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ABSTRACT
Two major aspects have made the genetic and genomic study of polyploids extremely difficult. First, increased

allelic or nonallelic combinations due to multiple alleles result in complex gene actions and interactions
for quantitative trait loci (QTL) in polyploids. Second, meiotic configurations in polyploids undergo a
complex biological process including either bivalent or multivalent formation, or both. For bivalent polyploids,
different degrees of preferential chromosome pairings may occur during meiosis. In this article, we develop
a maximum-likelihood-based model for mapping QTL in tetraploids by considering the quantitative
inheritance and meiotic mechanism of bivalent polyploids. This bivalent polyploid model is implemented
with the EM algorithm to simultaneously estimate QTL position, QTL effects, and QTL-marker linkage
phases by incorporating the impact of a cytological parameter determining bivalent chromosome pairings
(the preferential pairing factor). Simulation studies are performed to investigate the performance and ro-
bustness of our statistical method for parameter estimation. The implication and extension of the bivalent
polyploid model are discussed.

POLYPLOIDS represent a group of plant species that development of QTL-mapping methodologies (Doerge
and Craig 2000; Xie and Xu 2000; Hackett et al. 2001).are of great importance to evolutionary studies and
Considering the availability of marker and phenotypeplant breeding (Zeven 1979; Bever and Felber 1992;
data in a variety of polyploid species ranging from tetra-Hilu 1993; Ramsey and Schemske 1998; Ott and Whit-
ploids to octoploids (Yu and Pauls 1993; Grivet et al.ton 2000; Soltis and Soltis 2000). The genetic study
1996; Meyer et al. 1998; Ming et al. 1998; Brouwer andof polyploids intrigued earlier pioneering geneticists
Osborn 1999; Fjellstrom et al. 2001; Hoarau et al.(Haldane 1930; Mather 1935, 1936; Fisher 1947),
2001; Rajapakse et al. 2001), this is a small number.who developed a series of theoretical models to study
One of these three articles did not use the appropriatesegregation and linkage in autotetraploids. Unfortu-
biological process of meiosis in polyploids and its appli-nately, these seminal models have been limited in practi-
cation is thus questionable (as noted by Hackett 2001).cal analysis, partly due to the fact that genetic informa-
The other two articles were also based on limiting as-tion needed in the models could not be obtained with
sumptions. Doerge and Craig assumed a completelyease. Currently, the advent of molecular marker tech-
preferential chromosome pairing mechanism for mei-nologies has led to a resurgence of interest in the genetic
otic configurations and, therefore, their method can beanalysis of polyploids (Leitch and Bennett 1997).
appropriate only for extreme allopolyploids, in whichMuch theoretical and empirical emphasis has been
chromosome pairings occur strictly between homologs.made on marker inheritance and segregation and the
On the other hand, Hackett et al. treated bivalent pair-construction of a genetic linkage map in polyploids (Wu
ings as a random event that occurs only when all chro-et al. 1992; Da Silva et al. 1995; Grivet et al. 1996;
mosomes in the set are homologous (extreme autopoly-Hackett et al. 1998; Ming et al. 1998; Brouwer and
ploids). From a quantitative genetic perspective, noneOsborn 1999; Ripol et al. 1999; Fjellstrom et al. 2001;
of the three articles have provided adequate estimationsHoarau et al. 2001; Luo et al. 2001; Rajapakse et al.
of allelic effects and dominant effects of different within-2001; R. Wu et al. 2001, 2002a; S. Wu et al. 2001).
locus interaction levels for a putative QTL in polyploids.A significant gap that still remains in the current
A major contribution of Hackett et al. (2001) is thegenetic study of polyploids is a serious lack of powerful
implementation of Kempthorne’s (1957) partitioningstatistical methods for mapping quantitative trait loci
theory within a QTL-mapping framework to estimate(QTL) on the basis of the genetic map of polymorphic
additive and dominant effects of genes in polyploids.markers. We know of only three articles that deal with the
However, they did not explicitly show how the domi-
nance effects were estimated from their model.

