0-0.43 in the low
group, 0.5-0.63 in the high group; p =
0.04, Wilcoxon rank test). We could not
make a similar comparison for hepatitis B
negative patients because the numbers of
hepatitis B negative patients with high afla-
toxin exposure were so small.

The association between aflatoxin and
codon 249 G>T transversions also was
observed after restricting the analysis to
hepatitis B positive patients. The proportions
of codon 249 G>T transversions were lower
in patients with presumed:low aflatoxin
exposure compared to the high exposure
group (Table 2; 0-0.5 in the low group,
0.8-1.0 in the high group; p = 0.04,
Wilcoxon rank test). Again, we could not
make a similar comparison for hepatitis B
negative patients because the numbers of
hepatitis B negative patients with high afla-
toxin exposure were so small. Thus, it
appears that the association between aflatox-
in and p53 mutations is not explained by any
confounding introduced by possible associa-
tions between aflatoxin and hepatitis B.

Hepatitis B and p53 mutations, control-
ling for aflatoxin. We then attempted to
assess the independent association of hepati-
tis B positive serology with p53 mutations.
53 mutations were reported in 60 out of
201 (29.9%) patients with positive hepatitis
B serology and in 66 out of 248 (26.6%)
patients with negative hepatitis B serology.
The Mantel-Haenszel estimate of the rela-
tive risk was 1.3 (CI, 0.88-1.82) for the
effect of hepatitis B exposure on the occur-
rence of p53 mutations, indicating the possi-
bility of a small increase in p53 mutations
associated with hepatitis B exposure, but the
confidence interval of the estimate included
1. In seven of these studies, the small sample
sizes resulted in zero cells, and relative risks
were not calculated. In six studies of patients

with presumed low aflatoxin exposure, the
estimates of relative risk for the effect of
hepatitis B exposure on the occurrence of
53 mutations were as follows: 0.75, 0.86,
0.92, 1.41, 1.46, and 2.0. Two studies
showed a protective effect of hepatitis B
exposure, one study showed no effect, and
three studies showed increases in p53 muta-
tions associated with hepatitis B exposure.
In the two studies describing patients with
presumed high aflatoxin exposure, one study
had zero in one of its cells and no relative
risk was calculated. The second study (38)
reported twice as many hepatitis B positive
patients (8/16) with p53 mutations com-
pared to hepatitis B negative patients (1/4).
The data suggest that hepatitis B positive
individuals may have an increased occur-
rence of p53 mutations, independent of the
effect of aflatoxin exposure, but the increase
was not statistically significant in these data.
Given the occurrence of a p53 mutation, it
was then of interest to determine whether
hepatitis B positive serology was associated
with an increase in the occurrence of codon
249 G>T transversions.

Of the 130 p53 mutations in HCC
patients for whom hepatitis B serology was
measured, 26 (20%) were codon 249 base 3
G>T transversions. Of the 11 studies that
reported hepatitis B serology and codon
249 G>T transversions in patients with pre-
sumed low aflatoxin exposure, 6 studies
showed a higher proportion of codon 249
G>T transversions in the hepatitis B posi-
tive group than in the hepatitis B negative
group. In five of these six studies, relative
risks could not be calculated in the studies
with zero cells, but the one study with data
in all four cells showed a relative risk of 3.3
(40). The other five studies found no codon
249 G>T transversions in either group
(Table 2). The data seem to suggest an asso-
ciation between hepatitis B positive serology
and the codon 249 G>T transversion in
patients with low aflatoxin exposure, but
statistical tests were not significant.

It would be interesting to know
whether hepatitis B positive serology was
associated with an increase in codon 249
G>T transversions in patients with high
aflatoxin exposure. Two studies reported
hepatitis B serology and codon 249 G>T
transversions in patients with presumed
high aflatoxin exposure. Almost all the
patients had hepatitis B positive serology
and almost all the patients had codon 249
G>T transversions; thus, it was not possible
to separate the effects of aflatoxin and
hepatitis B in this group of patients.

Discussion

As early as 1991, Ozturk (15) stated that “a
codon 249 mutation of the p53 gene identi-
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fies an endemic form of HCC strongly asso-
ciated with dietary aflatoxin intake.” By
1993, Oda et al. (40) stated, “A specific type
of p53 mutation has also been demonstrated
in HCC:s of subjects exposed to food conta-
minated with aflatoxin B, in which most
mutations are G to T transversions occur-
ring at codon 249.” These were based on
small, uncontrolled studies. We systemati-
cally reviewed the literature to assess the evi-
dence supporting these earlier assertions. In
our review, we found major methodologic
limitations in the studies. It is of particular
concern that the key independent variable of
interest, aflatoxin exposure, was not assessed
in these studies, except for one study that
measured a marker of exposure. Instead,
nationality, geographic residence, or geo-
graphic site of hospital were used as surro-
gate markers for exposure. The inappropri-
ate inclusion of childhood cancers, the limit-
ed information regarding important vari-
ables such as age and gender, and the
absence of information regarding variables
such as smoking and alcohol consumption
further limit our ability to assess the strength
of association between aflatoxin exposure
and codon 249 G>T transversions.

