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Due to the use of a limited number of species and subchronic exposures, current ecological
hazard assessment processes can underestimate the chronic toxicity of environmental
contaminants resulting in adverse responses of sentinel species. Several incidences where
sentinel species have responded to the effects of chronic exposure to ambient levels of
environmental contaminants are discussed, including the development of neoplasia in fish,
immunosuppression in marine mammals, pseudohermaphrodism in invertebrates, teratogenicity
in amphibians, and aberrations in the sexual development of fish and reptiles. Biomarkers of
chronic toxicity, including DNA mutations, alterations in specific protein and mRNA levels, and
perturbations in metabolism, are presented. The incorporation of appropriate surrogate species
and biomarkers of chronic toxicity into standard toxicity characterizations is proposed as a means

of significantly refining the ecological hazard assessment process. - Environ Health Perspect
105(Suppl 1):65-80 (1997)
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Introduction
An integral early component of all chemical
hazard assessment processes is the charac-
terization of toxicity associated with the
chemical. In assessments of hazards to
humans, this characterization largely
involves defining acute and chronic toxic-
ity of the chemical to surrogate mam-
malian species such as rat and mouse and
the use of uncertainty factors to account
for species extrapolations. Uncertainty
associated with toxicity characterization is
significantly enhanced in ecological hazard
assessments, since the target of toxicity is
not a single species (i.e., human) but com-
plex assemblages of species including
microorganisms, plants, invertebrates, and
vertebrates. Accordingly, chemical toxicity
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to select species representing various levels
of phylogenetic organization (i.e., plant,
invertebrate, fish, bird, mammal) is
typically assessed and results extrapolated
to represent the plethora of species that
compose ecosystems.

Procedures for the characterization of
acute toxicity (defined as toxicity elicited as
a result of exposure to the chemical for a
short duration) of environmental chemicals
are standardized and amenable for use with
a wide array of species [e.g., Stephan (1)].
Extensive characterization of the acute tox-
icity of chemicals has allowed the success-
ful implementation of chemical discharge
limitations that have been largely successful
in protecting against acute toxicity of these
contaminants. Definitive assessments of
the chronic toxicity (defined as toxicity
elicited as a result of exposure to the chem-
ical over the life cycle of the organism) of
chemicals is a more complex undertaking
that is often encumbered by limited knowl-
edge of the full life cycle of the organism,
the inability to maintain many species in
the laboratory over their life cycles, failure
to induce reproduction under laboratory
conditions, and the duration of time
required to assess chemical toxicity over the
full life cycle of the organism. To circum-
vent such difficulties, a limited number
of species that are easily reared in the
laboratory are routinely used in chronic

toxicity evaluations. Abridged life-cycle
(subchronic) exposures are often used as
surrogates to full life-cycle testing, since
comparative studies have shown that assess-
ment of a chemical's toxicity during the
early life stages of many species provides
results identical to full life-cycle toxicity
assessments for approximately 80% of the
chemicals evaluated (2). It is noteworthy
that not all chemicals elicit chronic toxic-
ity. Perhaps the 20% of chemicals for
which subchronic testing does not accu-
rately predict chronic toxicity represents
those chemicals that are truly chronically
toxic. Thus, the use of a limited number of
species and subchronic exposures may
cause the underestimation of chronic toxic-
ity of environmental contaminants. Such
underestimation could result in the estab-
lishment of acceptable levels of contami-
nants in the environment that are actually
detrimental because of chronic toxicity.

Verification and monitoring is peri-
pheral, though integral, to the U.S.
Environmental Protection Agency's (U.S.
EPA) framework for ecological risk assess-
ment (3). Recognizing the potential for
error in risk assessment, environmental
monitoring following implementation of
regulatory guidelines is imperative to verify
the validity of the risk assessment process,
to identify deficiencies in the assessment,
to evaluate the effectiveness of the policy
decision, and to point out the need for
improved or novel methodologies to be
incorporated into the process (3). Should
deficiencies exist in the assessment of
chronic toxicity of environmental contami-
nants, then the monitoring process should
reveal resulting consequences. Such toxicity
may not be blatantly evident because of the
potential species specificity of such effects
and the subtle nature of the effects (4). The
identification of sentinel species of such
effects as well as sensitive biomarkers of
chronic toxicity is imperative to thoroughly
evaluate environmental health.

This review will
* Identify incidences where sentinel species

(defined as species that have been shown
to elicit responses to contaminants pre-
sent in the environment) appear to be
signaling the occurrence of unacceptable
toxicity in the environment.

* Define the nature of the toxicant effects
to which these species are responding.

* Highlight biomarkers that have been
used to detect and characterize the
specific modes of toxicity described.
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Such information will
* Assist in tailoring future monitoring

endeavors to maximize detection sensi-
tivity of the process.

* Define sensitive species that should be
considered for use in toxicity assess-
ments, especially when precedence
indicates that the species would be
particularly sensitive to the type of
chemical under evaluation.

* Identify appropriate end points (i.e.,
biomarkers) that should be incorpo-
rated into laboratory assessments of
chemical toxicity and field monitoring
of environmental effects.

Neoplasia in Fish
Evidence implicating environmental conta-
minants as causative agents in the occur-
rence of neoplasia in fish has accrued over
the past four decades. Three early reports
linking environmental contamination and
neoplasms in feral fish came from investi-
gators in both California and Maryland.
The first study, by Russell and Kotin (5),
showed a high incidence of papillomas in
white croakers (Genyonemus lineatus) from
the Los Angeles harbor. Although no con-
clusive supporting evidence was provided,
the investigators concluded that exposure
to sewage outfalls in the area may have
been responsible for the tumors. A second
study also reported a high incidence of
papillomas in white croakers and Dover
sole from several sites in Southern California
(6). Again, exposure to sewage outfalls was
considered responsible for the papillomas.
The third report, also in 1964, demon-
strated a higher level of hepatic neoplasms
in white suckers (Catostomus commersoni)
in Deep Creek Lake, Maryland (7). From
these three early reports, further investiga-
tions were undertaken to determine whether
tumors in feral fish could be due to expo-
sure to environmental contaminants [for
reviews see Black and Baumann (8) and
Mix (9)].

Studies of fish neoplasia in the Fox
River in Illinois were some of the first to
correlate neoplasm prevalence with water
quality. The Fox River flows through heavy
manufacturing areas in northern Illinois
from which toluene, benzene, chlorinated
hydrocarbons, triazines, and organophos-
phate insecticides were known to contami-
nate the river. Seventeen species of fish,
including walleye (Stizostedion vitreum),
northern pike (Esox lucius), brown bull-
head (Ictalurus nebulosus), carp (Cyprinus
carpio) and hogsucker (Hypentelium nigri-
cans), were collected from the Fox River

and a relatively pristine site, Lake of the
Woods, Ontario, Canada, in 1973. In all
species, the prevalence of tumors was higher
in fish from the Fox River (10). A second
study published in 1977 showed essentially
the same frequencies of tumors (11).