In this article, we have developed a new maximum-1Corresponding author: Department of Statistics, 533 McCarty Hall C,
University of Florida, Gainesville, FL 32611. E-mail: rwu@stat.ufl.edu likelihood-based statistical infrastructure for mapping
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QTL in polyploids undergoing bivalent formation dur- cross types of genes can be possible. To simplify our
ing meiosis. Beyond the existing statistical methods, our description of linkage analysis in polyploids, we first
method integrates quantitative genetic knowledge about consider fully informative markers between the two par-
gene action and interaction and cytological mechanisms ents. Our mapping model can be readily generalized
of chromosome pairing to gain better insights into the to consider arbitrary polyploid cross types composed of
structure, organization, and function of polyploid ge- any type of partially informative markers.
nomes. It is observed that for many polyploids there is Suppose there is a full-sib family of size n derived
a higher probability of pairing between more similar from two heterozygous tetraploid parents P and Q. Con-
chromosomes than between less similar chromosomes sider two fully informative markers �� and ���1, which
(Hickok 1978; Sybenga 1988, 1994, 1995; Allendorf each have eight different alleles assigned to the four
and Danzmann 1997). By implementing powerful ex- chromosomes of parents P and Q, respectively. The four
pectation-maximization (EM) algorithms, our method alleles at marker �� are labeled by M �

1, M �
2, M �

3, and
can provide simultaneous estimation of QTL position, M �

4 for parent P and by N �
1, N �

2, N �
3, and N �

4 for parent
QTL effects, linkage phase configuration, and cytologi- Q, and the four alleles at marker ���1 are labeled by
cal parameters. Moreover, results from our method will M ��1

1 , M ��1
2 , M ��1

3 , and M ��1
4 for parent P and by

have potential implications for understanding the ge- N ��1
1 , N ��1

2 , N ��1
3 , and N ��1

4 , for parent Q. Between these
netic architecture of a complex trait and evolutionary two markers there is a putative QTL � whose alleles are
relatedness in polyploids. We present extensive simula- denoted by P1, P2, P3, and P4 for parent P and Q 1, Q 2,
tion studies to investigate the statistical properties of Q 3, and Q 4 for parent Q. The recombination fractions
our method built upon bivalent chromosome pairings. between marker �� and QTL �, QTL � and marker

���1, and the two markers are denoted by �1, �2, and
�, respectively. For parents P and Q, these three lociMATHEMATICAL MODEL FOR LINKAGE ANALYSIS
(two markers and one QTL) have a total of 576 � 576 �

Meiotic pairing: Consider a bivalent tetraploid, in which 331,776 possible nonallelic configuration or linkage
there are four sets of chromosomes. If chromosomes 1 phase combinations, one of which can be schematically
and 2 are genetically more identical, as are chromo- expressed as
somes 3 and 4, there are three different combinations
for the bivalent chromosome pairing. One of the three
pairs is between more identical chromosomes 1 and 2
as well as 3 and 4 (�1) and the other two are between
less identical chromosomes 1 and 3 as well as 2 and 4

M �
1

�
M �

2

�
M �

3

�
M �

4

�
N �

1

�
N �

2

�
N �

3

�
N �

4

�P1 P2 P3 P4 � Q 1 Q 2 Q 3 Q 4

M ��1
1 M ��1

2 M ��1
3 M ��1

4 N ��1
1 N ��1

2 N ��1
3 N ��1

4

,

(�2) or 1 and 4 as well as 2 and 3 (�3). In general, the
probability of pairing between more identical chromo-
somes is higher than that between less identical chromo-
somes due to different evolutionary relatedness of chro-

(1)

where lines indicate the individual chromosomes on
which the QTL is bracketed by the two markers and �mosomes (Sybenga 1992, 1994, 1995) and such a
is the Kronecker product. The specific linkage phasedifference is defined as the preferential pairing factor, de-
combination of parents P and Q, which is not known anoted by p, that is bounded by [0, 2⁄3](Sybenga 1988).
priori, must be inferred from these possibilities for cor-Thus, the frequencies of the three bivalent pairings are
rect QTL mapping on the basis of marker and pheno-expressed as 1⁄3 � p for �1, 1⁄3 � 1⁄2p for �2, and 1⁄3 � 1⁄2p
type observations. In general, the linkage phase of thefor �3. When p � 0, the four chromosomes in one
two markers is known before QTL mapping. Thus, wegroup pair completely randomly. Extreme autopoly-
need to determine only the most likely linkage phaseploids follow this pattern. When p � 2⁄3, chromosome
combination from 24 � 24 � 576 possibilities of thepairing occurs only between homologous ones and
QTL relative to its two flanking markers.never occurs between homeologous ones. This pattern

