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ABSTRACT
We have studied a genome-wide set of single-nucleotide polymorphism (SNP) allele frequency measures

for African-American, East Asian, and European-American samples. For this analysis we derived a simple,
closed mathematical formulation for the spectrum of expected allele frequencies when the sampled
populations have experienced nonstationary demographic histories. The direct calculation generates the
spectrum orders of magnitude faster than coalescent simulations do and allows us to generate spectra for
a large number of alternative histories on a multidimensional parameter grid. Model-fitting experiments
using this grid reveal significant population-specific differences among the demographic histories that
best describe the observed allele frequency spectra. European and Asian spectra show a bottleneck-shaped
history: a reduction of effective population size in the past followed by a recent phase of size recovery.
In contrast, the African-American spectrum shows a history of moderate but uninterrupted population
expansion. These differences are expected to have profound consequences for the design of medical association
studies. The analytical methods developed for this study, i.e., a closed mathematical formulation for the allele
frequency spectrum, correcting the ascertainment bias introduced by shallow SNP sampling, and dealing with
variable sample sizes provide a general framework for the analysis of public variation data.

THE analysis of statistical distributions of genetic the effects of recombination or mutation rate heterogene-
ity as we show below.variations has a rich history in classical population

genetic studies (Crow and Kimura 1970), and recent Modeling the distribution of allele frequency: Prior
study of the AFS has been restricted to properties ofgenome-scale data collection projects have positioned

the field to apply, challenge, and improve traditional summary statistics such as Tajima’s D (Tajima 1989), or
the proportion of rare- to medium-frequency alleles (Futheory by examining data from thousands of loci simul-

taneously. The two most frequently studied distributions and Li 1993). There has been very little analysis of the
general shape of observed spectral distributions. Theof nucleotide sequence variation are the marker density
analytical shape of the AFS, under a stationary history(MD), or mismatch distribution (Li 1977; Rogers and
of constant effective population size, was derived by FuHarpending 1992; i.e., the distribution of the number
(1995) who showed that, within n samples, the expectedof polymorphic sites observed when a collection of se-
number of mutations of size i is inversely proportionalquences of a given length are compared), and the allele
to i. Important properties of the coalescent process un-frequency spectrum (AFS; Ewens 1972; i.e., the distribu-
der deterministically changing population size havetion of diallelic polymorphic sites according to the num-
been derived in publications of Griffiths and Tavareber of chromosomes that carry a given allele within a
(1994a,b) and Tavare et al. (1997). These results showsample). The latter distribution is immediately applicable
that, for the purposes of genealogy, varying populationto the genotype data produced by projects that are char-
size can be treated by appropriate scaling of the coales-acterizing a large subset of currently available single-nucle-
cent time. Applying these results to obtain a formulaotide polymorphisms (SNPs) with measures of individual
for the allele frequency spectrum is not trivial, however,allele counts (genotypes) for three ethnic populations
because mutations occur in nonscaled time. More re-(http://snp.cshl.org/allele_frequency_project/). In addi-
cently, Wooding and Rogers (2002) derived a methodtion to data availability, the AFS has other, analytical advan-
called the matrix coalescent that overcomes these diffi-tages over MD data, most notably its independence from
culties and calculates the AFS under arbitrarily changing
population size histories. Their approach solves the
problem for the general case, but leads to an involved

1Corresponding author: Department of Biology, Boston College, 140 computational procedure requiring numerical matrixCommonwealth Ave., Chestnut Hill, MA 02467.
E-mail: marth@bc.edu inversion. In this study, we have taken a different ap-
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proach. By extending Fu’s result from a stationary popu- lations, practically all possible simple shapes of popula-
tion history have been proposed: constant effective sizelation history to a more general shape, a profile of demo-

graphic history characterized by an arbitrary number of (stationary history), growth relative to an ancestral effec-
tive size (population expansion), size reduction (col-epochs such that the effective population size is constant

within each epoch, we have arrived at a very simple, lapse), and bottleneck (a phase of size reduction fol-
lowed by a phase of growth or recovery); see Figure 1.easily computable formula for the AFS. The price we

pay is the lack of generality of arbitrary shapes. In many These claims as well as the underlying data have been
reviewed by various authors (Harpending and Rogerspractical situations, however, these shapes can be ap-

proximated by a piecewise constant effective size profile. 2000; Wall and Przeworski 2000; Jorde et al. 2001;
Rogers 2001; Ptak and Przeworski 2002; TishkoffThe advantage is a formulation that permits very rapid

generation of AFS under a large number of competing and Williams 2002). It is generally agreed that variation
patterns in mitochondrial DNA show rapid expansionhistories for accurate data fitting and hypothesis testing.

This result is applicable when the sites under consider- of effective size in all human populations. Results in
microsatellite data are less unanimous about which pop-ation are selected randomly and the number of success-

fully genotyped samples is identical at each site. For the ulations experienced expansion or what the magnitude
and starting time of such demographic events were.data set we are considering both of these assumptions

are violated. First, the sites in question were selected Recent studies of SNP data sets in nuclear DNA propose
the possibility of a population collapse to explain re-for the population allele frequency characterization of

a large subset of SNPs from a genome-wide map (Sachi- duced haplotype diversity (Clark et al. 1998; Reich et
al. 2001, 2002; Gabriel et al. 2002), especially in samplesdanandam et al. 2001) of SNPs discovered by computa-

tional means, in large mining efforts in the public (Alt- of European ancestry, a hypothesis consistent with our
observations in the current data set.shuler et al. 2000; Mullikin et al. 2000; Lander et al.

2001; Marth et al. 2003) and private (Venter et al.
2001) domains, numbering millions of sites. Common

METHODSin these efforts is that SNP discovery was carried out in
samples of a small number of chromosomes (two or Allele frequency spectrum under stepwise constant
three). The samples used in the discovery phase were effective population size: We show that, for a population
different from the samples used in the consequent geno- evolving under the Wright-Fisher model, and under se-
type characterization experiments, and they repre- lective neutrality, the expectation for the number of
sented an unknown mixture of ethnicities. Second, be- mutations �i of size i, within a sample of n chromosomes
cause of genotyping failures, the number of successful under a demographic history of multi-epoch, piecewise
genotypes varies from site to site, raising the question constant effective population size is
of how to compare allele counts across these sites. In this
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4�N1

i
work, we propose methods to deal with these practical
problems. The resulting suite of tools enables us to analyze
the shape of the AFS observed in the data directly and to
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,demographic history is of direct biological and anthro-
pological interest. Additionally, the history of effective

(1)population size has a profound effect on important
quantities such as the extent of linkage disequilibrium where � is the (constant) per-locus mutation rate, Nm
and is therefore important for medical association stud- is the effective population size in epoch m, Tm is the
ies. There have been many attempts for demographic corresponding epoch duration, and �*m � �m

l�1Tl/2Nl ,
inference from contemporary molecular data represent- the normalized epoch boundary time. A detailed deriva-
ing different molecular mutation systems such as mito- tion of this result is given in the appendix. The normal-
chondrial DNA polymorphisms (Di Rienzo and Wilson ized distribution of these expectations according to the
1991; Rogers and Harpending 1992; Sherry et al. frequency is the allele frequency spectrum:
1994; Ingman et al. 2000), microsatellites (Di Rienzo et