The Puget Sound, Washington, has
supported heavy manufacturing industries,
chemical plants, wood product plants, and
a large shipping industry (12). Studies of
English sole (Paropyrys vetulus) in the
Duwamish River unveiled a tumor inci-
dence that appeared to correlate with poly-
chlorinated biphenyl (PCB) levels (13,14).
Further investigation demonstrated that
English sole, Pacific tomcod (Microgadus
proximus), and rock sole (Lepidopsetta
bilineata) from contaminated areas had
neoplasm prevalence of 2.4, 3.4, and 2.1%,
respectively, whereas those fish collected
from control areas had no tumors (15). A
supplementary study showed that 12.9%
of the English sole and 1.1% of the starry
flounder from the PCB-contaminated
Duwamish River contained hepatomas, as
did 8.2% of the English sole from the Lake
Washington ship canal (16). In contrast,
no hepatomas were found in fish from the
control site (16). Six separate studies per-
formed by the National Marine Fisheries
Service from 1979 to 1984 showed a statis-
tically significant correlation between sedi-
ment polycyclic aromatic hydrocarbon
(PAH) concentrations or bile fluorescent
aromatic hydrocarbon concentrations and
hepatic lesions (17). These studies also
showed a progression of stepwise changes
in hepatic lesions ultimately leading to
hepatic neoplasms similar to experimental
rodent models of carcinogenesis. Laboratory
studies confirming these observations were
conducted by injecting English sole with
an extract from either the contaminated or
reference sediment or the model hepato-
carcinogen benzo[a]pyrene. The results
demonstrated that injections with benzo-
[a]pyrene or the contaminated sediment
extract increased the incidence of hepato-
toxic lesions, including basophilic foci, a
preneoplastic lesion (18). Follow-up
studies showed that the risk of hepatic
lesions in English sole, starry flounder, and
white croaker increased in urban sites in
which the fish contained high levels of
PAHs, PCBs, and DDT (19). The investi-
gators formulated a model to determine
prevalence associated with species of fish,
type of exposure, location of capture, age,
and gender. For example, an English sole
from Elliot Bay, Washington, was 734
times more likely to have a neoplasm than

a fish from a reference site, with controls
for both age and gender.
A study of tumor incidence among fish

in the Black River in Ohio, which empties
into Lake Erie, showed that in 1980, 1.2%
of the 2-year-old and 33% of the 3-year-
old brown bullheads collected from the
river had liver tumors compared to a 0%
incidence among fish in Buckeye Lake, the
control site (20). In 1983 a coking plant
on the river closed, and as a result, studies
after 1983 demonstrated a decrease in
PAH levels in both the river sediment and
in the tissues of the brown bullheads of
almost 99% by 1987. Prevalence of liver
cancer in 3-year-old fish decreased to 10%
in 1987 versus 39% in 1982 (21). This is
the first study to show a decrease in neo-
plasm prevalence associated with a decrease
in environmental contaminants, which
greatly strengthens the contention that neo-
plasms in feral fish are good indicators of
chronic exposure to contaminants within a
defined environment.

Fish neoplasia resulting from chronic
exposure to environmental pollutants is
not only relevant from a historical perspec-
tive. Studies conducted during the current
decade continue to demonstrate that fish
populations are responding to environmen-
tal carcinogens. Mummichog (Fundulus
heteroclitus), small nonmigratory fish from
the Elizabeth River, Virginia, were sampled
from an area adjacent to a wood treatment
facility (22) in which the sediments were
contaminated with creosote (23). Ninety-
three percent of the mummichog collected
next to the plant had visible hepatic lesions
and 33% had hepatocellular carcinoma.
There were no hepatic lesions in the mum-
michog captured from two control sites. As
mummichog have a home range of only 30
to 40 m (24), this study demonstrates how
species of limited range can serve as sen-
tinels of contamination within a defined
area-such as the receiving waters for
chemical wastes.

Over 90% of the older Atlantic tomcod
(Microgadus tomcod) sampled from the
Hudson River in 1994 had hepatocellular
carcinoma compared to < 5% sampled
from control areas [summarized in Wirgin
et al. (25)]. Interestingly, there was a very
small number of 2-year-old fish and a com-
plete absence of fish younger than 2 years
old in the Hudson River. This suggests the
possibility of tumor-associated mortality
in contaminated areas that may result in
underestimates of the effects of pollutants
on these fish. Baumann (26) showed that
the highest prevalence of liver tumors in
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brown bullheads from Lake Erie was in 4-
to 5-year-old fish, but that 6- to 7-year-old
fish were completely absent from the lake
and their age group represented 18% of the
total catch from uncontaminated sites.
Thus, neoplasia-induced mortality may
result in underestimates of tumor incidence
among fish populations.

In summary, the evidence demonstrates
that elevated tumor incidence in fish popu-
lations has heralded and continues to her-
ald the presence of chemical carcinogens in
the environment. Aquatic environments
serve as major repositories for the accumu-
lation of environmental contaminants,
including carcinogens, and thus inhabi-
tants of these environments serve as sen-
tinels for the presence of toxic quantities of
contaminants in the environment.

Biomarkers
of Carcinogenicity
By far the simplest and most definitive
biomarker of neoplasia in fish is the visual
detection of tumors. However, the detec-
tion of frank tumors in fish populations is
a late measure of response to environmental
contaminants with sensitivity only slightly
greater than the use of mortality as a bio-
marker. Histopathologic and molecular
measures of early events in the process of
carcinogenesis can increase the sensitivity of
detection and possibly signal the occurrence
of chemical exposure in the absence of overt
disease among the exposed population.

The liver is a major site of contaminant
accumulation and biotransformation to
reactive metabolites. The liver is thus a
common target at which chemical-induced
alterations leading to neoplasia can be
detected. For example, the development of
altered foci is an early event in the develop-
ment of hepatic neoplasia. Altered foci in
fish typically exhibit enhanced cytoplasmic
staining with hematoxylin and often are
characterized by many cellular alterations,
including glycogen depletion (27),
increased levels of cytoplasmic RNA (28),
and large aberrant-shaped nuclei (29).
Detailed descriptions of altered hepatic foci
in fish can be found in Hinton et al. (30)
and Hinton and Lauren (31).

Greatest sensitivity in the detection of
chemical-induced carcinogenic lesions can
be gained by analyses for the presence of
initial molecular lesions elicited by the tox-
icant. Common molecular targets of chem-
ical carcinogens that contribute to the
process of tumor generation are mutations
of protooncogenes and tumor suppressor
genes such as c-ras and p53, respectively.