Apart from the effect of different linkage phases onis characterized by extreme allopolyploids. Most poly-
gamete formation frequencies, as a case in diploid or-ploids are intermediate between these two extremes.
ganisms (Wu et al. 2002b), different chromosome pair-Some polyploids that were originally classified as auto-
ings (�1, �2, and �3) in bivalent polyploids also affecttetraploids are found to belong to the intermediate
the patterns of gene segregation and, thus, gamete fre-types with 0 � p � 2⁄3 (reviewed in Sybenga 1996).
quencies. However, these two factors have different in-Tetraploid model for three-point linkage analysis:
fluences. For a particular parent, there can be only oneLinkage analysis in most diploid organisms is based on
linkage phase, whereas different bivalent pairings mayinbred line crosses, such as a backcross or F2. However,
occur simultaneously with different frequencies. Hence,for many other species including polyploids, inbred
overall frequencies of gametes from three possible biva-lines are not available and, thus, their linkage analysis
lent pairings should be expressed in terms of the prefer-should be based on a full-sib family derived from out-

bred parental lines. In such a full-sib family, numerous ential pairing factor p for parents P and Q (Wu et al.
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2002a). Given the linkage phase of display (1), three p� � pP
� � pQ

�
, (3)

possible bivalent pairings and their frequencies are ex-
p

��
� pP

��
� pQ

��
. (4)

pressed as
The conditional probabilities of the QTL zygote geno-

types upon the marker zygote genotypes can be derived
as

p
�|� � (Prob(Pu1

Pu 2
Q v1

Q v 2
|M �

k 1
M �

k 2
N �

l 1
N �

l 2
M ��1

r1
M ��1

r 2
N ��1

s1
N ��1

s 2
))

� p
��

� p� , (5)

which forms a (1296 � 36) matrix, where � is the
elementwise division of the two matrices. These condi-
tional probabilities are used for QTL mapping as de-(2)
scribed in the next section.where double lines are used to distinguish the two sets

of paired chromosomes. For one parent, each of these
three different bivalent pairings produces four diploid STATISTICAL METHOD FOR QTL MAPPING
gamete types at a single locus. When the gametes are

The mixture model: A fundamental statistical modelmixed from these pairings, a total of six gamete types will
for QTL mapping is the mixture model (Lander andbe produced for a locus. Thus, under bivalent pairings,
Botstein 1989). In such a mixture model, each observa-parent P generates 36 diploid gametes at the two mark-
tion y is assumed to have arisen from one of n (n possiblyers, whose genotypes are arrayed by
unknown but finite) components, each component be-
ing modeled by a density from the parametric family f,GP

� � (M �
k1
M �

k2
)6�1(M ��1

r1
M ��1

r2
)1�6

p(y|	, φ, 
) � 	1 f(y ; φ1, 
) � . . . � 	n f(y ; φn , 
),� (M �
k1
M �

k2
M ��1

r1
M ��1

r2
)6�6, 1 � k1 � k2 � 4, 1 � r1 � r2 � 4 .

(6)
The probabilities of these marker gametes, pP

� �
where 	 � (	1, . . . , 	n) are the mixture proportions(Prob(M �

k1
M �

k2
M ��1

r1
M ��1

r2
)), can be derived in terms of

that are constrained to be nonnegative and sum to unity;the preferential pairing factor and the recombination
φ � (φ1, . . . , φn) are the component-specific parameters,fraction between the two markers (Wu et al. 2002a; Table
with φj being specific to component j ; and 
 is a parame-1. Each of these 36 two-marker gametes corresponds to
ter that is common to all components.one of six possible QTL genotypes arrayed by

For the mixture model used in genetic mapping, eachGP
� � (Pu1

Pu2
)1�6, 1 � u1 � u2 � 4, which are produced

component represents a class of QTL genotypes and,in the same way as the generation of the marker gametes
thus, the mixture model provides a framework by which[expression (2)]. Table 1 lists the joint probabilities of
observations may be clustered together into differentthe two-marker and one-QTL gamete genotypes,
classes of QTL genotypes. The mixture proportions rep-pP

