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To evaluate the age-related response of essential cell fiuctions against peroxidative damage in
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Because1the protee ymes for oxygen rad sinagedra d environ-
ments, lipid peroxidation in the liver was highly induced. In iged rats, lipid peroiaion i
intracellular structuIre suc as and also e i .cd by hot
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hypertophy and vacuoated d ration in hepatic Bells. In d rats, both mitochondria and
endoplasmic reticulum of the hepatic cells showed serious distortion in shape as a result of eXPo-
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sure. In isolated hepaticcells ad plukocytes i anuial, the 7-Da
shock-induced proteins were in by heat stress. In condusion, the heat stress-
inducible oxygen radical danitp becomes more severe according to the a frats. ng
andhyperthermiahaeas nergticeffectonipid p
oxygen radicals may be nia r surviving and recove fm thermal imj'ury i aged ani-
mal and as in hu w P450, electron tanport, gIn-
tathionepoidae hatidu yper a, lipid n,ono a ygen r
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A 1996 report by a task group convened by
the World Health Organization (WHO), the
World Meteorological Organization
(WMO), and the United Nations Environ-
mental Programme (UNEP) (1) indicated
that one of the most important direct impacts
of global warming would be a greater fre-
quency and greater duration of exposure to
hotter temperatures, especially during the
summer months.

Typical hyperthermia sometimes occurs
during severe heat waves in summer and as
a result of hard exercise throughout the
world. In some temperate large cities,
extreme heat stress is associated with an
enhanced heat island effect. The incidence
of heat-related morbidity, such as heat
stroke in aged persons, has been shown to
increase as a result of exposure to extremely
hot temperatures in summer (2-4). Heat
stroke is caused by severe hyperthermia, and

rectal temperatures of typical patients are
higher than 400C. Many organs including
the central nervous system are damaged by
severe hyperthermia and thrombus infarct,
and death from heat stroke may be caused
by injury of these organs.

In animals and humans, some physiolog-
ical and biochemical adaptations could occur
to protect essential cell functions against heat
stress and to permit a rapid recovery from
moderate hyperthermic damage (5-2); how-
ever, each tissue and organ has a different
sensitivity for sustaining thermal injury
(8-11). Therefore, it is necessary to study
the biochemical mechanism of hyperthermic
damage and age-related response under hot
environmental conditions.

Many biological processes, such as
ischemia-reperfusion, inflammation, and
an uncoupling reaction of electron trans-
port systems in mitochondria and micro-

somes, produce oxygen radicals from mole-
cular oxygen (12,13). Heat stress sometimes
increases oxygen radicals, possibly by the
disruption of the electron transport assem-
blies of the membrane (14).

Cellular and intracellular membrane dam-
age and denaturation of enzymes might be
important in the pathogenesis of heat injury.
The oxygen free radical damage of biological
membranes and high molecules is a destruc-
tive phenomenon that is associated with
many types of cellular damage (15,16). In the
guinea pig, significant lipid peroxidation in
liver occurred in passive hyperthermia caused
by a hot environment. Because the peroxida-
tion of lipids in biological membranes is a
destructive phenomenon that is associated
with a variety of cellular damage, hyperther-
mia has been shown to develop pathological
degeneration in hepatic cells (11).

For the protection of cell function from
lipid peroxidation, two types of glutathione
peroxidases (GSH peroxidase; EC 1.1 1.1.9),
such as selenium GSH peroxidase and non-
selenium GSH peroxidase are very important
(17,18). The activities of these enzymes are
markedly different among animal species.
Selenium GSH peroxidase activities in
human liver are very low in comparison with
that in rat liver, and selenium GSH peroxi-
dase is not active in guinea pig liver (19.

It has been proven that the heat stress-
inducible GSH peroxidase is a selenium
GSH peroxidase (11). Therefore, it is neces-
sary to prove that a relationship exists
between age-related induction of GSH per-
oxidase and lipid peroxidative damage
under hot environmental conditions. Since
GSH peroxidase activities were not induced
in guinea pig liver, marked peroxidative
damage has been shown to occur in mito-
chondrial electron transport systems under
hot environmental conditions (11).

Peroxidative damage is related to the
production of the protective enzymes for
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peroxides such as GSH peroxidase, GSH
transferase, and catalase (EC 1.11.1.6).
Therefore, animal experiments were carried
out to study the relationship between age-
related changes of protective enzyme activi-
ties and the peroxidative damage of heat
stress on intracellular structure, such as
mitochondria and endoplasmic reticulum.