Pn(i) � Pr(a given segregating site is size i in n samples)al. 1998; Kimmel et al. 1998; Reich and Goldstein
1998; Relethford and Jorde 1999; Gonser et al. 2000;

�
E(�i)

�n�1
j�1 E(�j)

, i � 1, . . . , n � 1. (2)Zhivotovsky et al. 2000), and, more recently, SNPs in
nuclear DNA (Harding et al. 1997; Clark et al. 1998;
Cargill et al. 1999; Zhao et al. 2000; Reich et al. 2001; It is sometimes useful to consider the “full” allele

frequency spectrum, P full
n (i), considering sizes 0 and n,Sachidanandam et al. 2001; Yu et al. 2001). For both

global samples of human diversity, or specific subpopu- i.e., when all samples carry the ancestral or the derived
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allele, respectively. We have verified the accuracy of the the individual terms are close in value. Instability can
be avoided by accurate calculation of each term. Thecomplete allele frequency spectrum derived from this

formulation by coalescent simulations (supplemental higher the sample size, the more accurately each term
has to be evaluated. We do not have a systematic wayFigure S1 at http://www.genetics.org/supplemental/).

Three important properties of the allele frequency spec- to predict the accuracy requirement as a function of
sample size, hence we determined the accuracy require-trum are clear from Equation 1. First, the expectation

for a given frequency is linear under simultaneous scal- ment for a given sample size by trial and error. In our
implementation, we have used high-accuracy numericing of all effective population sizes and epoch durations

(i.e., as long as Tm and Nm are multiplied by the same libraries with settable numeric precision. Our experi-
ence has been that, up to a sample size n � 100, aconstant for each m), hence the relative frequency spec-

trum remains unchanged. This fact can be exploited to numeric precision of 100 decimal places was sufficient
for our calculations. Evaluation of the allele frequencyreduce the number of parameters that characterizes a

given demographic model under consideration. Sec- spectrum for a sample size of 1000 required a numerical
precision of �500 decimal places.ond, the expected number of mutations of a given size

for more than one nucleotide site is simply the sum Correcting ascertainment bias: To describe the situa-
tion where polymorphic sites discovered in a set of sam-of the individual expectations, without regard to any

possible correlation among the site genealogy of proxi- ples are genotyped in a second, independently drawn
set of samples for frequency characterization we dividemal sites. Therefore, our results for the expected num-

ber of segregating sites as well as the allele frequency the two independent groups of samples into a “discov-
ery” group consisting of k samples and a “genotyping”spectrum are also valid for polymorphisms at a single

locus of arbitrary sequence length, without regard to group consisting of n samples. The discovery process is
modeled by considering only those sites within the n �possible recombination within the locus, or for polymor-

phisms collected from throughout the genome. This k samples that are polymorphic (i.e., are of size between
1 and k � 1) within the discovery group of depth k andlatter consideration allows us to apply the theoretical

expectations derived here for the data set examined, discarding those sites that are monomorphic in this
without regard to the amount and structure of linkage group, as these sites would not be considered for subse-
between the sites represented within the set. Third, the quent genotyping. The conditional probability, Pn|k(i),
allele frequency spectrum is independent of the actual that a site is of size i within the n genotyping samples
value of the per-nucleotide, per-generation mutation given that it is polymorphic in the k discovery samples
rate, as long as this rate is uniform for every site consid- is:
ered.

Pn|k(i) � Pr(size i in n samples|size between 1 and k � 1 in k samples)Minor allele frequency spectrum (folded spectrum):
In situations where allele frequency is determined ex-

�
Pr(size i in n samples AND size between 1 and k � 1 in k samples)

Pr(size between 1 and k � 1 in k samples)perimentally by counting the two alternative alleles
within a sample of n chromosomes, it is uncertain which

� �k�1
l�1Pr(size i � l in n � k samples AND size l in k samples)

Pr(size between 1 and k � 1 in k samples)of the two alleles is the mutant allele. In such situations,
instead of the true frequency, we work with the fre-

� �k�1
l�1Pr(size l in k samples | size l � i in n � k samples) · Pr(size l � i in n � k samples)

Pr(size between 1 and k � 1 in k samples)quency of the less frequent (or minor) allele (Fu 1995).
The distribution of minor allele frequency is described
by the folded spectrum defined as �
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By this definition, if n is even, P̃n(n/2) � 2Pn(n/2),
It is possible that a site that appears polymorphic withini.e., twice the value we would expect to measure, leading

the k discovery samples is monomorphic within the n geno-to a “doubling effect.” This fact needs to be taken into
typing samples. As a result, the conditional probabilitiesaccount during the interpretation of measured data.
Pn|k(0) and Pn|k(n) are typically nonzero, and one has toBecause in many data sets available for analysis the an-

cestral allelic state is currently unknown, the folded renormalize after the transformation to get the AFS. It
is easy to verify that Equation 4 is also valid for calculat-spectrum is important in practice.

Numerical calculation of the allele frequency spec- ing the folded conditional spectrum P̃n|k(i), as defined
in Equation 3, provided that both folded spectra P̃k(i)trum: Frequency spectrum calculations were imple-

mented in the C programming language. Some care and P̃n�k(i) are available. This property makes it possible
to account for the ascertainment bias when only themust be taken when calculating the expected spectrum,

because computing Equation 1 requires the evaluation folded allele frequency distributions are available. For
the sake of completeness, we include the conditionalof alternating sums, a source of numeric instability when
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spectrum for the important special case, k � 2, i.e., number of relative counts as compared to the original
observations. To obtain the AFS, one omits sizes 0 andascertainment within a pair of chromosomes:
m in Equation 7 and renormalizes. It is easy to verify
that the equivalence reduction also works for the foldedPn|2(i) �

2�n�1
k�1P full

n�2(k)
P full

2 (1)
·

(i � 1)(n � 1 � i)
(n � 1)(n � 2)

Pn�2(i � 1)
allele frequency distribution.