�� � (Prob(M �
k1
M �

k2
Pu1

Pu2
M ��1

r1
M ��1

r2
)) , in parent P when

resent the relative frequency of occurrence of each QTLthree possible bivalent pairings occur at meiosis given
genotype in the population. For a particular two-markera particular linkage phase of expression (1).
genotype, M �

k1
M �

k2
N �

l1
N �

l 2
M ��1

r1
M ��1

r 2
N ��1

s1
N ��1

s 2
, the fre-Similarly, for parent Q, we can write the array of the

quency of the QTL genotype Pu1
Pu 2

Qv1
Qv2

is the corre-two-marker gamete genotypes, GQ
� � ((N �

l1N
�
l2)6�1(N ��1

s1 �
sponding conditional probability described by EquationN ��1

s2 )1�6) � (N �
l1N

�
l2N

��1
s1 N ��1

s2 )6�6, 1 � l1 � l2 � 4, 1 � s1 �
5 and given in Table 1.s2 � 4, and the array of one-QTL gamete genotypes,

Linear model of a quantitative trait: The mixture com-GQ
� � (Qv1

Qv2
)1�6 , 1 � v1 � v2 � 4. The probabilities of

ponents in the mixture model of Equation 6 follow atwo-marker gamete genotypes, pQ
� � (Prob(N �

l 1
N �

l 2
N ��1

s 1
�

normal distribution, with the mean equal to the ex-N ��1
s 2

)), and of joint marker and QTL gamete genotypes,
pected genotypic value (�u1u2v1v2

) of a QTL genotype andpQ
�� � (Prob(N �

l 1
N �

l 2
Qv1

Qv 2
N ��1

s1
N ��1

s 2
)), can also be written.

the variance equal to the residual variance (
2) within
With the information of the two parents, we can express the QTL genotype. The phenotype of a quantitative

the arrays of zygote genotypes for the markers and the trait observed for individual i can be described by a
QTL, respectively, as linear model,

G� � GP
� � GQ

�
,

yi � � � �
3

u1�1
�
4

u2�u1�1
�
3

v1�1
�
4

v2�v1�1

�u1u2v1v2
Xi (u1u2v1v2) � ei , (7)

G� � GP
� � GQ

� ,

where Xi(u1u2v1v2) is the indicator variable defined as 1 ifand the probabilities of two-marker zygote genotypes
and of joint marker and QTL zygote genotypes, respec- individual i has the QTL genotype Pu1

Pu2
Qv1

Qv2
and 0

tively, as otherwise, and ei is the residual effect, distributed as
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N(0, 
2). The genotypic value of QTL genotype sity for QTL genotype Pu1
Pu2

Qv1
Qv2

, with the mean equal
Pu1

Pu2
Qv1

Q v2
is partitioned into additive and dominant to the expected genotypic value from Equation 7 and

(interaction) effects of different orders: the variance equal to the residual variance (
2) within
this genotype.

As seen from above, the total number of QTL effects
�u 1u 2v 1v 2

� �P
u 1

� �P
u 2

� �Q
v 1

� �Q
v 2

the main (additive) effects

� �PP
u1u2

� �PQ
u1v1

� �PQ
u1v2

� �PQ
u2v1

� �PQ
u2v2

� �QQ
v1v2

the diallelic interactions

� �PPQ
u1u2v1

� �PPQ
u1u2v2

� �PQQ
u1v1v2

� �PQQ
u2v1v2

the triallelic interactions

� �u1u2v1v2
the tetraallelic interaction.

equals the number of the QTL genotypes in bivalent
tetraploids. This permits us to estimate the overall mean
and QTL effect parameters from the estimated values(8)
(�̂u1u2v1v2

) of the QTL genotypes by solving a group of
In a full-sib family, an individual will inherit two QTL regular equations. From a computational perspective,
alleles, Pu1

Pu2
, from parent P and two QTL alleles, it is more efficient to estimate the expected genotypic