Materials and Methods
Materials. Cytochrome c and glutathione
reductase (EC 1.6.4.2) were purchased
from the Sigma Chemical Co. (St. Louis,
MO). NADH, NADPH, and GSH were
purchased from the Wako Pure Chemical
Co. (Tokyo, Japan). Sephadex G-25 was
purchased from Pharmacia Fine Chemicals
(Uppsala, Sweden), and an 125I-corticos-
terone radioimmunoassay kit was purchased
from ICN Biochemicals Inc. (Costa Mesa,
CA). All other chemicals were of the highest
purity that was commercially available.

Animal treatment. One hundred and
twenty SPF-grade 5-week-old male Fisher
rats (Clea Japan Inc., Tokyo, Japan) were
housed in 23 ± 0.5°C under a 12-hr
light:12-hr dark cycle. All animals were
allowed free access to laboratory chow (Clea
Japan Inc.) and distilled water. When rats
were 7 weeks old, 12 months old, 17
months old, or 25 months old, rats were
randomly divided into the following experi-
mental groups. Eighty 7-week-old rats were
divided into four treatment groups. Each
rat was housed at 25 ± 0.5°C, 30 ± 0.5°C,
32 ± 0.5°C, and 35 ± 0.5°C at 40 ± 10%
relative humidity for 7-42 days. Ten rats
from each of the 12-, 17-, or 25-month-old
groups were divided into two treatment
groups and housed at 25 ± 0.5°C and 35 ±
0.5°C at 40 ± 10% relative humidity for 3
or 7 days, respectively. After exposure to
various environmental temperatures, ani-
mals were sacrificed between 10:00 A.M.
and noon by severing the main abdominal
artery while under ether anesthesia. Tissues
and organs were prepared for photomicro-
graphic and electronmicrographic examina-
tion. Serum and tissue cell samples were
prepared for biochemical analysis.

Electronmicroscopy. The tissue samples
were fixed in a solution consisting of 2%
paraformaldehyde/2.5% glutaraldehyde in
0.1 M sodium phosphate buffer (pH 7.5)
for 2 hr at 40C. The tissue samples were
rinsed in several changes of fixative solution
over a period of 2 hr and were then fixed in
1% osmium tetraoxide/sodium phosphate
buffer (pH 7.5) using an automatic sample
fixative apparatus (Rotex RX-90, Australian
Biochemical Co., Mordialloc, Australia).
The samples were dehydrated, sectioned,
and stained in 8% saturated uranyl acetate
followed by lead citrate. Observation was

carried out using a JEX-1200EXII electron
microscope Ueol Co., Tokyo, Japan).

Preparation of samples. Mitochondria,
microsomes, and cytosols for enzyme assay
were prepared from liver according to the
method described previously (11). Liver
was thoroughly perfused with cold 0.9%
NaCI and homogenized with 9 volumes of
cold 0.15 M KCl, 10 mM HEPES buffer
(pH 7.4) in a Potter-Elvehjem glass-Teflon
homogenizer (Wheaton, Millville, NJ) in
an ice bath. The homogenate was then cen-
trifuged at 900g for 10 min. The super-
natant was then centrifuged 7,000g for 10
min and at 105,000g for 60 min. The
washed mitochondria and microsomes
were suspended in 0.15 M KCI, 10 mM
HEPES (pH 7.4).

To get the purified mitochondria, the
density gradient isopycnic centrifugation of
mitochondria was performed according to
the modified method of Neuberger et al.
(20). Homogenates, mitochondria, micro-
somes, and cytosols were immediately placed
in liquid nitrogen and stored at -80°C.

Analytical methods. Rectal temperature
and eyeball temperature were measured using
a digital thermometer (TD-300; Shibaura
Electron, Co., Urawa, Japan) and an infrared
radiation thermometer (505-S; Minolta Co.,
Osaka, Japan), respectively. Serum corticos-
terone was measured by radioimmunoassay
(RIA) using a kit from ICN Biochemicals
according to the manufacturer's instructions.
Cytochrome P450 and cytochrome b5 in
liver microsomes were determined according
to the modified method of Omura and Sato
(21) and Estabrook and Werringloer (22),
with extinction coefficients of 91/mM/cm
(between 490 and 450 nm) and 185/mM/cm
(between 426 and 409 nm), respectively. The
concentration of microsomes for assays of
cytochrome P450 and cytochrome b5 was 3
mg protein/ml. Protein was determined using
a commercial kit (Bio-Rad Laboratories, Inc.,
Hercules, CA) for the Bradford protein assay
(23.