We point out that our reduction procedure is not� C(i � 1)(n � 1 � i)Pn�2(i � 1). (5)
equivalent to frequency binning, a procedure some-

It is easy to show that under a stationary history the times employed to compare allele counts available at
spectrum is a linear function of i, and the folded spec- different samples sizes. Aggregating discrete allele fre-
trum is constant (Figure 2a). quency data on the basis of a nominal allele frequency

We point out that our method of ascertainment bias c/n, the ratio of allele counts and the sample size, results
correction improves on an earlier method based on in data distortion stemming from two sources. First, for
using the measured discrete allele frequency as an esti- a given sample, the inherent base frequency is fn � n�1.
mator for the overall allele frequency within the popula- In general, only window sizes that are integer multiples
tion (Sherry et al. 1997; see supplemental Figure S2 at of fn will preserve the uniform appropriation of allele
http://www.genetics.org/supplemental/). sizes into frequency bins. This may be impossible if

Reduction of allele frequency counts to equivalent multiple sample sizes are present in the data. Second,
counts at a lower sample size: Often allele frequency sites with identical nominal allele frequencies but differ-
data are the result of genotyping a target number, nt, ent sample sizes are not equivalent; e.g., a site with a minor
of individuals at a collection of polymorphic sites. Because allele count of 1 in 3 samples is clearly not equivalent
of genotyping failures, however, the actual number of to a site with a minor allele count of 10 in 30 samples.
genotypes available at different locations is smaller and Distortions from both sources are most pronounced at
often varies from site to site. At sites where an identical lower sample sizes. Our equivalence reduction proce-
number, n, of successfully determined chromosomal dure is a technique of data aggregation that is free
allelic states are available we denote the distribution of of such distortions. This point is further illustrated in
allele counts by Cn(i) and the corresponding probability supplemental Figure S3 at http://www.genetics.org/
distribution obtained by normalizing these counts by supplemental/, where we compared the AFS resulting
Pn(i). Sites with different numbers of successful geno- from simple binning of all available data for the Euro-
types are not directly comparable. To enable joint analy- pean samples to the AFS we obtain by the equivalence
sis of allele counts observed at all sites genotyped in the data reduction procedure presented here.
experiment, we have devised a procedure that, given Coalescent simulations and tabulation of linkage dis-
an observed distribution of allele frequencies among equilibrium: We used coalescent simulations to verify
samples, produces an equivalent distribution at a lower the accuracy of our allele frequency spectrum calcula-
sample size, m. This is achieved by, first, considering all tions (supplemental Figure S1), to tabulate measures
possible choices of m subsamples selected from the total of linkage disequilibrium, and to tabulate distributions
n available samples, in such a way that each choice is of mutation age. To perform these simulations, we have
equally likely and, second, requiring that the total num- implemented a widely used, direct coalescent algorithm
ber of observations remains the same. Under these as- (Hudson 1991). The simulation software was first imple-
sumptions, the “equivalent” allele counts, Cm(i), for m mented in Perl for rapid coding and error checking
subsamples are and then reimplemented in C�� for increased compu-

tational speed. To verify the direct formula, we have
run coalescent simulations under a variety of populationCm(i) � E(Cm(i)) � �

n�m�i

j�i

�mi ��n�m
j�i �

�nj �
Cn(j) , i � 0, . . . , m, (6)

history scenarios, tabulated the allele frequency spectra,
and compared them to the computed predictions. To
verify the conditional spectrum calculations, we have simu-

Pm(i) � �
n�m�i

j�i

�mi ��n�m
j�i �

�nj �
P full

n (j), i � 0, . . . , m . (7)
lated n � k chromosomes within a common genealogy,
designated k samples as the discovery group, and n sam-
ples as the genotyping, or frequency measurement,Note that this procedure does not allow one to gener-

ate a higher sample size distribution on the basis of a group. Of all the sites that were polymorphic within
the n � k samples, we discarded those sites that werelower sample size distribution. Also note that, even if

the higher sample size distribution was a relative allele monomorphic within the k discovery samples and kept
the remaining sites. We then tabulated the allele fre-frequency spectrum, the resulting lower sample size dis-

tribution will contain nonzero terms for size 0 and for quency counts at these sites among the n genotyping
samples.size m. Clearly, the first case is the result of the possibility

that the omission of n � m chromosomes left us with 0 Expectations for the extent of linkage disequilibrium
were generated according to a previously publishedmutant alleles, and the second is that only mutant alleles

remained. This results in a slight reduction of the total method (Kruglyak 1999). For each population, we
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used the best-fitting three-epoch model for the coales- in the past) parameter at 10,000, for each model class.
We have generated the unbiased allele frequency spec-cent simulations, with samples size n � 100. Marker
tra by direct calculation using Equation 1, for a sampleallele frequencies were restricted to the range between
size of m � 2, where m � 41 is the (common) sample0.25n and 0.75n. For each value of recombination frac-
size after data reduction, and k � 2 is the discoverytion, we tabulated r2, a commonly used measure of link-
size. We then computed the conditional spectrum usingage disequilibrium defined as
Equation 4. Finally, we folded the spectrum using the
definition given in Equation 3. To quantify the degreer 2 �

(pAB � pA · pB)2

pA · pa · pB · pb

, (8)
of fit between a given model and the observations we
have used the likelihood of the observed data condi-

where A and a denote the mutant and the ancestral tioned on the model:
alleles at the first marker location, and B and b are the
alternative alleles at the second marker location. The

P(data|model) � � c
c1, . . . , cm�1

� �
m�1

i�1

pcii . (9)quantities pA, pa, pB, and pb are the corresponding allele
frequency measurements, and pAB is the measured fre-

For generating the likelihood surface for the Euro-quency of the haplotype defined by the combination of
pean bottleneck size vs. duration we used the 	2 metricallele A at the first marker position and B at the second
defined asmarker position. Finally, marker age was tabulated by

registering the time of occurrence for each of the muta-
	2 � �

m�1

i�1

(ci � c · pi)2

c · pi

. (10)tions during the simulations.
Model fitting to observed allele frequency spectra: The

primary objective of the fitting experiments is to deter- In the above notations, ci is the observed number of
mine the distribution of the posterior probability of the sites of size i, c is the number of total sites, pi is the predicted

(relative) probability of size i, and m is the common samplemodel parameters given the observed data: P(model|
size to which all observations were reduced using the equiv-data). With the help of our closed formula for the direct
alence data reduction procedure outlined earlier.calculation of the AFS we were able to generate the

Comparison between models with different epoch num-expected AFS for a complete, high-resolution, multidi-
bers: Models within the same structure (same epoch num-mensional grid overlaid on the parameter space that
ber) could be directly compared on the basis of any ofwe intended to explore. This direct approach yielded
the three goodness-of-fit metrics discussed above. Modelsthe likelihood distribution, P(data|model), computed
with different numbers of epochs were compared usingat each grid point. Given that there is no sensible way
methods of normal hypothesis testing for nested modelsto assign an “informed” prior distribution to the model
(Ott 1991), on the basis of the likelihood of the dataparameters, the distribution of the likelihood function
given each of the two models compared. The quantityis equivalent to the posterior distribution and can be
2 ln(
) � 2 ln(P(data|model1)/P(data|model2)) is as-used in ranking competing parameters. We point out
ymptotically 	2 distributed, with degrees of freedomthat an alternative method of achieving the same goal
equal to the difference in the number of parametersis to use a Markov-chain Monte Carlo (MCMC) tech-
characterizing the models (i.e., adding one extra epochnique to obtain the posterior distribution (Griffiths
increases the number of parameters by two). The largerand Tavare 1994a; Kuhner et al. 1995). We opted for
this quantity, the more significant the improvement thatthe direct method because it was simple but computa-
was achieved by the introduction of the extra epoch. Iftionally feasible, by its nature avoided the convergence
the quantity is small, the improvement in data fit doesissues usually associated with MCMC, and allowed us to
not warrant the introduction of the extra parameters.evaluate the likelihood function at every grid point, for

each of the three population-specific AFS analyzed.
Stepwise constant models of one, two, and three ep-