Qv1
Qv2

, from parent Q. Because both parents P and Q values (�u1u2v1v2
) from the mixture model of Equation 7

have a total of eight different alleles, the above genetic than to estimate the overall mean � and QTL effect
model includes eight main effects, 28 diallelic interac- parameters that comprise vector a. We use the two pa-
tions [6 due to two alleles from the same parent rameterization approaches, as mentioned above, to esti-
P (�PP

u1u2
), 6 from the same parent Q (�QQ

v1v2
), and 16 from mate vector a from the 36 normal mixtures of QTL

different parents (�PQ
u1v1

, �PQ
u1v2

, �PQ
u2v1

, �PQ
u2v2

,)], 48 triallelic genotypes for bivalent tetraploids. The process of esti-
interactions [24 due to two alleles from parent P and mating �̂u1u2v1v2

and 
2 on the basis of the EM algorithm
one from parent Q (�PPQ

u1u2v1
, �PPQ

u1u2v2
) and 24 due to one allele is given in appendix b. The maximum-likelihood esti-

from parent P and two from parent Q (�PQQ
u1v1v2

, �PQQ
u2v1v2

)], mates (MLEs) of r1 or r2 and p can be obtained using the
and 36 tetraallelic interactions. grid approach because these two parameters each have a

Because some of the main and interaction effects are particular bound, 0 � r1 or r2 � 1 and 0 � p � 2⁄3.
not independent, a parameterization process based on The characterization of linkage phase: Above, we have
effect partitioning is needed to obtain a smaller number derived a statistical procedure for estimating the recom-
of estimable independent parameters (appendix a). bination fraction and the preferential pairing factor in
After this, estimable parameters include 6 for the main polyploids when their chromosome pairings at meiosis
effects, 13 for the diallelic interactions (2 for interac- follow the bivalent model. The procedure assumes the
tions between alleles from parent P, 2 for parent Q, linkage phase combination of the two markers and QTL
and 9 for interactions between alleles from different as indicated by display (1). However, this represents
parents), 12 triallelic interactions, and 4 tetraallelic in- only one of the 576 possible combinations for the two
teractions (see also Hackett et al. 2001). These 35 inde- phase-known flanking markers and the QTL. Optimal
pendent effect parameters, plus the overall mean, are

estimates of all parameters should be based on a most
denoted by the vector a.

likely linkage phase combination. Different linkageWe also used orthogonal polynomials to parameterize
phases of the QTL relative to its flanking markers canthe main and interaction effects into linear contrasts,
be assigned on the basis of the permutation of fourquadratic contrasts, and, if any, cubic contrasts (C.-X.
QTL alleles on four different chromosomes for eachMa and R. L. Wu, unpublished results). Yet, we do not
parent. A most likely linkage phase combination shouldreport the results from this parameterization approach
correspond to the largest likelihood value calculatedhere because of space limitation.
from Equation 9.Computational algorithm: A maximum-likelihood ap-

However, a new question arises about the compari-proach is used to fit a single QTL affecting a quantitative
sons of the likelihood values among different phasetrait in tetraploids. The likelihood of the phenotypes
combinations. If we change different linkage phases, we(y) for n offspring in a full-sib family of two outcrossing
may obtain different estimates for a QTL effect parame-tetraploids is expressed as
ter, but we will obtain the same likelihood value. We
therefore should pose constraints on allelic effects of

L(y|�) � �
n

i�1





�
3

u1�1
�
4

u2�u1�1
�
3

v1�1
�
4

v2�v1�1

pu1u2v1v2i fu1u2v1v2
(yi)




, the two parents to obtain comparable likelihood values.

In fact, the occurrence of a particular linkage phase(9)
implies that alleles should be different for both loci

where � � (a, r1 or r2, 
2, p) is the vector of unknown under consideration. A total of 576 phase combinations
parameters containing the overall mean, QTL effects, between the QTL and its flanking fully informative
QTL position, residual variance, and the preferential markers are based on the condition that four QTL al-
pairing factor; pu1u2v1v2i is the probability of progeny leles are different for each parent. The direct descrip-
i to have QTL genotype Pu1

Pu2
Qv1

Qv2
, which is the proba- tion of such differences can be provided by allelic ef-

fects. Thus, we can pose the inequality constraints ofbility of the QTL genotype conditional upon marker
three allelic effects from each parent. Without loss ofgenotypes (Table 1) when the marker information is

combined. Last, fu1u2v1v2
(yi) is a normal distribution den- generality, such constraints can be taken as
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�P
1 � �P