Thiobarbituric acid reacting substances
(TBARS) were determined according to
the modified method of Ohkawa et al. (24)
and Miller et al. (25). Hepatic cytosolic
glutathione content was determined
according to the method of Tietze (26).

Preparation of heat-stressed cells.
Isolated hepatic cells from rats were
obtained according to the modified method
of Seglen (22). Hepatic cells and polymor-
phonuclear leukocytes (PMNs) were grown
at 37°C or under heat stress at 43°C for 60
min and then labeled with [35S]methionine
at 37°C for 120 min. After labeling, the
cells were harvested and the labeled proteins
were analyzed by SDS-gel electrophoresis.
SDS-polyacrylamide gel electrophoresis

(SDS-PAGE) was performed according to
Laemmli (28) using 12.5% (w/v) acry-
lamide gels, and the electrophoresed protein
was assayed using autoradiograms.

Enzyme assay. To determine the activi-
ties of mitochondrial cytochrome c oxidase,
the oxidation of reduced cytochrome c was
assayed according to Ando et al. (11) using
a UV-240 spectrophotometer equipped
with a computer (Shimadzu Co., Kyoto,
Japan). To determine the activities of the
mitochondrial cytochrome c reductase sys-
tem, the reduction of oxidized cytochrome
c was assayed (11).

Aminopyrine N-demethylase activities
(AP demethylase) were assayed as the for-
mation of formaldehyde by the method of
Orrenius (29) using 5'-AMP to prevent the
breakdown of NADPH by microsomal
pyrophosphatase (30). Assay of tetra-
methylparaphenylenediamine (TMPD)
peroxidase activities were performed as
described by O'Brien and Rahimtula (31).
Reaction rates were corrected for TMPD
oxidation without cumene hydroperoxide
and were measured by following the rate of
Wurster's blue free radical formation at
610 nm, with an extinction coefficient of
11.6/mM/cm.
NADPH cytochrome P450 reductase

and NADH cytochrome b5 reductase activ-
ities were assayed using the methods of
Omura and Takesue (32) and Takesue and
Omura (33), respectively.

GSH peroxidase activities were mea-
sured by a modification of the coupled
assay procedures of Paglia and Valentine
(34). The reaction mixture for total GSH
peroxidase activities contained 60 pg hepat-
ic cytosolic protein/ml, 0.25 mM GSH,
0.12 mM NADPH, 1 unit/ml GSH reduc-
tase, 1.5 mM sodium cyanide, 0.1 mM
EDTA, and 0.2 mM cumene hydroperox-
ide in 50 mM HEPES buffer (pH 7.6). The
reaction mixture for selenium GSH peroxi-
dase activities contained 60 pg hepatic
cytosolic protein/ml, 0.25 mM GSH, 0.12
mM NADPH, 1 unit/ml GSH reductase,
1.5 mM sodium cyanide, 0.1 mM EDTA,
and 0.2 mM tert-butyl hydroperoxide in 50
mM HEPES buffer (pH 7.6).

Cytosolic superoxide dismutase (SOD;
EC 1.15.1.1), cytosolic glutathione S-trans-
ferase (GSH transferase; EC 2.5.1.18), and
catalase (EC 1.11.1.6) activities were assayed
as described by Ponti et al. (35), Habig et al.
(36), and Aebi (32), respectively, using 50 pg
of hepatic protein/ml. The enzyme activities
were assayed by recording the absorbance
change using the UV-240 spectrophotometer.

Statistical evaluation. Statistical analysis
was carried out using the F and t-test of
Snedecor and Cochran (38); p<0.05 was
considered significant.
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Figure 1. Body rectal temperature and eyeball
temperature records in 7-week-old rats under
various environmental temperatures at 40 ± 10%
relative humidity for 6 days. Each value repre-
sents the mean temperature ± standard deviation
for five rats.

Results
As shown in Figure 1, typical passive hyper-
thermia was observed in 7-week-old rats; rec-
tal temperature immediately increased after
exposure to hot environmental temperatures.
In rats, rectal temperature obviously exhibit-
ed the thermal homeostasis to hot environ-
ments during heat stress. In aged rats, the
rectal temperature also maintained the ther-
mal homeostasis and increased the same
degree as in 7-week-old rats, but in aged rats,
the damage from heat stress was more serious
than for young rats. In 17-month-old rats, it
was difficult for animals to survive for 7 days
at 35°C; therefore, heat stress experiments
were carried out for 3 days.