The advent of polymerase chain reaction
(PCR) technology has allowed for the
selective enrichment of the mutated genes
of interest from samples derived from the
toxicant-exposed organisms. Once ampli-
fied sufficiently, samples can be analyzed
for the presence of the mutations using a
variety of techniques, as discussed by Shugart
et al. (32) that include oligonucleotide
hybridization (33), sequencing (34),
restriction analysis (35), RNase mapping
(36), and gel retardation (37).

Immunosuppression
in Marine Mammals
Large-scale mortality due to infectious agents
has been noted in many marine mammal
populations that inhabit areas containing
industrial contaminants. These observations
have led to speculation that pollution-
induced immunosuppression is contributing
to such incidence. During 1988 and 1989,
nearly 18,000 harbor seals (Phoca vitulina)
died in the North, Irish, and Baltic seas (38)
because of to a morbillivirus-related distem-
per virus (39) now called phocine distemper
virus (40). Mortality was highest in areas
with high levels of pollutants (41) and
analyses of dead seals revealed the presence
of high tissue levels of PCBs and other con-
taminants (42). Many industrial chemicals
such as PCBs (43), hexachlorobenzene
(44), dieldrin (45), and DDT (46) have
been shown to cause immunosuppression
in laboratory animals. To determine if
immunosuppressive chemicals contributed
to the seal mortality, harbor seals were fed
herring for a total of 93 weeks. The herring
was caught either from a relatively pristine
area or from a polluted coastal area. The
estimated daily intake of organochlorines
from the contaminated herring was 3 to 10
times higher than from the uncontami-
nated herring (47). Immunological analyses
revealed that natural killer cell activity,
which provides a first line of defense
against viral infections (48), and lympho-
cyte proliferative responses, which are a
measure of T-cell function (49), were sig-
nificantly lower in the seals fed contami-
nated fish (47). The same investigators also
discovered that seals fed herring from the
contaminated area for 2.5 years exhibited
reduced lymphocyte proliferative responses
over the course of the exposure. When these
animals were immunized with rabies virus
antigen and tetanus toxoid, lymphocyte
proliferative response was again compro-
mised (50). These seals also had signifi-
cantly lower responses to a challenge with
ovalbumin, showing decreased intradermal

swelling after the challenge in a delayed-
type hypersensitivity (DTH) reaction.
There was an inverse relationship between
DTH swelling and total Ah receptor-
binding contaminant levels. Furthermore,
the serum antibody titers to ovalbumin
were approximately 37% lower in the seals
fed the contaminated herring than those fed
the control herring (51). Earlier studies had
shown that seals fed PCB-contaminated
fish had significantly lower serum retinol
levels, which when converted to vitamin A,
can play an important role in resistance to
microbial infections (52,53). Thus, chronic
exposure to environmental chemicals can
compromise the immune system of marine
mammals and increase susceptibility to
infectious agents.

Since 1987, the east coast of the United
States (54) and the Gulf of Mexico (55)
have experienced high incidences of mor-
tality of bottlenose dolphins (Tursiops
truncatus). Similarly, high mortality of
striped dolphin (Stenella coeruleoalba) pop-
ulations inhabiting the Mediterranean Sea
have been noted (56). Immunosuppression
leading to infection (57,58) due to high
body burdens of organochlorine contami-
nants (56,59) has been implicated in the
dolphin mortality. Indeed, an inverse cor-
relation was demonstrated between lym-
phocyte proliferative responses and levels
of pentachlorinated and hexachlorinated
PCBs in the blood sampled from dolphins
along the west coast of Florida (60).

Beluga whales (Delphinapterus leucas)
from the St. Lawrence estuary were over-
hunted in the early 1900s, which dropped
their population from 5000 to 500 (61).
Despite heroic efforts to protect the whales,
the population has not recovered during the
last 40 years (61). High levels of organo-
chlorines have been measured in the tissues
of these whales (62,63). Many of the whales
show a high prevalence of lesions associated
with mildly pathogenic bacteria, which sug-
gests that immunosuppression from the
organochlorines may be occurring. Further-
more, these whales exhibit very high levels
of neoplasms (64,65), which could either
implicate the organochlorines as tumor pro-
moters or implicate immunosuppressive
agents that decreased the surveillance for
tumors by natural killer cells (66).

Biomarkers of
Immunosuppression
The immune system is composed of a
complex array of components that provide
both cell-mediated and humoral-mediated
defenses against foreign materials. The
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complexity of the system provides many
targets amenable to analyses as biomarkers
of toxicant exposure and effect. These
include analyses of both structural and
functional components of the immune sys-
tem, as discussed by Weeks et al. (67) and
summarized in Table 1. Both cell and
humoral components of the immune sys-
tem have been shown to be susceptible to
perturbation by environmental contami-
nants. For example, cellular responses have
been observed following exposure to PAHs
(68,69) and PCBs (70). Humoral responses
have been measured following exposure to
metals (71,72), pentachlorophenol (73),
and petroleum hydrocarbons (74).

Pseudohermaphrodism
in Invertebrates
In 1970, Blaber (81) observed that dog-
whelks along the English coast exhibited a
pseudohermaphroditic condition whereby
some females possessed an appendage simi-
lar to a penis. While hermaphrodism is a
reproductive strategy common to many mol-
lusk species [i.e., prosobranchs, opistho-
branchs (82)], the dogwhelk is dioecious.
This condition, characterized by the impo-
sition of male genitalia onto a female, was
termed imposex (83). Definitive evalua-
tions of gastropod populations since this
initial discovery have revealed that imposex
is a global phenomenon, with over 45
affected gastropod species (84); it has been
documented along the coasts of England
(85), Scodand (81), Australia (86), France
(87), Canada (88), Japan (89), and the
United States (90,91).

Most evident among affected females
is the presence of a penis (Figure 1).
Depending on the severity of the condi-
tion, females may also possess a vas defer-
ens and seminiferous tubules (92). The
consequences of this condition vary among
species. In the nassariid mud snails, the
development of a penis and vas deferens
apparently does not interfere with normal
female physiology (91); similar conditions
among muricid whelks prevents the release

Table 1. Immunoparameters that have been used as
biomarkers of toxicant-mediated immune dysfuntion in
vertebrates.

Assay Reference

B-cell function (75)
Natural killer cell activity (76)
Lymphocyte count (77,78)
Mitogenic response of lymphocytes (79)
Macrophage count (80)
Macrophage function (68)
Granulocyte and macrophage hypertrophy (80)

of egg capsules from the ovaries and results
in infertility (93). Imposex has also been
considered responsible for excess female
mortality, reduced fecundity, population
declines, and local extinctions of affected
gastropod populations (94).
A relationship between imposex and

pollution was suggested when Smith (91)
noted that imposex was prevalent among
mud snail populations inhabiting marinas
and that the incidence was negligible
in pristine coastal areas. Further, a large

Male dogwhelk

Male copepod

Male mosquitofish

percentage of mud snails collected from
pristine areas and transplanted to marinas
developed imposex. Laboratory exposures
of snails to a variety of marina-associated
contaminants revealed that paints contain-
ing tin were capable of inducing imposex
(91). Subsequent confirmation of these
observations (95) definitively implicated
the chemical tributyltin as the cause of
imposex among dioecious gastropods.