RESULTSochs were considered. For each model class defined by
the number of epochs, a vector of parameters describing Modeling allele frequency: We considered a diploid
the model was considered, including the effective popu- population whose demographic history was described
lation size and the duration of the epoch (expressed in by a series of epochs such that the effective population
terms of generations). We have sampled each effective size was stepwise constant within each epoch (e.g., Figure
size parameter, Ni, between 1000 and 150,000 in steps 1) and showed that the expected number of samples
of 1000 up to 30,000 and in steps of 5000 beyond 30,000, carrying a mutant allele can be described by a closed,
and each epoch duration parameter, Ti, between 100 easily computable mathematical formulation (see
and 50,000 in steps of 100 up to 10,000 and in steps of methods). We derived a method for incorporating the
500 beyond 10,000. Because of the scaling equivalence same frequency ascertainment bias into AFS models that
of the relative distribution discussed earlier, we fixed was introduced into real data by the sampling strategies

used during SNP discovery and for revealing the strate-the ancestral size (the effective size of the epoch farthest
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the attempted sample sizes are different. In such cases
one selects a target sample size and applies the reduc-
tion procedure to transform allele counts observed at
higher sample sizes to the equivalent counts at this lower
target sample size. It is then possible to fit the resulting
single AFS containing the contribution of all available
data instead of fitting multiple, often sparse spectra,
one for each sample size present in the data.

Minor allele frequency spectra observed in samples
representing different world populations show differen-
tial demographic histories: The SNP Consortium (http://
snp.cshl.org), an organization formed primarily for the
discovery of a large set of human SNPs, has made well

Figure 1.—Example of a three-epoch, piecewise constant, over 1 million polymorphic sites available in the public
bottleneck-shaped population history profile. The ancestral domain (Sachidanandam et al. 2001). Most of these
effective population size (N3) is followed by an instant reduc-

SNPs were discovered by comparing sequencing read frag-tion of effective size (N2). The duration of this epoch is T2
ments from multi-ethnic, anonymous, whole-genomegenerations. This is followed by a stepwise increase of effective

population size to N1, T1 generations before the present. shotgun subclone libraries to the public genome refer-
ence sequence (Sachidanandam et al. 2001); i.e., the
vast majority of the SNPs were found in a discovery size

gies’s consequent effect on SNP population frequency of two chromosomes (k � 2). Quasi-random subsets of
(methods). We illustrate the effect of this bias under these candidate sites were then selected for frequency
different values of ascertainment sample size (Figure characterization in samples representing European-
2a). As expected, the bias toward sample enrichment American, African-American, and East Asian populations
for common polymorphisms is strongest when SNPs are (for sample identifiers see http://snp.cshl.org/allele_
discovered in a pair of chromosomes, and it gradually frequency_project/panels.shtml). In this study, we
disappears as discovery sample size increases. Under a chose the largest data set of allele frequency counts
stationary population history, the folded spectrum un- resulting from genotypes provided by Orchid Biosci-
der ascertainment in two chromosomes is a constant ences, of 42 individuals (84 chromosomes) drawn from
function of frequency (methods), and deviations from each of the three populations (http://snp.cshl.org/
a horizontal line signal a nonstationary history that is allele_frequency_project/). Experimental results were
easy to detect and interpret. In Figure 2b, we contrast reported for 33,538 sites. For a significant fraction of
the ascertainment bias-corrected, minor allele fre- the sites genotyping was unsuccessful for one or more
quency spectra for notable, competing scenarios of de- of the populations attempted. In some other cases, al-
mographic history. When a population expands, an in- though genotyping was successful, all samples carried
creasing number of chromosomes simultaneously incur the same allele and hence the site could not be con-
new mutations, which results in an overabundance of firmed as polymorphic. For the purpose of our study,
rare alleles in the spectrum. Conversely, a population we restricted our attention to those sites where (1) geno-
collapse is a rapid loss of chromosomes, and the alleles typing from each of the three sample groups was success-
present at high frequency are more likely to be carried ful (genotyping for a given population was considered
by surviving chromosomes than are their rare counter- successful if genotype data were obtained for at least
parts. For that reason a collapse generates an overrepre- half the population samples, i.e., 21 individuals, even
sentation of common alleles. Finally, AFS under a bottle- if only one of the alternative alleles was seen in that
neck history (a reduction of effective size followed by population) and (2) the site was polymorphic within at
a phase of recovery) carries the signature of both the least one of the three population samples. Of the total
phase of collapse (a valley at intermediate frequencies) 21,407 sites that were successfully genotyped in all three
and that of growth (elevated signal at low frequencies). populations the European samples were polymorphic

We report a procedure to transform allele counts at 18,660 sites, the African samples at 20,587 sites, and
at a given sample size to a lower, target sample size the Asian samples at 17,369 sites. At a given site, the
(methods). Using this equivalence sample size reduction total number of alleles counted varied between 42 (the
procedure, allele count observations at all sites can be minimum number possible, in case only 21 diploid indi-
reduced to the equivalent counts at a lower, “common viduals were successfully genotyped within a popula-
denominator” sample size, as illustrated in Figure 3. tion) and 84, the maximum possible if all 42 individuals
This procedure is useful for analyzing allele counts at within a population sample were successfully genotyped.
sites where the number of available genotypes is variable To use all the data available, we have applied our equiva-
either because a fraction of attempted genotyping ex- lence sample size reduction procedure (methods) to

convert the allele count data to a common denominatorperiments failed or when merging data sets in which
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Figure 2.—Ascertainment bias. (a) Folded
spectra under stationary history, at various values
of “discovery sample” size k (methods). (b) Allele
frequency spectra predicted under competing
scenarios of population history (conditioned on
pairwise ascertainment k � 2). Equilibrium his-
tory, N1 � 10,000; expansion, N1 � 20,000, T1 �
3000, N2 � 10,000; collapse, N1 � 2000, T1 � 500,
N2 � 10,000; bottleneck history, N1 � 20,000, T1 �
3000, N2 � 2000, T2 � 500, N3 � 10,000. (a and
b) Sample size n � 41.

sample size. Because the identity of the ancestral and our web site: www.ncbi.nlm.nih.gov/IEB/Research/
GVWG/AFS-2003/.the mutant allele was not known, we used the allele

counts of the less frequent (or minor) allele, giving rise To assess the signals of population history within these
observed distributions, we generated allele frequencyto a folded spectrum (methods). To avoid the “dou-

bling” effect associated with folding the allele frequency spectra as predicted under competing scenarios of pop-
ulation history of varying complexity: stationary historyspectrum when the sample size is an even number, as

described in methods and in particular by Equation 3, (one epoch), expansion or collapse (two epoch), and
all possible shapes of three-epoch histories (methods).we chose the common denominator sample size as m �

41, i.e., the first odd number below the (even) sample For a given set of model parameters, we generated the
corresponding theoretically predicted, ascertainmentsize 42. The unfolded spectrum hence lies between 1

and 40 (sizes 0 and 41 indicate monomorphisms). Ac- bias-corrected minor allele frequency spectrum and
evaluated the degree of fit between the prediction andcordingly, the folded spectrum lies between minor allele

sizes 1 and 20, for each of the three population-specific the observations (methods). For each population-spe-
cific data set and for each model structure (number ofsample groups (Figure 4, first column). The allele fre-

quency data used in our analysis are available through epochs), we determined the best-fitting model parame-
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Figure 3.—Sample size reduction.
Folded, normalized allele frequency dis-
tribution for each sample size (n � 42,
. . . , 84) present in the European allele
count data (gray) is shown. The allele
frequency spectra obtained using the
equivalence sample size reduction tech-
nique (methods) are also shown for var-
ious equivalence sample sizes (m � 21,
31, and 41; green).

ters and the corresponding measures of goodness of fit. (N, effective number of individuals) and duration (T,
generations) of the recovery phase was within a narrowBy definition of the likelihood function used for data

fitting, the best-fitting model parameters are the maxi- range (N1 � 19,000–21,000, T1 � 2700–3000). Parame-
ters of the bottleneck phase were in a wider range (N2 �mum-likelihood parameter estimates for that model

class (Table 1). 1000–4000 and T2 � 200–1300), with several alternative
pairs available: longer but less severe bottlenecks orThe normalized observed allele frequency distribu-

tions for each population group and the corresponding shorter, more severe bottlenecks. Given the potential
interest in a possible bottleneck in the history of Euro-best-performing distributions within each model class

are shown in Figure 4. In all three population-specific pean populations, we further investigated the strength
of the bottleneck signal by fixing the recovery size andspectra, stationary history is a poor descriptor of the

data, both by visual inspection and by examination of duration parameters (N1 � 20,000, T1 � 3000) and vary-
ing the bottleneck size N2 and duration T2 in fine incre-the fit values in Table 1. The best-fitting two-epoch

model for all three spectra is that of expansion (Table ments (20). For each parameter combination, we evalu-
ated the goodness of fit to the European spectrum as1). In the European (Figure 4a) and in the Asian (Figure

4b) samples the best-fitting three-epoch model is one measured by the 	2 statistics and reported the resulting
probability surface in Figure 5. The best-fitting parame-of a bottleneck-shaped history. In the European data,

the curve fit produced by the bottleneck profile is a very ter combinations (ones not rejected by the 	2 test even
at the 99.8% level) lie on a slightly curved line betweensignificant improvement over that produced by histories

of expansion. In the Asian data, the improvement is still the following pairs: effective size of 1040 during the
bottleneck for 240 generations and effective size 2320significant but to a lesser degree. The best-fitting three-

epoch models in African-American data (Figure 4c) rep- for 560 generations. The most likely model, at this reso-
lution, is a bottleneck effective size of 1560 for 360resent a two-step population increase of moderate size.

In addition to the best-fitting models, a range of pa- generations. These values and the ratio of effective pop-
ulation size and bottleneck duration being nearly con-rameter values produced comparably good fit to the

observations. We have examined parameter sets that stant in a large region are in good agreement with previ-
ous reports (Reich et al. 2001). In the Asian data (Figureproduced likelihood values that were at least 90% of

the value obtained for the best-fitting three-epoch pa- 4b), all parameters including those characterizing the
bottleneck phase were within a tight range: N2 � 3000–rameter set. Analysis of these “close to optimal” parame-

ter values in the European data shows that both the size 5000, T2 � 600–1000, N1 � 24,000–26,000, and T1� 3000–
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Figure 4.—Model fitting to folded AFS observed in population-specific genotype data reduced to common sample size, m �
41. (a) European spectrum. (b) Asian spectrum. (c) African-American spectrum. First column, observed allele frequency spectrum
(black), best-fitting three-epoch theoretical model prediction (green), and prediction under stationary effective size (red); second
column, breakdown of mutations according to age within each frequency class of the best-fitting model spectra [color bands
correspond to a range of 1000 generations (e.g., black band, 1–1000 generations; red band, 1001–2000 generations)]; third
column, distribution of mutation times (generations in the past) at each frequency, based on 1 million simulation replicates.
Notched box: 25%, median, 75%. Whiskers: min/max values. Open square: mean value. Open circle: 5%, 95% values.

3200. Similarly narrow ranges were observed for the ple and rapid way to generate expected distributions
of allele frequency under stepwise constant models ofAfrican-American data (Figure 4c): N2 � 16,000, T2 �

13,000–15,000, N1 � 26,000–30,000, and T1 � 2000– effective population size history. This procedure is or-
ders of magnitude faster than tabulating simulation rep-2600.
licates, especially for large sample sizes, permitting fast
generation of model spectra to explore large parameter

DISCUSSION
spaces at high resolution. The method of ascertainment
bias calculation we have presented permits the interpre-Significance of the allele frequency analysis methods

presented here: Equation 1 (methods) provides a sim- tation of allele frequency spectra measured at polymor-
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TABLE 1

Results of fitting multi-epoch models of allele frequency spectrum to population-specific
observed allele frequency data

Model Model Resulting pairwise � Improvement over
structure parameters (units of 10�4) ln P(data|model) lower-epoch model

a. European data
One epoch N1 � 10,000 8.00 �55.98 —
Two epoch N2 � 10,000 8.74 �38.11 2 ln 
 � 35.74

N1 � 140,000 P � 10�4

(T1 � 2,000) Highly significant
Three epoch N3 � 10,000 7.88 �23.72 2 ln 
 � 28.78

N2 � 2,000 P � 10�4

(T2 � 500) Highly significant
N1 � 20,000
(T1 � 3,000)

b. Asian data
One epoch N1 � 10,000 8.00 �74.26 —
Two epoch N2 � 10,000 8.63 �31.95 2 ln 
 � 84.62

N1 � 50,000 P � 10�4

(T1 � 2,000) Highly significant
Three epoch N3 � 10,000 8.24 �26.39 2 ln 
 � 11.12

N2 � 3,000 P � 0.0039
(T2 � 600) Significant
N1 � 25,000
(T1 � 3,200)

c. African-American data
One epoch N1 � 10,000 8.00 �197.86 —
Two epoch N2 � 10,000 9.20 �28.69 2 ln 
 � 338.34

N1 � 18,000 P � 10�4

(T1 � 7,500) Highly significant
Three epoch N3 � 10,000 10.29 �26.72 2 ln 
 � 3.94

N2 � 16,000 P � 0.1395
(T2 � 15,000) Not significant
N1 � 26,000
(T1 � 2,400)

phic sites selected from existing variation resources. Our Table 1). Clearly, the shapes of the European and the
Asian spectra are closer to each other than either is toprocedure of equivalence sample size reduction enables

the analysis of realistic data sets with genotyping failures. the shapes of the African spectra. On the basis of the
three-epoch models, both the European and the AsianAll three of the above procedures are firmly rooted

within the coalescent framework. Model calculations data are best explained by bottleneck-shaped histories,
whereas the best-fitting third-order model for the Afri-directly correspond to experimentally observable quan-

tities, without referencing directly unobservable quanti- can-American data is a continued expansion. The results
of hierarchical model testing (methods) in Table 1ties such as the overall population frequency of alleles.