Exposure to hot environments induced
serious histochemical changes in various
organs such as liver, kidney, lung, testis, and
heart. As shown in Figure 2A, the hepatic
cells around the hepatic vein developed
hypertrophy to a great extent, and vacuolated
degeneration was observed during 1-6 weeks

in a hot environment. The electron micro-
graph shows that heat stress also affects the
intracellular structure of the hepatic cell,
including mitochondria, smooth endoplas-
mic reticulum, and peroxisomes (Fig.
2B-D). In aged rats (Fig. 2C), these histo-
chemical and intracellular changes were more
serious than those in young rats (Fig. 2B).

In aged rats, the distorted shapes of
mitochondria of hepatic cells were marked-
ly increased under hot environmental con-
ditions (Fig. 2D). There was a significant
increase in peroxisome proliferation. Lipid
droplets and the distorted shape of smooth
endoplasmic reticulum were also observed
under hot environmental conditions (Fig.
2B,C).

In young rats, hepatic cytosolic GSH
peroxidase activities, especially selenium
GSH peroxidase activities, were greatly
induced in response to increased environ-
mental temperatures. Increased GSH per-
oxidase activities in liver continued during

Figure 2. Photomicrograph [(A) x251 and electron micrographs of hepatic cells in (B) a 7-week-old rat (x3,000) and in a 12-month-old rat [(C) x3,000 and (D)
x20,0001 during 7 days in a hot environment (350C). Hypertrophy and vacuolated degeneration of hepatic cells are present around the hepatic vein (A). In aged
rats, the histochemical and intracellular changes were more serious than in young rats, and distorted shapes of mitochondria and markedly increased numbers
of peroxisomes and lipid droplets were observed (C,D).
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the period of long-term heat exposure as
shown in Figure 3.

Under normal environmental condi-
tions, hepatic cytosolic GSH peroxidase
activities markedly increased according to
the age of animals, whereas the activities of
hepatic GSH peroxidase in aged rats were
not induced, but were slightly decreased by
a hot environment, as summarized in Table
1. In young rats, hepatic cytosolic GSH
transferase activities were also slightly
induced during the period of long-term
heat exposure as shown in Figure 4.

As summarized in Table 1, hepatic cata-
lase activities in young rats were not affected
by hot environments. Under normal envi-
ronmental conditions, the catalase activities
markedly decreased according to the age of
animals. In aged rats, catalase activities in
liver and kidney were seriously decreased by
hot environments. Both in young rats and
aged rats, GSH peroxidase in organs such as
heart, kidney, and brain were not affected
by hot temperatures.

The antioxidant components, such as
SOD and GSH, did not change with a hot
environment in this experiment. Activities
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Figure 3. Effect of long-term heat exposure on
hepatic glutathione peroxidase (GSH-PO) activi-
ties in young rats. Each value represents mean
activity ± standard deviation of five rats.
*Significantly different from control values mea-
sured at 25°C (p<0.05).

of hepatic cytosolic SOD in young rats
changed from 13.2 ± 0.5 to 12.9 ± 1.5
unit/mg protein after exposure to hot tem-
perature (35°C). Cofactors of antioxidant
enzymes such as GSH and oxidized glu-
tathione (GSSG) changed from 5.50 ± 0.31
to 5.41 ± 0.44 pmol/g liver and from 0.26 ±
0.021 to 0.24 ± 0.029 pmol/g liver, respec-
tively, after exposure to a hot environment.

In young rats, lipid peroxidation in liver
was induced in response to the increased
environmental temperatures. Increases in
lipid peroxidation in liver continued during
long-term heat exposure (Fig. 5). Since the
protective enzymes for oxygen radicals in
aged rats such as GSH peroxidase, GSH
transferase, and catalase were decreased by
hot environments, lipid peroxidation in liver
was greatly induced, (see Table 2). Induction
of TBARS in liver was observed when the
rats were exposed to 350C, whereas the pro-
duction of lipid peroxidation was not affect-
ed by exposure to 32°C or less (Fig. 5).

In young rats, the production ofTBARS
in intracellular structures of hepatic cells
such as mitochondria and microsomes were
not affected by hot temperatures. In aged
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Figure 4. Effect of long-term heat exposure on
hepatic glutathione transferase (GSH-T) activities
in young rats. Each value represents mean activi-
ty ± standard deviation of five rats. *Significantly
different from control values measured at 250C
(p<0.05).

rats, the productions of TBARS in mito-
chondria and microsomes were markedly
induced by hot environments (Table 2).