Tributyltin is a biocide that has been
used extensively in a variety of products

Imposex female dogwhelk

E

Ir

Intersex female copepod

Masculinized female
mosquitofish

Female dogwhelk

F

F ie
Female copepod

Female mosquitofish

Figure 1. Sexual aberrations in dogwhelk (A-C), copepod (D-F), and mosquitofish (G-H) following exposure to
environmental contaminants. Tributyltin caused the development of a vas deferens and a penis in female dog-
whelks (imposex). Sewage effluent appeared responsible for the masculinization of the abdominal segments of
female copepods. Kraft pulp mill effluent caused alterations in the anal fin of female mosquitofish resulting in a

gonopodiumlike appendage characteristic of male fish. Diagrams based on information in Gibbs et al. (92), Moore
and Stevenson ( 106), and Denten et al. ( 168).
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concentrations as low as 1 ppt (ng/liter)
(85). By comparison, in 1986, tributyltin
concentrations were found to be as high as

1 to 2 pg/liter and in excess of 15 ng/liter
in marina and nonmarina waters, respec-

tively, along the U.S. Chesapeake Bay (97).
Tributyltin does not affect only females.
Male snails (Ilyanassa obsoleta) typically
lose their penises upon completion of

Table 2. Toxicity of tributyltin to aquatic organisms.

Acute toxicity, Chronic toxicity, Imposex,
Species pg/liter pg/liter pg/liter Reference

Daphnid 1.7 _ - (100)
Polychaete worm - 0.10 - (101)
Copepod 1.0 0.023 - (102,103)
Oyster 1.3 0.25 - (104,105)
Dogwhelk - - <0.0010 (85)

Abbreviations: LC50, median lethal concentration; LOEC, lowest observed effect concentration. Acute toxicity
values are presented as the LC50 and chronic toxicity values are presented as the LOEC.

A
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0.40
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0.20-

0.10
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0.00 .
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7.5

0.060 0.12 0.25 0.50

B

T

D

5.0

2.5

0.0

0

Concentration, mg/liter

Figure 2. Altered in vivo metabolism of [14C]testosterone by Daphnia magna following exposure to pen-
tachlorophenol. Exposure to the fungicide caused an increase in the rate of synthesis of apolar testosterone deriv-
atives [(A) androstenedione, (B) androstanediols] and a decrease in conjugated elimination products [(C)
testosterone-glucose, (D) testosterone-sulfate]. Specific activities for (A), (B), and (C) are presented as nmol prod-
uct formed/hr/mg soluble protein associated with the daphnids. Specific activity for (D) is presented as pmol prod-
uct formed/hr/mg soluble protein associated wth the daphnids. Data are from Parks and LeBlanc ( 113) and LeBlanc
(unpublished data).

reproductive cycles. However, in areas

contaminated with tributyltin and where
females exhibited imposex, males were

found to retain their penises following
reproduction (90).

Tributyltin appears to elicit its effect by
interfering with normal endocrine control
of masculinization. Laboratory exposures

of female dogwhelks to tributyltin caused a

significant increase in testosterone levels
commensurate with the development of a

penis but with no appreciable effect on

17,B-estradiol or progesterone levels, as

measured by radioimmunoassay (98).
Studies of the effects of tributyltin on

testosterone metabolism have indicated
that tributyltin decreases the metabolic
clearance of testosterone while enhancing
the conversion of testosterone to other
androgenic steroid hormones (99).

Reports of abnormal occurrences of
pseudohermaphroditic conditions are not

restricted to gastropods but have also been
reported among populations of crustaceans,

including copepods (106) (Figure 1),
amphipods (107,108), isopods (109,110),
and penaeid shrimp (111). While the
occurrence of intersex among crustacean

populations is typically low (< 1%), a 93%
incidence of intersex was observed among

copepods inhabiting an area receiving

sewage discharge (112). This high inci-
dence led the investigators to speculate that
pollutants in the discharge were responsible
for the pseudohermaphroditic condition.
Laboratory experiments have shown that
exposure of the crustacean Daphnia magna

to a variety of environmental chemicals,
including fungicides (Figure 2), detergents,
and agricultural effluent significantly inhib-
ited the metabolic clearance of exogenously
administered testosterone and enhanced the
production of androgenic derivatives
(113-117). This phenomenon of metabolic
androgenization is identical to that observed
with tributyltin and gastropods and suggests
that a variety of environmental chemicals
have the potential to upset the hormonal
balance of sensitive species.

Biomarkers of
Pseudohermaphrodism
and Metabolic
Androgenization
The most commonly used indicators of
imposex in gastropods are the relative penis
size index (RPSI) or the vas deferens
sequence index (VDSI). Briefly, individuals
are narcotized and removed from their shells.
The sex of the gastropod is determined by
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including marine paints, fish-farming
cages, disinfectants, and preservatives for
wood and fiber (96). Its utility stems from
its high toxicity. Tributyltin is acutely toxic
to most aquatic organisms at ppb (pg/liter)
concentrations (Table 2). However, only
following the observed response of the
sentinel gastropods was tributyltin found
to be capable of causing imposex at
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the presence of typical sex organs (i.e.,
testis/prostate and penis in males; capsule
gland, sperm-ingesting gland, albumen
gland, and ovary in females). Quantification
of imposex among females by the RPSI is
accomplished by measuring the bulk of the
female penis expressed as a percentage of
the mean bulk of the penises of normal
males (85). Penis bulk is calculated as the
cube of its length. Using the VDSI, the
stage of vas deferens development is scored
on an established scale of 1 to 6 (87).

Should causality be established between
metabolic androgenization and imposex,
then this parameter may prove useful as a
biomarker of pseudohermaphrodism in
neogastropods and perhaps other species.
Metabolic androgenization has generally
been detected by administering [14C]tes-
tosterone to the organisms and monitoring
the rate of elimination of polar testos-
terone metabolites and/or accumulation of
[14C]testosterone and its apolar derivatives
by the organisms (99,118,119). The apolar
metabolites of testosterone typically consist
of ethyl acetate-extractable metabolites that
have mobilities during high-pressure liquid
chromatography or thin-layer chroma-
tography similar to those of testosterone.
These products may be androgenic (i.e.,
dihydrotestosterone) or serve as substrates
for synthesis of androgens (i.e., androstene-
dione). Polar metabolites of testosterone
include glycosyl- or sulfate-conjugated
derivatives. These metabolites are not ethyl
acetate extractable but can be extracted fol-
lowing acid or enzymatic hydrolysis (118).
The ratio of the rate of apolar to polar
metabolites of testosterone produced pro-
vides a metabolic-androgenization index
that can be used as a relative monitor of
the degree of androgenization (116,117).