Nonetheless, our review of the data
suggests that liver cancer patients from geo-
graphic areas with high aflatoxin levels
were more likely to have p53 mutations
than were patients from areas with low
aflatoxin levels. Similarly, in the group
with 53 mutations, patients from high
aflatoxin areas had higher proportions with
codon 249 G>T transversions. The differ-
ences in proportions of patients with p53
mutations were significant, as were the dif-
ferences in proportions of codon 249 G>T
transversions among patients with p53
mutations. It is possible that aflatoxin may
increase the proportion of p53 mutations
by causing a single mutation, the codon
249 G>T transversion, thus explaining
some of the excess liver cancer associated
with aflatoxin exposure.

Because the studies did not actually
measure aflatoxin exposure or dietary intake
and because only one study measured a bio-
marker of exposure, the possibility remains
that factors other than aflatoxin exposure
can explain the pattern of p53 mutations.
Without an actual measure of aflatoxin
exposure it was not possible to say whether
aflatoxin B, is always associated with the
codon 249 G>T transversion. For example,
while two patients in the high aflatoxin
group did not show codon 249 G>T trans- -
versions but showed other p53 mutations
instead, the authors provided no evidence
that these individuals actually were exposed
to high aflatoxin levels. Furthermore, half
the patients in the presumed high aflatoxin
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group did not have any p53 mutations. It
was also unclear whether the codon 249
G>T transversion occurred in the absence
of aflatoxin exposure. The mutation was
reported in 16 individuals living in areas
with low aflatoxin levels. Perhaps these
individuals had migrated from other areas
and had, in fact, been exposed to aflatoxin;
national residence is a poor surrogate for
lifetime exposure to aflatoxin. Alternatively,
aflatoxin may not be the only carcinogen to
cause the codon 249 G>T transversion.

Our analysis of published data suggests
that hepatitis B positive serology may be
independently associated with the codon
249 G>T transversion. That is, in patients
with presumed low aflatoxin exposure,
patients positive for hepatitis B seemed to
have higher occurrences of the mutation.
Such a finding may be biologically plausi-
ble, although the exact role of hepatitis B
viral infection in promoting codon 249
G>T transversions is debated (16,33,34,36,
48). The complex interrelationships between
aflatoxin exposure, hepatitis B history, hepa-
tocellular carcinoma, and p53 mutations
could not be sorted out with the data from
these studies. However, they suggest the
possibility of independent effects of aflatox-
in and hepatitis B on the occurrence of the
codon 249 G>T transversion in p53. While
the associations between hepatitis B and p53
mutations (and the codon 249 G>T trans-
version) were not statistically significant,
they may warrant further investigation. The
1993 IARC monograph (19) stated, “what
evidence is available does not strongly sug-
gest a direct relationship between codon 249
mutation and HBV status” and cited three
studies comprised of observations from 40
patients; two of the studies reported no
codon 249 mutations in any patient (posi-
tive or negative for hepatitis B). Based on
our review of the data, we would be inclined
to examine this question further.

Several examples have been cited in the
literature that illustrate the possibility that
53 mutations serve as the fingerprint of
environmental carcinogens. Of these, the
association between aflatoxin, codon 249
G>T transversions, and hepatocellular car-
cinoma may be one of the clearest exam-
ples. We systematically reviewed the litera-
ture regarding this example to determine
whether the data support the concept that
253 mutations are the markers of aflatoxin
B,, an environmental carcinogen. We con-
cluded that the data do not yet permit
quantification of the association between
aflatoxin and codon 249 mutations and
that it is premature to state definitively that
the codon 249 G>T transversion is the fin-
gerprint of aflatoxin B,. Epidemiologic
methods and principles can be applied to
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this newly emerging and fascinating area of
research. In particular, we suggest a more
complete characterization of exposure, larg-
er sample sizes, use of control groups with-
in studies, data reporting that permits
cross-tabulation of relevant characteristics,
information pertaining to potential con-
founders, and appropriate statistical analy-
ses. From an epidemiologic point of view,
fundamental research has yet to be done.
The data regarding p53 mutations in hepa-
tocellular carcinoma are intriguing and
suggestive, but conclusions that p53 muta-
tions are established markers for environ-
mental carcinogens are premature.
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