In young rats, lipid peroxidation in the
kidney was not affected by hot environ-
ments, whereas in aged rats, lipid peroxida-
tion in the kidney was significantly induced
by hot temperatures. Both in young rats and
aged rats, lipid peroxidation in other organs
such as heart and brain was not affected by
hot environments (data not shown). Serum
corticosterone levels were slightly affected by
heat stress (data not shown).

Because endoplasmic reticulum of
hepatic cells in aged rats showed distorted
shapes under a hot environment, microso-
mal electron transport systems were assayed.
In aged rats, hepatic microsomal electron
transport systems, such as AP demethylase
activities, were seriously affected by hyper-
thermia as summarized in Table 3.
Cytochrome P450 reductase activities were
also slightly reduced in hyperthermia. In
young rats, microsomal electron transport
systems were not affected by hyperthermia.
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Figure 5. Effect of long-term heat exposure on
hepatic thiobarbituric acid reacting substances
(TBARS) production in young rats. Each value rep-
resents mean malondialdehyde (MDA) production ±
standard deviation of five rats. *Significantly differ-
ent from control values measured at 250C (p'0.05).

Table 1. Effect of environmental temperature on the activities of cytosolic GSH peroxidase, cytosolic GSH transferase, catalase in liver and kidney, and hepatic
mitochondrial cytochrome c oxidase and cytochrome c reductase systems in young and aged rats

7-week-old 12-month-old 17-month-old 25-month-old
25Oca 35Oca 25oCa 35OCa 25Oca 35OCb 25Oca 35OCb 35oCa

GSH-peroxidase (nmol NADPH/mg protein/min) 441 ± 33 594 ± 51* 749 ± 29 717 ± 81 1039 ± 173 898 ± 178 1125 ± 170 1041 ± 69 810 ± 66*
GSH-transferase (nmol product/mg protein/min) 738 ± 25 788 ± 38 864 ± 47 695 ± 36** 872 ± 32 858 ± 27 892 ± 58 831 ± 41 784 ± 50
Catalase (pmol/mg protein/min)
Liver 449 ± 23 421 ± 23 432 ± 6 283 ±39* 327 ± 23 223 ± 11** 364 ± 20 214 ± 19** 236 ±34**
Kidney 110±1 102±2 122±6 83±11** 81±8 57+3** 63±4 60±4 56±3
Hepatic mitochondria
Cytochrome c oxidase(nmol/mg protein/min) 164 ± 11 175 ± 16 171 ± 20 190 ± 26 160 ± 26 166 ± 20 190 ± 17 196 ± 3 153 ± 23
Cytochrome c reductase (nmol/mg protein/min) 51.1 ± 4.3 52.7 ± 5.5 55.5 ± 9.5 74.9 ± 10.8 46.4 ± 12.1 43.7 ± 6.1 44.0 ± 3.7 48.9 ± 3.5 34.7 ± 8.6

GSH-peroxidase, glutathione peroxidase. Each value represents mean activity ± standard deviation of five rats.
aExposed to temperature for 7 days.
bExposed to temperature for 3 days.
*p<0.05; **p<0.01; significant when compared to controls measured at 250C.
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Table
2

Effect of environmental temperature on thiobarbituric acid reacting substances (TBARS) production in homogenate, microsomes, and mitochondria in the liver
and homogenate in the kidney in young and aged rats

7-week-old 12-month-old 17-month-old 25-month-old

TBARS (nmol MDA/mg protein) 250C8 35oCa 250Ca 35OCa 250Ca 35OCb 250Ca 35OCb 350Ca

Liver homogenate 0.75 ± 0.19 3.40 ± 0.57** 3.30 ± 0.15 12.83 ± 5.45** 5.13 ± 1.49 14.20 ± 1.80** 0.42 ± 0.14 13.52 ± 3.96** 14.39 ± 4.14**
Liver microsome 0.72 ± 0.12 0.57 ± 0.09 0.80 ± 0.11 2.08 ± 0.30** 1.36 ± 0.01 1.72 ± 0.28* 0.65 ± 0.15 1.49 ± 0.29* 1.65 ± 0.11*
Liver mitochondria 0.55 ± 0.08 0.43 ± 0.06 0.70 ± 0.10 1.72 ± 0.63* 0.86 ± 0.16 1.56 ± 0.21** 0.44 ± 0.08 1.31 ± 0.16* 1.51 ± 0.32**
Kidney homogenate 0.45 ± 0.04 0.55 ± 0.05 1.03 ± 0.10 1.46 ± 0.23* 1.04 ± 0.08 1.45 ± 0.22* 0.69 ± 0.15 1.95 ± 0.66* 1.53 ± 0.20**

Each value represents the MDA producton ± standard deviation in five rats.
aExposed to temperature for 7 days.
bExposed to temperature for 3 days.
*p<0.05; **<0.01; significant when compared to controls measured at 250C.