Amphibian Development
Since 1990, several studies have established
that amphibian populations are declining
on a global scale (120-122). Habitat loss
from the destruction of wetlands is regarded
as a major reason for these declines (123);
however, ample evidence also suggests that
amphibian populations are announcing
the decline in environmental quality.
Amphibians are unique as environmental
sensors in that they are exposed to multiple
environments through their life cycle.
Eggs are generally deposited in aquatic
habitats where the developing embryos are
susceptible to insults of aqueous origin.
The adults inhabit both aquatic and terres-
trial environments. The moist, unprotected
skin of many amphibians contributes to

respiration and likely has reduced resilience
to environmental insults when compared to
feather-, fur-, or shell-bearing organisms.

Ample evidence suggests that environ-
mental contaminants are contributing both
directly and indirectly to the demise ofsome
amphibian populations. Organophosphate
pesticides constitute the most abundant
class of chemicals currently used to control
insect infestation. Laboratory experiments
have demonstrated that many organophos-
phate pesticides alter the development of
amphibian embryos (124). Observed effects
include abnormal pigmentation, abnormal
gut development, and notochordal defects.
Most larvae exhibiting the latter defect
developed into adults with deformed or
missing limbs. Developmental effects
occurred at exposure concentrations an
order of magnitude below concentrations
that elicited overt toxicity to the larvae.
Recent experiments were reported in which
frog and toad eggs were exposed to environ-
mentally relevant concentrations of organo-
phosphate, organochlorine, and carbamate
pesticides commonly used in apple orchards
(125). Growth inhibition of green frog
tadpoles was noted, with the dithiocarba-
mate Dithane DG (Rohm and Haas Co.,
Philadelphia, PA) as the most potent for-
mulation. Many frogs exposed as embryos
and raised to adulthood exhibited develop-
mental abnormalities. Teratogenic effects
similar to those caused by pesticides have
also been observed among frog embryos
exposed to surface waters downstream
from a lead and zinc mining operation
(126). Effects included abnormal pigmen-
tation and gut development. Heavy metals
were implicated as causative agents, since
water samples subjected to ion-exchange
chromatography were no longer teratogenic.

The sensitivity of frogs to teratogenic
effects of some pesticides, metals, and other
environmental contaminants may explain
the local demise of amphibian populations
and may be indicative of mechanisms
operative against amphibian populations
on a more global scale. Increased penetra-
tion of ultraviolet (UV)-B radiation due to
the depletion of stratospheric ozone poses
the risk of increased incidence of a variety
of maladies to both plants and animals
(127). Chlorofluorocarbons released into
the atmosphere are considered primarily
responsible for ozone depletion and pose
the threat of adverse effects on a global
scale. A recent study documented a tempo-
ral increase in UV-B radiation ranging
from 7% (summer) to 35% (winter) per
year (128).

Amphibian eggs exposed to UV-B radi-
ation in the laboratory hatched as larvae
with many of the deformities as described
following exposure of eggs to pesticide
(129). Blaustein et al. (130) quantified the
level of photolyase, a key UV-damage-
specific DNA repair enzyme, in eggs of sev-
eral amphibian species and observed a
more than 80-fold interspecies difference
in the level of expression of the enzyme.
Perhaps significantly, photolyase levels
were appreciably lower in species known to
be experiencing population decline than in
species showing stable population levels.
Experiments were then undertaken to eval-
uate whether environmental exposure levels
of UV-B radiation would be sufficient to
adversely affect the survival of frog embryos.
The hatching success of eggs exposed to
ambient levels of UV-B radiation was posi-
tively correlated to photolyase activities
measured in the different species. Further,
the production of viable offspring was sig-
nificantly increased among frogs with low
photolyase activity when the eggs were
shielded from UV-B radiation (130). Taken
together, these observations suggest that
increased UV-B radiation may be a global
factor causing increased incidence of ter-
atogenic damage to some frog populations
and resulting in their decline.

The metamorphosis of amphibian
larvae into adults may also increase the sus-
ceptibility of these organisms to environ-
mental insult. Amphibian metamorphosis
is triggered by an increase in circulating
thyroxine levels (131). Studies in mammals
have shown that ubiquitous and persistent
environmental pollutants such as 2,3,7,8-
tetrachlorodibenzo-p-dioxin (132-134)
and some PCB isomers (135) significantly
lower circulating levels of this hormone.
Proposed mechanisms for the hypothyrox-
inemic effects of these chemicals include
increased metabolic clearance and competi-
tive displacement of the thyroxine from
plasma binding proteins (136). Indeed,
many industrial chemicals have been
shown to be capable of displacing thyrox-
ine from plasma binding proteins, resulting
in decreased circulating hormone levels
(137). Such effects on amphibians may
result in delayed metamorphosis. Delayed
metamorphosis was indicated in a popula-
tion of salamanders inhabiting a lagoon
contaminated with treated residential
sewage and industrial waste (138). Delayed
metamorphosis decreases the chance of sur-
vival by increasing susceptibility to preda-
tors (139). Further, many amphibian
species undergo metamorphosis before the
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onset of winter. Delayed metamorphosis
may be lethal to such species by forcing
the exposure to winter conditions of ill-
equipped larvae (140).

Biomarkers of
Amphibian Toxicity
While many factors are undoubtedly
contributing to the global decline of
amphibian populations, susceptibility to
teratogenesis may prove to be primarily
responsible for the unique susceptibility of
some amphibians to diverse environmental
stresses. Standardized methods for the
assessment of teratogenic insult on the
developing amphibian embryo are avail-
able (141,142) and have gained popularity
as a rapid assessment method for charac-
terizing teratogenic properties of individ-
ual chemicals and chemical mixtures
(143-147). Amphibian teratogenicity
assays are typically performed with a single
species, the African clawed frog (Xenopus
laevis), because of its availability and
amenability to laboratory manipulations.
Of the 10 amphibian species assayed,
Xenopus was found to have the lowest activ-
ity of the DNA-repair enzyme photolyase
(130), suggesting that Xenopus would be a
suitably sensitive model for assessing DNA
lesions normally repaired by this enzyme
(Table 3). However, photolyase repairs
DNA lesions caused primarily by UV radi-
ation and not by chemical teratogens.
Further study is necessary to evaluate the
relative susceptibility of Xenopus to chemi-
cal teratogens and to possibly identify
amphibians that are more highly suscep-
tible to chemical teratogenesis in order
to exploit these species as sentinels of
chemical toxicity.