The data-fitting methodology is conceptually simple and show that the inclusion of the third epoch did not sig-
nificantly improve the fit to the African-American data.allows direct comparison of the degree of fit between

each of the three population samples examined, at each However, the bottleneck history is a dramatic improve-
ment over the best-fitting two-epoch growth models ingrid point (parameter combination).

Differential population histories in the three sample both the European and Asian data. Considering the
range of models that produced close to optimal fit val-sets: On the basis of the goodness of fit between models

and observations (Table 1), a history of stationary popu- ues, but using a fixed, 20-year generation time, the Euro-
pean bottleneck represented a 2.5- to 10-fold declinelation size can be confidently rejected for all three sets

of samples. Introduction of even very simple dynamics in population size, lasting 200–1300 generations [4–26
thousand years (KY)]. This was followed by a phase ofinto the history has dramatically improved data fit.

There were large differences among the allele frequency 5- to 20-fold population expansion, starting 2700–4300
generations (54–86 KY) ago. The Asian bottleneck rep-spectra observed in the three populations (Figure 4 and
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Figure 5.—Bottleneck size and duration in the European samples. The probability surface of the effective size and the duration
of a bottleneck are shown. Size of the ancestral epoch is fixed at N3 � 10,000, size of the present epoch is fixed at 20,000, and
the duration of the present epoch is fixed at T1 � 3000. Parameter regions indicated by shading fall into the same bin of
significance. Note that the P values indicated are the direct 	2 probabilities (i.e., 1 minus the tail probability).

resented a 2- to 3-fold decline for 600–1000 generations neck severity index (in our notation T2/N2) and consider
moderate bottlenecks where the expansion ratio is 20(12–20 KY), followed by 5- to 8-fold growth starting

3000–4200 generations (60–84 KY) ago. The best-fitting and the severity index is in the range of 0.25 and 4.0. Our
own estimates (expansion ratio 5–20 for Europeans, 5–8models for the African-American data represent unin-

terrupted growth of effective population size, with the for Asians, and severity index of �0.2 for both popula-
tions) are in general agreement with these values andexpansion clearly starting earlier than is evident in our

European or the Asian data. signify bottlenecks on the less severe end of the spec-
trum. Our estimates for the start of the recovery phaseEarlier mitochondrial and microsatellite studies re-

port data that are predominantly consistent with expan- (54–86 KYA for Europeans, 60–84 KYA for Asians) are
well within the range of the mitochondrial and microsa-sion-type histories of effective population size. The main

evidence that points to expansion is negative values of tellite estimates. The fact that our best-fitting two-epoch
models indicate expansion-type histories for all threeTajima’s D and an excess of low-frequency alleles. The

start of such expansion is estimated between 30 and 130 populations we examined is also consistent with conclu-
sions from mitochondrial and microsatellite data. A val-KYA (Harpending and Rogers 2000). Nuclear data,

especially in samples of non-African origin, seem to uable reality check of an inferred demographic model
is its implied pairwise nucleotide diversity value, �. Al-show a different pattern, an excess of common variants

(Hey 1997; Clark et al. 1998; Reich et al. 2001, 2002). though our data-fitting analysis of the relative spectrum
does not provide absolute estimates for �, these valuesSimulation results have suggested that a bottleneck-

shaped history of effective population size consisting of can be obtained on the basis of the best-fitting models
by fixing the ancestral size N3 and mutation rate �.a phase of collapse followed by a recent phase of size

recovery can reconcile this seeming contradiction be- For each of the three populations, we use a common
ancestral effective size of 10,000 and common mutationtween observations from different mutation systems

(Fay and Wu 1999; Hey and Harris 1999). These stud- rate of 2 � 10�8 [a value that lies between recent, promi-
nent estimates for average per-nucleotide, per-genera-ies characterize bottleneck-shaped histories by a size

expansion ratio (in our notation N1/N2) and a bottle- tion human mutation rate (Nachman and Crowell 2000;
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Kondrashov 2003 )]. This leads to an estimate of � � pean and Asian SNPs have originated �10,000 genera-
tions ago and have drifted to high population frequency.7.88 � 10�4 for the European model, in good agreement

with previously reported values for other genome-wide Finally, the third column of Figure 4 shows the average
age of SNPs at given frequencies, confirming that SNPsdata sets (Sachidanandam et al. 2001; Venter et al. 2001;

Marth et al. 2003). The prediction from the Asian data at a higher frequency are expected to be older than
SNPs at lower frequencies. Also, in each frequency class,is slightly higher, 8.24 � 10�4. The pairwise � predicted

by the best-fitting model for the African-American data the expected age of African SNPs is substantially higher
than that of European or Asian SNPs, corroboratingis 10.29 � 10�4, significantly higher than that observed

within the European and Asian samples, and in agree- earlier observations noting the more ancient origins of
African SNPs.ment with the general consensus that nucleotide diver-

sity is higher in sub-Saharan samples than in non-African The differential demographic histories of the three
populations examined also have important conse-data (Relethford and Jorde 1999; Przeworski et al.

2000; Jorde et al. 2001; Tishkoff and Williams 2002). quences for the extent of allelic association in the hu-
man genome, when the different populations are con-All three estimates are well within realistic values, lend-

ing further credence to the validity of our model param- sidered. To illustrate this point, we have carried out
coalescent simulations, taking into account the individ-eters.

A bottleneck-shaped history was also our best-fitting ual best-fitting histories, and tabulated the average ex-
tent of linkage disequilibrium (LD) between markersthree-epoch model structure for MD distributions ob-

served in overlap fragments of public genome clone separated by different values of recombination fraction
(for a fixed value of per-nucleotide, per generation re-data (Marth et al. 2003). However, the parameter esti-

mates are significantly different between these two stud- combination rate, the recombination fraction translates
into physical distance), as shown in Figure 6. Similaries. Our estimates from MD data indicated a less severe

bottleneck of nearly identical duration and a shorter demographic histories distilled from the Asian and Eu-
ropean samples result in similar values of LD at a givenphase of recovery of more modest size as compared to

the AFS in the European samples. Multiple factors may marker distance. LD is predicted to decay more rapidly
(roughly twice as fast) for the best-fitting demographiccontribute to these differences. First, the DNA samples

for the two studies came from different donors. Second, history for the African-American samples, in agreement
with previous reports (Reich et al. 2001). Differencessome fraction of the large-insert clones sequenced for

the construction of the public genome reference se- in the extent of allelic association within the genome are
expected to have profound consequences for medicalquence originate from libraries that are not of European

origin [although there appears to be an overrepresenta- association studies.
Caveats and open problems: Clearly, our multi-epoch,tion of European sequences (Weber et al. 2002), pre-

sumably due to the origin of a single bacterial artificial stepwise models of demographic history represent sim-
plified versions of the “true” demographic past. Never-chromosome library with the largest contribution]. If

indeed an appreciable fraction of the data represents theless, our three-epoch models go beyond the majority
of previous studies that explore even simpler models ofsub-Saharan DNA, the resultant MD in these mixed data

could indicate a less severe bottleneck than would have past population dynamics such as expansion vs. collapse
or are restricted to the rejection of stationary effectivebeen evident in a distribution containing only European

data. size on the basis of summary statistics. Consideration of
the third-order dynamics in this study allowed us toTo understand the consequences of the differential

histories that best describe the three population-specific reveal a phase of bottleneck in the history characterizing
the European and the Asian samples, permitting recon-data sets, we have partitioned the corresponding fre-

quency spectra according to the age of the mutations ciliation of the signals of recent population growth ap-
parent in mitochondrial and microsatellite data with(methods) that gave rise to the polymorphisms (Figure