Table 3. Effect of environmental temperature on the content of cytochrome P450 and cytochrome b5, and the activities of aminopyrine N-demethylase (AP-demethy-
lase), tetramethylparaphenylenediamine, (TMPD)-peroxidase, NADPH-cytochrome P450 reductase, and NADH-cytochrome b5 reductase in hepatic microsomes

7-week-old 12-month-old 17-month-old 25-month-old

25OCa 35Oca 25OCa 35Oca 25OCa 35OCb 25OCa 35OCb 35oca

Cytochrome P450 (nmol/mg protein/min) 0.490 ± 0.021 0.479 ± 0.020 0.477 ± 0.041 0.437 ± 0.069 0.438 ± 0.023 0.458 ± 0.023 0.334 ± 0.009 0.338 ± 0.046 0.407 ± 0.058
Cytochrome b5(nmol/mg protein/min) 0.354 ±0.009 0.395 ± 0.006 0.399 ± 0.041 0.392 ± 0.013 0.359 ± 0.041 0.388 ± 0.026 0.271 ± 0.029 0.281 ± 0.035 0.273 ± 0.022
AP-demethylase (nmol HCHO/mg protein/min) 9.13 ± 0.72 10.64 ± 0.99 8.72 ± 0.77 3.87 ± 1.04** 8.14 ± 0.62 6.72 ± 0.12* 4.3 ± 0.6 3.4 ± 0.9 3.3 ± 0.3*
TMPD-peroxidase (nmol oxidized/mg protein/min) 92.2 ± 7.1 98.3 ± 7.2 81.7 ± 10.0 47.3 ± 10.3** 72.3 ± 6.2 56.6 ± 3.7* 25.3 ± 2.6 26.6 ± 3.9 27.6 ± 3.6
NADPH P450 reductase (nmoVmg protein/min) 56.4 ± 4.7 55.0 ± 3.3 56.0 ± 1.6 34.3 ± 4.1** 49.9 ± 2.8 48.5 ± 0.5 38.2 ± 4.0 37.7 ± 6.6 30.5 ± 2.6*
NADH b reductase (pmoVmg protein/min) 3.99 ± 0.12 4.15 ± 0.02 4.12 ± 0.32 4.15 ± 0.17 4.17 ± 0.02 3.97 ± 0.20 4.05 ± 0.35 3.76 ± 0.15 2.94 ± 0.24**

Each value represents the MDA production ± standard deviation in five rats.
aExposed to temperature for 7 days.
bExposed to temperature for 3 days.
*p<0.05; **<0.01; significant when compared to controls measured at 250C.

The activities of hepatic mitochondrial
electron transport systems, such as
cytochrome c oxidase and cytochrome c
reductase systems, were not inhibited by
acute hyperthermia (in either young or
aged rats). In chronic exposure to heat
stress, however, cytochrome c oxidase (Fig.
6A) and cytochrome c reductase systems
(Fig. 6B) were simultaneously inhibited.

To detect the heat shock response, iso-
lated hepatic cells and PMNs in rats were
labeled with [35S]methionine and analyzed
by SDS-PAGE. Analysis of the labeled cells
by SDS-PAGE showed the induced synthe-
sis of the protein band corresponding to
the 70-kDa protein. In isolated hepatic
cells and PMNs, the 70-kDa heat shock
induced proteins were expressed immedi-
ately by heat stress as shown in Figure 7A.