Feminization of Male Fish
Feminization is characterized by the
acquisition of female traits by males.
Feminization is typically indicative of

Table 3. Relative specific photolyase activity of
amphibians.

Species Relative specific activity
Dunn's salamander <1
African clawed frog 1
Rough-skinned newt 2
Southern torrent salamander 3
Western redback salamander 5
Long-toed salamander 8
Northwestern salamander 10
Western toad 13
Cascades frog 24
Pacific tree frog 75

Data summarized from Blaustein et al. (130).

exposure to estrogenic xenobiotics or
increases in endogenous estrogen levels
due to aberrations in hormone homeo-
stasis. Salmonids in the river Lea and other
rivers of the United Kingdom had been
first noted by local fishermen to exhibit
abnormal sexual characteristics (148).
Caged male fish placed in the affected
rivers were found to produce vitellogenin
(149). Vitellogenin is a lipoglycophospho-
protein that is produced by the liver of
oviparous vertebrates under the control of
estrogen (150). Vitellogenin is normally
transported to the ovaries, where it is
incorporated into developing oocytes and
constitutes a major portion of the yolk
protein (151,152). Exposure of male fish
to xenoestrogens can result in the produc-
tion of vitellogenin by the liver and its
accumulation in the blood.

Examination of potential sources of
estrogenicity associated with sewage dis-
charge implicated degradation products
of alkylphenol-polyethoxylate nonionic
surfactants (148). Alkylphenols such as
nonylphenol are generated by the microbial
degradation of alkylphenol polyethoxlates
during sewage treatment. The alkylphenol
polyethoxlates are components of cleaning
products, textiles, agricultural chemicals,
plastics, paper products, and personal care
products (153). Concentrations of nonyl-
phenols in the aquatic environment vary.
Analyses of the Saginaw River, Michigan,
revealed the presence of 1 ppb nonylphenol
in the water column (154), whereas 45
ppb was measured in the Glatt River,
Switzerland (155).

Using rainbow trout hepatocytes,
Jobling and Sumpter (156) demonstrated
that 4-nonylphenol and other degradation
products of the alkylphenol polyethoxylates
stimulate vitellogenin production at low
micromolar concentrations. Further studies
demonstrated that concentrations of the
alkylphenol polyethoxlates that stimulated
vitellogenin production in male trout
also inhibited testicular growth (157).
Thus, concentrations of nonylphenols and
related compounds found in some aquatic
environments may be sufficiently high to
elicit reproductive dysfunction in fish.
Consideration should also be given to the
possibility that the effects of alkylphenol
polyethoxylates may be extended to fish-
eating vertebrates, including humans.
Administration of 4-octylphenol to preg-
nant rats at environmentally relevant doses
resulted in a significant reduction in testis
size and sperm production among male
offspring (158).

Demasculinization
of Alligators
Lake Apopka, the fourth largest lake in the
state of Florida, has experienced a precipi-
tous decline in its alligator population
since 1980 despite the concurrent mainte-
nance of stable populations in other
Florida lakes (159). Compared to a refer-
ence lake (Lake Woodruff), male alligators
from Lake Apopka were found to have
diminutive phalli, poorly organized testes,
and significantly lower plasma testosterone
levels (160). Testes from Lake Apopka and
Lake Woodruff alligators were evaluated
for in vitro steroid biosynthesis (161). No
differences were observed in the synthesis
of testosterone, though testes from Lake
Apopka alligators produced significantly
more 173-estradiol compared to testes
from Lake Woodruff alligators. These
observations suggest male alligators from
Lake Apopka have reduced plasma testos-
terone due to enhanced biotransformation
of testosterone of other steroid hormones
(i.e., 17P-estradiol) and/or elimination
products (i.e., testosterone-glucuronide).

Lake Apopka is located adjacent to a
U.S. EPA-designated Superfund site conta-
minated with the organochlorine pesticides
dicofol and DDT. Alligator eggs sampled
from the lake were found to contain up to
5.8 ppm of the persistent DDT metabolite
p,p'-DDE (162). p,p'-DDE has been
shown to bind the androgen receptor with
50% displacement of androgen occurring
at a concentration of 5 FiM (163). However,
p,p'-DDE is not androgenic. Using an
androgen receptor/luciferase reporter gene
construct, this compound was shown to
inhibit androgen-receptor-mediated tran-
scription. Administration of p,p'-DDE to
rats inhibited androgen-dependent processes
such as ventral prostate and seminal vesicle
growth (163). Thus, the observed demas-
culinization of alligators in Lake Apopka
is likely to be due, at least in part, to con-
tamination byp,p'-DDE.

Altered Steroid Hormone
Homeostasis in Fish
Field surveys in Florida revealed the presence
of mosquitofish (Gambusia affinis) popula-
tions that contained females expressing
male anatomical and behavioral character-
istics (164). Specifically, masculinized
females possessed a modified anal fin
resembling a gonopodium (Figure 1), the
intromittent organ of males, and exhibited
reproductive behaviors such as mating
attempts. Detailed surveys of the location
of these populations demonstrated that
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masculinized females were located exclu-
sively downstream of kraft pulp mills, sug-
gesting that components of the mill
effluent were responsible for this phenome-
non (164). Indeed, laboratory exposure of
female mosquitofish to kraft pulp mill
effluent caused the structural modification
of the anal fin to a degree intermediate
between normal and masculinized females
captured in the wild (165).

Modification of the anal fin to a gono-
podium is under the regulatory control of
androgen and laboratory studies have shown
that exposure of female mosquitofish to
aqueous concentrations of the androgens
androstenedione, androstanol, and methyl-
testosterone masculinized the anal fin (166)
in a manner similar to that of kraft pulp mill
effluent. While androgenic steroids are not
considered to be a direct component ofkraft
pulp mill effluent, phytosterols, which are
abundant in tall oil of pine trees, may be
converted to C-19 steroids by the degrada-
tive action of bacteria [Figure 3 (167)].
Some of these steroids may be androgenic in
fish. Incubation of a phytosterol mixture
consisting of P-sitosterol and stigmastanol
with the bacterium Mycobacterium pro-
duced degradation products that masculin-
ized female mosquitofish (168). Thus, while
the kraft pulp mill effluent appears innocu-
ous with respect to masculinization, the
action of bacteria on effluent components
once released into the environment results
in the production of compounds that can
have profound effects on the reproductive
capacity of an exposed population.