4, second column). According to these tabulations, 35.9% realistic, observed values of nucleotide diversity.
Although the signal of differential history is undeni-of the European polymorphisms originated in �10,000

generations, as did a similar fraction, 34.9%, in the Asian able in the data, the effect is confounded by the fact
that the discovery and genotyping data sets were notmodel. In contrast, only 29.6% of the African mutation

are younger than 10,000 generations. This indicates that drawn from a single population. SNP discovery was per-
formed in shotgun sequences from ethnically diversethe bottleneck events that explain the European and

Asian data have eliminated a large fraction of the poly- libraries (with ethnic association of individual reads un-
known) aligned to the public genome reference se-morphisms that predated these events, and a larger frac-

tion of current polymorphisms are of a more recent quence (Sachidanandam et al. 2001), presumably rep-
resenting a mixture of ethnicities, with a bias towardorigin as compared to the African data. This effect is

most visible at the common end of the spectrum: only clones from European donors (Weber et al. 2002). Poly-
morphic sites generated by this effort were then selecteda negligible fraction of the common African SNPs are

young, but an appreciable fraction of common Euro- for genotyping in ethnically well-defined samples. It has
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Figure 6.—The average ex-
tent of linkage disequilibrium,
as predicted by the best-fitting,
three-epoch demographic
models for the three popula-
tion samples. Values of r 2 and
the corresponding values of re-
combination fraction are
shown for each of the three
populations. On the right-
hand side, we have indicated
the equivalent physical dis-
tances assuming a genome av-
erage per-nucleotide, per-gen-
eration recombination rate,
r � 10�8 (methods).

been previously noted that collections of samples from netic hitchhiking can mimic the effects of population
expansion in that it gives rise to an excess of low-fre-multiple ethnicities contain a surplus of rare SNPs when

measured in the same mixed collection (Ptak and quency alleles (Kaplan et al. 1989; Braverman et al.
1995). Recent efforts have been aimed at detecting lociPrzeworski 2002). However, it is unclear what the allele

frequency of the same SNPs is when measured sepa- that exhibit signatures of positive selection (Cargill et
al. 1999; Sunyaev et al. 2000; Akey et al. 2002; Payseurrately, within subpopulations. If the ethnicity of the

discovery and the genotyping samples were known, one et al. 2002). However, the exact proportion of genes
that have been targets of strong positive selection withincould estimate the effect of the ascertainment bias with

models of population subdivision using coalescent simu- our evolutionary past is unclear (Bamshad and Wood-
ing 2003). It is also unclear, in general, how far thelation (Pluzhnikov et al. 2002). The effect of ascertain-

ment bias between ethnically mismatched or undefined effects of hitchhiking extend beyond the locus under
selection (Wiehe 1998). Given that only a few percentsamples is the subject of future investigation.

Additionally, internal population substructure can of the human genome represents coding DNA, and
that not all genes are expected to be targets of positivealso distort the frequency spectrum (Przeworski 2002;

Ptak and Przeworski 2002). Unfortunately, the little selection, we speculate that the distortion due to selec-
tive forces on the AFS in our data set of 
20,000 ran-amount of information that was available concerning

sample origin did not permit incorporation of this effect domly selected genomic loci is small when compared
to the global effects of drift modulated by long-terminto our models in a meaningful fashion. Specifically,

we did not take into account in our models the effects demography.
Conclusion: The allele frequency spectrum is an ex-of recent admixture in the African-American samples.

Although the AFS in these samples are best modeled cellent data source for modeling demographic history
because of its independence of the effects of recombina-by population growth, it carries a slight but noticeable

dip at medium minor allele frequencies, a feature pres- tion and local, or sequence composition-specific varia-
tions of mutation rates and because the experimentalent in a more pronounced form in both the European

(Figure 4a) and the Asian (Figure 4b) spectra. This determination of the allele frequency spectrum requires
measurement of allelic states only at single-nucleotidepotentially signifies the contribution of European ances-

tral lineages on the background of African lineages positions, instead of sequencing of long stretches of
contiguous DNA. The emergence of population-specific(Rybicki et al. 2002) in the AFS signal.

We must also acknowledge that the current shape of genotype sets on the genome scale provides sufficient
data for the direct comparison of model-predicted andhuman variation structure is the result of a combination

of neutral and nonneutral (selective) forces. The cur- observed spectra with great resolution. This permits us
to improve on previous conclusions drawn on therent state of the art in recognizing the effects of selection

in variation data has been reviewed recently (Bamshad strength of summary statistics, on the basis of data from
a handful of loci. Recent advances in allele frequencyand Wooding 2003). Positive selection resulting in ge-
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APPENDIX: THE EXPECTED NUMBER OF SEGREGATING SITES IN A SAMPLE DRAWN FROM A POPULATION
CHARACTERIZED BY A PIECEWISE CONSTANT, MULTI-EPOCH HISTORY OF EFFECTIVE SIZE

Model: We consider a population of a given organism evolving under the Wright-Fisher model and under selective
neutrality. Let us select a specific site in the genome of the organism. Furthermore, let us randomly draw n DNA
samples from this population. Without regard to recombination, the samples possess a unique tree-shaped genealogy
at the selected site (the site genealogy). Such a genealogy can be described within the framework of the coalescent:
starting with n samples in the present and, through a series of coalescent events (pairs of samples finding their
common ancestors), this number reduces to 1, the most recent common ancestor (MRCA), or the root of the
genealogy at that site (site root). At a given time, the process is said to be in state j, if at that time the current
number of samples is j. This process is Markovian, in that the length of time until the next coalescent event depends
only on the current state and is independent of the previous states. Due to molecular mutation processes, the
nucleotide observed at the site under consideration might be different in different individuals. Let us assume that,
at any given site, only two possible nucleotides are observed (diallelic variations). Accordingly, an individual carries
either the allele that was present in the site root (also known as the ancestral allele) or a mutant or derived allele.
Let us further assume that the mutant allele is the result of a single mutation event (infinite-sites assumption) within
an ancestral sample of the site genealogy. Under this assumption, the number of samples that carry the derived
allele is identical to the number of descendants of that ancestor within the site genealogy. Conversely, the derived
allele is found in exactly i samples if and only if the ancestor in which the mutation occurred gave rise to i descendants.
Under the further assumption of a constant-rate mutation process (Hudson 1991), the likelihood that a given
mutation is of size i is related to the number of ancestral nodes with i descendants within the site genealogy and
to the “life span” of these ancestors. As Fu shows in a seminal work (Fu 1995), this likelihood can be expressed
with the length of time the site genealogy spends in state k, i.e., while the number of ancestor samples within the
genealogy is exactly k. Under the further assumption of constant effective population size N, Fu then derives an
explicit formula for the expected length of time in state k, leading to a simple result for the expected number of
mutations of a given size within n samples (Fu 1995).