Discussion
Typical hyperthermia sometimes occurs
during severe heat waves in summer and
during hard exercise. Classic heat stroke
commonly occurs in temperate large cities
during extreme heat stress associated with
an increased heat island effect. The inci-
dence of heat-related morbidity and mortal-
ity increases in persons, especially aged per-
sons, because of extremely hot temperatures
in summer (2-4,39-42). On the other
hand, exertion-induced heat exhaustion in
young persons and aged persons occurs in
both hot and cool environments as a result

of vigorous exercise (10). Our epidemiolog-
ical results show that hot environments pro-
duce not only heat stroke but also some dis-
eases, and the incidence of the diseases such
as endocrine disorders in the elderly increas-
es rapidly. Therefore, it is important to
evaluate the impacts of moderate heat stress
on essential metabolic functions in the
body, induding liver function.

After exposure to a hot environment at
35°C, moderate passive hyperthermia was
observed and rectal temperature immedi-
ately increased approximately 1.2°C. Rectal
temperature of young and aged rats exhib-
ited thermal homeostasis to hot environ-
ments. The results confirm the evidence
that thermoregulatory function in rats is
maintained during aging (43). Still in aged
animals, the hyperthermic damage by heat
stress was more serious than that in young
animals. Thus, cellular and intracellular
membrane damage and denaturation of
enzymes might be important in the patho-
genesis of passive hyperthermia caused by
hot environments (11).

In animals and humans, some physio-
logical and biochemical adaptations could
occur to protect essential cell functions
against increased temperatures and to permit
a rapid recovery from heat stress (5,6,44).
Because the adaptive response to heat stress
depends on animal species and aging, ani-
mals and humans have different sensitivities
for withstanding thermal injury (8-10).

In young rats, hepatic cytosolic GSH
peroxidase activities, especially selenium
GSH peroxidase activities, were greatly
induced in response to increased environ-
mental temperatures. Induction of GSH
peroxidase activities in liver continued dur-
ing a long-term heat exposure period of 6
weeks. In young rat liver, GSH peroxidase
activities were induced not only in cytosols
but also in mitochondria.

In young rats, hepatic catalase activities
were not affected by hot environments,
whereas in aged rats, hepatic catalase activi-
ties were seriously decreased. Catalase
activities in the kidney of aged rats were
also reduced by hot environments.

Many biological processes, such as xan-
thine oxidase, myeloperoxidase, and an
uncoupling reaction of electron transport
systems in mitochondria and microsomes,
produce oxygen radicals from molecular
oxygen (12,13). Peroxidative damage of
macromolecules, such as 8-hydroxy-2'-
deoxyguanosine of DNA, accumulates in
the animal body during aging (45), and the
activities of protective enzymes metaboliz-
ing the oxidative products are significantly
related to aging (46).

Under normal environmental condi-
tions, hepatic cytosolic GSH peroxidase
activities in aged rats were markedly higher
than those activities in younger rats. In
aged rats, GSH peroxidase activity was not
induced, but was actually decreased by heat
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Figure 6. Effect of 6 weeks of exposure to various temperatures on cytochrome c oxidase (A) and
cytochrome c reductase systems (B) in hepatic mitochondria in young rats. Each value represents mean
activity ± standard deviation of five rats.
*Significantly different from control values measured at 25°C (p<0.05).
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Figure 7. Effect of heat stress on heat shock response in (A) polymorphonuclear leukocytes (PMNs) and
isolated hepatic cells (HC) and (B) hepatic cytosol in vivo. Analysis of the [35S]methionine-labeled cells by
SDS-PAGE showed the induced synthesis of the protein band corresponding to the 70-kDa protein, indi-
cated by an arrow in Figure 7A.

stress. From this evidence, it is necessary to

clarify the biochemical relationship
between the adaptable induction of the
enzyme and peroxides production in the
animal body during aging.

Furthermore, selenium GSH peroxi-
dase activities in human liver are very low
in comparison with those in rat liver
(14,16,47). Therefore, it is important to

consider the age-related induction of GSH
peroxidase when the effects of acute heat
stress on human health are evaluated.

In aged rats, other protective enzymes

for oxygen radicals such as catalase were

also markedly decreased after heat expo-

sure; therefore, lipid peroxidation in liver
was seriously induced in aged rats in hyper-
thermia. Lipid peroxidation was greatly
induced not only in liver homogenate but
also in intracellular structures such as mito-
chondria and microsomes in aged animals.

It is well known that heat shock response

induces cellular SOD in mammalian cell cul-
ture (48). In this in vivo experiment, cytoso-
lic SOD was not induced by heat stress.
Cofactors of antioxidant enzymes, such as

GSH and GSSG, also were not affected by
heat stress in this experiment.