Kraft pulp mill effluents, with the abil-
ity to alter steroid hormone homeostasis by
the introduction of xenoandrogens to the
environment, also have been shown to
reduce levels of endogenous steroid hor-
mones in exposed fish. White sucker fish
(Catostomus commersoni) collected from a
kraft pulp mill effluent receiving area had
lower serum 17p-estradiol, testosterone,
17a,20p-dihydroprogesterone, and 11-
ketotestosterone levels compared to fish
collected from reference sites (169,170).
Similar observations were made among
lake whitefish (Coregonus clupeaformis) col-
lected from the same locations (171). The
direct involvement of kraft pulp mill efflu-
ent was demonstrated when laboratory
exposure of rainbow trout (Onorhynchus
mykiss) to kraft pulp mill effluent was
shown to reduce plasma testosterone levels
by approximately 50% (172).

Interestingly, -sitosterol, the phytosterol
likely to be responsible for the masculinizing
effect of kraft pulp mill effluent following

CH3

P-Sitosterol

0

Androst-4-ene-3,17-dione Androsta-1,4-diene-3,17-dione

Figure 3. C19 androgens that have been shown to be generated from the microbial degradation of 0-sitosterol
(167). Androgenic degradation products are likely responsible for the masculinizing effects of kraft pulp mill
effluent on female mosquitofish.

its conversion to steroidal androgens, may
also be responsible for the ability of the
effluent to lower endogenous steroid hor-
mone levels in exposed fish. Goldfish
exposed to j-sitosterol experienced a reduc-
tion in plasma levels of testosterone, 11-
ketotestosterone, and 17P-estradiol (173).
This effect was not due to interference with
pituitary function but may have been due
to effects on gonadal steroid hormone
biosynthetic capacity. Alterations in steroid
hormone homeostasis by kraft pulp mill
effluents may be responsible for a variety of
abnormalities documented among fish in
areas receiving effluents, induding increased
age to maturity (170), smaller gonads
(170), reduced fecundity (170), absence of
secondary sex characteristics in males
(170), and fewer eggs at maturity (169).

Biomarkers of
Sexual Aberration
Abnormalities in primary and secondary
sex characteristics can serve as definitive,

albeit insensitive, biomarkers of alterations
in the regulation of sexual function. As dis-
cussed above, these effects include alter-
ations such as modification of the anal fin
of female Poeciliidae fishes (androgens) and
reduced phallus size (antiandrogens) in
reptiles. However, more sensitive biomark-
ers of altered sexual development are
required for application to the analyses of
field populations prior to eliciting overt
modifications of the reproductive systems
in these populations. Precedence dictates
that once the exposure to environmental
contaminants has caused major modifica-
tions of the reproductive system, declines
in fecundity are also likely to occur.

As salmonids inhabiting contaminated
regions of the United Kingdom demon-
strate, elevated plasma vitellogenin levels in
males of oviparous organisms can serve as
sensitive biochemical markers of exposure
to xenoestrogens. Vitellogenin in verte-
brates is regulated by estrogen (174) both
at the level of gene transcription and at
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mRNA stabilization (175). Vitellogenin
accumulates in the blood of estrogen-
exposed males and can be readily assayed
by radioimmunoassay, enzyme-linked
immunosorbent assay, or immunoblotting
(176). As discussed by Specker and Sullivan
(177), antibodies for use in such assays have
been generated to quantify vitellogenin
derived from a variety of species including
cartilaginous fishes, bony fishes, reptiles,
amphibians, and crustaceans (Table 4).
Recent studies have shown that antibodies
developed to phylogenetically conserved
regions of the vitellogenin protein can be
used to recognize vitellogenin from organ-
isms as diverse as fish, amphibians, reptiles,
and birds (178).

The protein lactoferrin has shown
potential as a biomarker of exposure to estro-
genic chemicals in mammals. Lactoferrin,
an iron-binding glycoprotein originally dis-
covered in bovine whey, is also present in
human milk, wet surface mucosa, tears, and
saliva (194,195), and secondary granules of
mature neutrophils (196). Lactoferrin is
also found in organs of reproduction such
as mammary glands (197) and the uterus
(198,199). The known biological func-
tions of lactoferrin are the stimulation of
DNA synthesis (200), the transport of iron
through the fetal intestine (201), the mod-
ulation of the immune system (202,203),
and bacteriostatic/bactericidal activities
by chelating iron (204). Lactoferrin is
believed to play a role in the uterus by one
or more of the following mechanisms: as
an iron reservoir (205), by maintaining
uterine proliferation (206), by tissue
remodeling through its intrinsic RNase
activity (207-209), or by fighting infec-
tions through its bacteriostatic (194) and
bacteriocidal (204) activities.

Table 4. Species with which antibodies have been
used to quantify vitellogenin levels.

Species Reference

Little skate (179)
Atlantic salmon (180)
Brown trout (180,181)
Spotted seatrout (182)
Sole (183)
Coho salmon (184)
Channel catfish (185)
Carp (186)
Siberian sturgeon (187)
European eel (188)
Atlantic halibut (189)
Striped bass (190)
Tilapia (191)
Tiger prawn (192)
Blue crab (193)

Like vitellogenin, lactoferrin is under
the positive regulatory control of estrogen.
Lactoferrin protein is normally expressed
only in adult females and lactoferrin
protein and mRNA levels were correlated
with estrogen levels in the mouse (210).
At diestrus, lactoferrin protein levels were
very low in uterine epithelial cells and
absent in uterine luminal fluid, whereas at
proestrus, lactoferrin mRNA and protein
levels increased in uterine luminal fluid
and uterine epithelium and reached their
highest levels at estrus. At early metestrus
lactoferrin levels decreased, and by late
metestrus, lactoferrin decreased to an
extremely low level (210,211). The pro-
moter region of the lactoferrin gene has
been shown to contain an estrogen response
element 349 base pairs (bp) upstream of
the transcription start site (212).

Investigators have used the model envi-
ronmental estrogen diethylstilbestrol (DES)
to characterize responses in lactoferrin pro-
tein and mRNA levels in the mouse, which
would be predictive of exposure to other
environmental estrogens. When immature
female mice were injected with DES for 3
days, the uterine levels of lactoferrin mRNA
were increased 300-fold compared to those
of control animals (213), making lactofer-
rin expression a very sensitive biomarker of
exposure to xenoestrogens.

Male mice that were prenatally exposed
to DES on days 9 to 16 of gestation, the
major period of organogenesis, constitu-
tively expressed lactoferrin in their seminal
vesicles, whereas control mice expressed no
lactoferrin (214). Furthermore, when simi-
larly DES-treated male mice were castrated
between 8 and 12 weeks of age and then
injected three times with 17,B-estradiol,
lactoferrin mRNA expression in the seminal
vesicles of DES-exposed mice was 6 times
higher than that in control mice (214).
Immunohistochemistry showed colocaliza-
tion of the estrogen receptor along with
lactoferrin in seminal vesicle epithelial cells
of prenatally DES-exposed mice (215).
These results show that exposure to the
model environmental estrogen DES during
organogenesis permanently alters seminal
vesicle cells to a feminized state. Thus,
increased lactoferrin protein and mRNA
expression appears to be a sensitive bio-
marker of prenatal xenoestrogen exposure
in males. Antibodies have been developed
against lactoferrin, allowing for analyses of
lactoferrin protein levels in target tissue
using immunochemical approaches such as
immunoblotting and immunohistochem-
istry (197). Lactoferrin mRNA has been

assayed in target tissue using PCR tech-
niques with the oligodeoxynucleotides
TACAAGGGAGTGCCACCTGGCC
and ACACCATGTACCCGGGCCTT as
5' and 3' primers (216).