Our final goal is to extend this result from constant to merely piecewise constant population size. To this end,
we use a standard continuous approximation according to which the probability density function of the length of
time t spent in state k within the genealogy is exponential under a constant population size, and for a diploid
population,

(k
2)

2N
e

���k
2�/2N�

t

.
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Using this approximation, we derive the expectation for the length of time spent in state k, under piecewise constant
population history of an arbitrary number of epochs. Under the assumption of a constant-rate mutation process,
this allows us to compute the expectation for the number of mutations of size i, denoted by �i, observed at a single
site, at sites having identical site genealogies (DNA without recombination), or at a collection of sites with completely
independent site genealogies. Because the distributions are identical for every site, the result is also valid for a
collection of sites.

Conventions and useful identities: We use the convention that the value of an empty product is 1 and the value
of an empty sum is 0. The probability density function of a random variable X is denoted by fX and its cumulative
density function by FX. The variable X conditioned on the event Y is denoted by X|Y. Next, we briefly state three
lemmas to aid further derivations. In the following we assume that the ai are different.

Lemma 1. For every value of x, for each 1 � l � n,

�
n

i�l
�

m:m�i
l�m�n

am � x
am � a i

� 1. (A1)

Proof. Let

f(x) :� �1 � �
n

j�l





�
i:i�j;

l�i�n

a i � x
a i � a j





;

we need to show that f(x) � 0. For r : l � r � n we have that

f(ar) � �1 � �
i : i�r ;

l� i�n

ai � ar

a i � ar

� 0.

Since f(x) is of degree at most n � l and it has at least n � l � 1 different zeros, necessarily f(x) � 0. Q.E.D.

Lemma 2. For k, i: 1 � k � i � n we have
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�k,k�1 � 0, and for i 
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Lemma 3. For s � k � i � n:
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Proof. From Lemma 2,
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Proof. Using Lemma 1,
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Constant effective population size: First, we consider a demographic history characterized by a single, constant
population size N1. We introduce the notations aj � �j

2� and a (1)
j � a j/2N1. The length of time spent in state j (after

which the number of samples reduces from j to j � 1) is denoted by Tj, j�1. The random variables Tj, j�1

and Ti,i�1 are independent for i � j. The density function of Tj , j�1 is fTj, j�1(t) � a (1)
j e�a (1)

j t, according to our model
assumptions. The length of time from the present, when the number of samples is n, to the instant when the number
of samples reduces to s, is denoted by T{1}

n,s. Clearly T{1}
n,s � �n

j�s�1 Tj,j�1. The probability that, at time t, the genealogy
is in state s is P(T{1}

n,s � t � T{1}
n,s�1). Since T{1}
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n,l�1 � Tl�1,l , for l : 1 � l � n we can use the following convolution:
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For s : 2 � s � n:
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Proof. First we show Equations A4 and A5 by downward induction on s. These equations are clearly valid for s �
n � 1. Assume they are valid for s : s 
 k. Then
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For Equation A4 we need to show that
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which follows from Lemma 1. Using Lemma 1 with l � s � 1 and x � 0, we get
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This completes the proof of Equations A4 and A5. For (A7), note that P�T {1}
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For (A6), since T {1}
n,s � 0,
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Equation A8 can be easily obtained from fs,s�1(t). Finally, Equation A9 follows from Equation A8, by the argument
presented by Fu (1995) to derive Equation 22. Q.E.D.

Piecewise constant effective population size: Consider a demographic history of M distinct epochs indexed by 1, 2,
. . . , M, where the ancestral epoch is numbered M. For epoch i, the constant effective population size is Ni, and
the duration of this epoch is Ti; in particular, TM � ∞. We define a (i)

k � �k
2�/2Ni. We introduce �i � �i

j�1Tj , the time
from the present back until the end of the ith epoch (so �0 � 0 and �M � ∞). At a given time t, the index of the
current epoch is denoted by m(t), in formula m(t) � min {k : �k � t }. In particular, m(�i) � i, and �m(t)�1 � t � �m(t).
We also introduce a “normalized” time t*:

t * �
t � �m(t)�1

2Nm(t)

� �
m(t)�1

i�1

Ti

2Ni

.

The proof is based on induction on the number of epochs. To facilitate this, we consider two kinds of partial
models with smaller numbers of epochs, as follows:

1. The first model has a single epoch, with effective population size Ni. The random variable T {i }
n , j denotes the time

from the present (state n) to the beginning of state j, under the parameters of the first model.
2. The second model is a truncated version of the original M-epoch model: it consists of i epochs, with parameters

that are identical to the parameters of the first i epochs of the original model, except Ti � ∞; i.e., the ith of the
original model becomes the ancestral epoch of the truncated model. The random variable T [i ]

n , j denotes the time
from the present (state n) to reach state j, under the parameters of the second model.

Note that the two types of models coincide when i � 1. The following are true:

Theorem 2. For s : 1 � s � n:

f T
[M]
n ,s(t) � f T

[m(t)]
n ,s (t) and F T

[M]
n ,s(t) � F T

[m(t)]
n ,s (t), (A10)

f T
[M]
n ,s(t) �

1
2Nm(t)

�
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
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



, (A11)
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. (A13)

For s : 2 � s � n:

P�T[M]
n,s � t � T[M]

n,s�1� �
fT

[M]
n,s�1(t)

a (m(t))
s

�
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[m(t)]
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, (A14)
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For i : 1 � i � n:

E(�i) � 4�
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i � 1 ��
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Proof: (A12) and (A14) are consequences of (A11):
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.

We prove (A10) and (A11) by induction on the number of epochs M. The statements are true for M � 1 by
Theorem 1. For M 
 1 assume that the statements are true if the number of epochs is less than M. Clearly,

�T[M]
n , j � t 
 � �T[M]

n , j � �M�1 and T[M]
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 �
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

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.

The right side is a union of disjoint events; therefore (using density functions of conditioned variables) we have
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Therefore for t � �M�1 we have f T
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t � �M�1, Equations A10, and consequently A11, hold. In particular,
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If t 
 �M�1, i.e., m(t) � M, then (A10) and (A11) follow from Lemma 3:
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We get Equation A13 in a way similar to the proof of Equation A8:
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Using Lemma 4,
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This gives Equation A15. Finally, using manipulations identical to those used by Fu (1995) we derive Equation
A16:
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where �*m � �m
l�1(Tl/2Nl). This completes the proof. Q.E.D.