Aged rats have more basal GSH-peroxi-
dase activity than young rats but also have
less basal catalase activity; therefore, 12-
month-old and 17-month-old rats have
more basal lipid peroxides than young rats.
At the end of their life span, 25-month-old
rats have more basal cytochrome c oxidase
activity and less basal cytochrome c reduc-
tase activity than young rats. The activity
difference between oxidase and reductase
may be an important uncoupling reaction
of electron transport systems in mitochon-
dria. From the aspect of geriatric research,
it is necessary to clarify the relationship
between lipid peroxide generation and
enzyme activities during aging.

The induction of lipid peroxidation in
liver was shown to be a very sensitive bio-
chemical indicator in hyperthermia. The
induced formation of TBARS in liver pro-
gressively increased in passive hyperthermia
resulting from hot environments. It was
determined that cellular and intracellular
merfibrane damage and denaturation of
enzymes was important in the pathogenesis
of heat injury (11). Oxygen free radical
damage of biological membranes and high
molecules is a destructive phenomenon that
is associated with many types of cellular
damage (12). Because peroxidation of lipids
in biological membranes is a destructive
phenomenon that is associated with many
types of cellular damage, hyperthermia
appears to have been responsible for greatly
increased development of hypertrophy and
vacuolated degeneration in hepatic cells.

It has been reported that peroxidation
of lipids in biological membranes can dam-
age the cellular redox state, intracellular
structure, and some membrane-bound
enzymes (12,49-51). Because the endo-
plasmic reticulum of hepatic cells in aged
rats showed distorted shapes in response to
a hot environment, microsomal electron
transport systems, such as cytochrome
P450 monooxygenase activities, were seri-
ously affected in hyperthermia.

Because liver should be one of the tar-
get organs of heat stress, the biochemical
impacts of heat stress on liver functions
need to be evaluated. In this study, heat
stress seriously injured hepatic endoplasmic
reticulum and inhibited some microsomal
monooxygenase activities in aged rats.
Hepatic microsomal monooxygenase is
vital for the metabolism of endogenous and
exogenous lipophilic substrates such as
steroids and xenobiotics (52). Because hot
environments greatly damage hepatic
microsomal electron transport systems in
aged rats, it seems reasonable that heat
stress has the potential to cause peroxida-
tive damage in both aged animals and aged
humans.
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In young and aged rats, distortion of
hepatic mitochondria was observed in
response to a hot environment; still the
activities of hepatic mitochondrial electron
transport systems, such as cytochrome c
oxidase and cytochrome c reductase sys-
tems, were not inhibited by acute hyper-
thermia. In chronic exposure to heat stress,
however, cytochrome c oxidase and
cytochrome c reductase systems were
simultaneously inhibited.

Because hepatic GSH-peroxidase activi-
ties were also not induced in the guinea
pig, lipid peroxidation was greatly induced
not only in liver homogenate but also in
intracellular structures such as mitochon-
dria and microsomes. Therefore, the activi-
ties of hepatic mitochondrial electron
transport systems were simultaneously
inhibited in hyperthermic guinea pigs (11).

In aged rats, GSH peroxidase in the
kidney was not affected by hot environ-
ments, whereas catalase activities were
markedly decreased. Therefore, lipid perox-
idation in the kidney of aged rats was also
significantly induced by heat stress.

It is well known that heat shock
response activates heat shock proteins that
protect cellular function from destabiliza-
tion (53-57). From in vivo experiments,
90-kDa heat shock-inducible proteins were
markedly expressed in the guinea pig liver
in hyperthermia (11). In this study, 70-kDa
heat shock inducible protein synthesis was
markedly enhanced in isolated hepatic cells
and in PMNs.

In conclusion, heat stress-inducible oxy-
gen radical damage becomes more severe
according to the age of rats. Aged rats have
several times more basal lipid peroxides in
liver than young rats. Furthermore, in
hyperthermia aged rats also have several
times more lipid peroxides than at normal
temperature. Therefore, aging and hyper-
thermia have a synergistic effect on lipid
peroxidation. The same result was reported
in gerbils: one of the important biological
oxygen radical formations, ischemia/repur-
fusion insult, was more lethal to old gerbils
than young gerbils (58).

Progress of aging has a potent induc-
tion of oxygen free radical formation;
therefore, protective enzyme activities for
oxygen free radicals may be essential for
surviving and recovering from thermal
injury in aged persons. Further study is
necessary to clarify the biochemical rela-
tionship between antioxidant defense sys-
tems and the adaptability to oxygen free
radical damage in hyperthermia in aged
humans and animals.
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