Metabolic biomarkers of estrogenicity
may also serve as means of detection of
the feminizing effects of xenoestrogens.
Hepatic steroid sulfotransferase enzymes
are expressed in some species in a sexually
dimorphic manner. These enzymes sulfury-
late steroid hormones at a hydroxyl group.
The sulfated steroid has significantly
reduced affinity for the steroid receptor
and the modification presumably functions
to inactivate steroid hormones (217).
Adult female rats express a hepatic steroid
sulfotransferase enzyme that functions in
the inactivation of androgens. Androgen
sulfotransferase [also referred to in the lit-
erature as SBP31 (218) and 29kD andro-
gen-binding protein (219)] is induced by
estrogen and suppressed by androgen
(218,219). Similarly, androgen sulfotrans-
ferase was found to be 10-fold higher in
the livers of adult female mice than in
adult males (GA LeBlanc, unpublished
data). This dimorphism in mice is largely
due to androgen suppression of the enzyme.
Dramatic sexual dimorphisms in the hepatic
expression of androgen sulfotransferase
renders this enzyme potentially useful as a
biomarker of exposure to environmental
chemicals that are estrogenic, antian-
drogenic, or have the potential to alter
endogenous androgen to estrogen ratios.

While hepatic androgen sulfotransferase
is under the negative regulatory control of
androgen in some species, hepatic estrogen
sulfotransferase expression is dependent on
androgen. In rats, estrogen sulfotransferase
[also referred to as SBP 34 (218) and
31 kD androgen-binding protein (219)] is
expressed in the liver of adult males but
not in that of adult females (220). Admini-
stration of androgen to females induced
estrogen sulfotransferase (218). Exposure to
environmental androgens would likely cause
the same effect. Conversely, the exposure of
males to environmental antiandrogens likely
would cause a measurable dedine in hepatic
estrogen sulfotransferase. Finally, toxicant-
mediated alterations in endogenous steroid
hormone titers also could result in changes
in steroid sulfotransferase levels. The detec-
tion of such effects could corroborate
plasma steroid analyses and may be more
sensitive than these analyses because of
normal variability associated with this para-
meter. Administration of dexamethasone
to rats completely suppressed estrogen
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sulfotransferase activity concurrent with a
significant reduction in serum testosterone
levels (218). The ubiquity of these sexual
dimorphisms in steroid sulfotransferase
proteins among species other than rodents
remains to be established.

Steroid sulfotransferases can be meas-
ured using a variety of approaches. Enzyme
activities can be measured using liver
cytosol, the appropriate substrate (i.e.,
testosterone and 170-estradiol), and
3'-phosphoadenosine-5'-phosphosulfate
(PAPS), the sulfate donor (221). Detection
of the steroid-sulfate conjugate is typically
accomplished with the use of [3H] or
[14C]steroid hormone or [35S]PAPS.
Androgen and estrogen sulfotransferase
proteins have been identified in liver
cytosolic preparations using photoaffinity
labeling techniques in conjunction with
sodium dodecyl sulfate (SDS)-polyacry-
lamide gel electrophoresis (218,221).
Antibodies have also been generated
against some of the steroid sulfotrans-
ferase proteins, thus allowing the immun-
odetection of the proteins (220,222,223).
cDNA probes have been generated for sev-
eral steroid sulfotransferase proteins, which
allows the direct quantification of mRNA
levels (222,224-226).

Conclusions and
Recommendations
Clearly, species ranging from invertebrates
to mammals are currently experiencing
chronic toxicity because of exposure to
ambient levels of various environmental

contaminants. In some cases, the presence
of the contaminant in the environment
represents usage and disposal patterns that
are no longer relevant (i.e., PCBs, DDT).
However, normal usage patterns of other
chemicals (i.e., tributyltin, organophos-
phates) have also resulted in adverse,
unpredicted consequences. Many of the
effects elicited by these compounds at
environmentally relevant concentrations
were not identified during toxicity charac-
terizations of the chemicals because insuffi-
cient data on the effects of the chemicals
over the life cycle of organisms were
obtained, insensitive species were used dur-
ing toxicity characterizations, or improper
end points of toxicity were assessed during
toxicity characterizations.

How can existing toxicity testing proto-
cols be improved to maximize the detec-
tion of chronic toxicity without having to
conduct full life-cycle exposures on the
many known sentinel species? As demon-
strated in this review, retrospective analyses
can be used to identify sentinel species and
end points of chronic toxicity that are most
likely to respond to chemical contamina-
tion. Having identified end points (i.e.,
carcinogenicity, immunosuppression,
reproductive dysfunction) of chronic toxic-
ity in the environment, biomarkers of such
effects, as provided in this review, can be
selected and utilized in subchronic testing
protocols. Such an approach precludes the
necessity of conducting full chronic toxic-
ity assays in the absence of any evidence
that the chemical indeed elicits chronic

toxicity. Rather, the use of biomarkers of
chronic toxicity during subchronic testing
provides a means for the identification of
chemicals that should be further tested to
definitively evaluate and characterize
chronic toxicity.

The successful use of this approach is
contingent upon the selection of appropri-
ate surrogate species during subchronic
testing. The susceptibility of standard sur-
rogate species to various aspects of chronic
toxicity (i.e., carcinogenicity, immunotoxi-
city, etc.) must be elucidated and, where
necessary, alternative species that are both
amenable to laboratory testing and are sen-
sitive to specific chronic effects of chemi-
cals must be identified and exploited.
Finally, additional research is needed in
order to assess mechanisms of chronic toxi-
city. Such information will augment the
selection of an appropriate surrogate species.
For example, metabolic androgenization
has been proposed as the mechanism by
which tributyltin causes imposex in gas-
tropods. While daphnids (a commonly
used laboratory species) have not been
shown to develop imposex, they have been
shown to be sensitive to chemical-induced
metabolic androgenization. Thus, this bio-
marker could be appropriately used in this
surrogate species as an indicator of imposex
in gastropods. Only with the sagacious use
of sentinel surrogates and biomarkers of
chronic toxicity during prospective hazard
assessments will their use become minimal
during retrospective assessments.
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