2 � �P
3 � �P

4 (10) tween the two markers and between the first marker
and the QTL are given as 0.20 and 0.10, respectively.

for parent P and The preferential pairing factor p � 0.30 is assumed.
These two parents are crossed to generate a full-sib�Q

1 � �Q
2 � �Q

3 � �Q
4 (11)

family of 200, 400, and 800 offspring. Given a sample
for parent Q. Under these constraints, we will obtain size, the observations of each of 36 � 36 � 1296 off-
different likelihood values from different linkage phase spring genotypes at these two markers are simulated on
combinations and, therefore, it will be possible to select the basis of their respective frequencies (Equation 4).
a most likely linkage phase combination. The numbers of offspring within each marker geno-

Hypothesis tests: After the optimal estimates for the type carrying each of 36 QTL genotypes are simulated
linkage and linkage phase are obtained on the basis of on the basis of the conditional probability matrices of
the largest likelihood value, we test for the significance Equation 5. Because of the QTL effects, offspring with
of linkage by calculating the likelihood-ratio test (LRT) different QTL genotypes will be different for a quantita-
statistic, tive trait. The genotypic values of the offspring carrying

different QTL genotypes are calculated on the basis of
LRT � �2 log 


L(y|Ao, �̃, a � 0, r̃1, p̃, 
̃2)

L(y|Ao, �̂, â, r̂1, p̂, 
̂2)

 , (12) their structures, as given in D�1a (appendix a), using

the hypothesized values of the overall mean and 35
where Ao stands for the most likely linkage phase combi- effects in the vector a (Table 2). The variance among
nation between the QTL and its flanking markers under these genotypic values is the genetic variance explained
which the likelihood value is highest, calculated from by this QTL. The phenotypic values of the offspring are
Equation 9 with the above-mentioned constraints. Here, calculated as an overall mean of 10, plus the genotypic
·̂ and ·̃ stand for the MLEs for unknown parameters values and the residual effects distributed as N(0, 
2).
under the full model (at least one element in a is not Different 
2 values are assigned by assuming different
equal to zero) and reduced model (a � 0), respectively. heritability levels 0.20 and 0.40. The heritability is de-
By formulating similar reduced models, we can also test fined as the proportion of the genetic variance to the
for the significance of additive effects or dominance total phenotypic variance.
effects at different interaction levels. For the simulated marker and phenotypic data, we

As in diploid mapping, simulation studies can be used use the bivalent polyploid model to estimate unknown
to determine critical threshold values. We can declare parameters contained in the vector � and further obtain
the existence of a significant QTL located between two the MLEs of � using a procedure described in appendix
markers �� and ���1 if the LRT is greater than the a. By permutating the arrangements of four QTL alleles
critical threshold for an appropriate choice of the type among the four chromosomes for each parent, we ob-
I error rate �. Similarly, we can formulate a hypothesis tain the MLEs of � with the constraints, as given in
for testing whether or not the preferential pairing factor displays (10) and (11), under a total of 576 linkage
is equal to zero (a set of four chromosomes are all homolo- phase combinations. The phase combination that has
gous; the autopolyploid model) or 2⁄3 (homeologous chro- the largest likelihood value is regarded as a most likely
mosomes do not pair; the allopolyploid model). Results one, under which the MLEs of � are given in Table 2.
from such a test are useful for examining the level of The simulations are repeated 100 times to calculate the
relatedness between different genomes. means and standard errors of the MLEs from our model.

The effects of trait heritability and sample size: Using
the computational algorithms described in appendix b,

RESULTS
we obtain the MLEs of �. The recombination fraction
between the first marker and the QTL can be accuratelySimulation studies are performed to examine the sta-

tistical behavior of our bivalent polyploid model. We estimated for different sample sizes (n) and heritability
(H 2) levels considered, although its estimation preci-first focus our simulation to quantify the effects of trait

heritability and sample size on the estimation of QTL sion increases with sample sizes and heritability levels.
The estimate of residual variance (
2) is considerablyparameters and of the bivalent chromosome pairing

parameter. Then, we compare the differences of param- downward biased, especially for a trait with low heritabil-
ity, if the sample size used is �400.eter estimates between our method and Doerge and

Craig’s (2000) method, in which completely preferen- The real genotypic values of the 36 QTL genotypes
are determined from a � D�1m (see appendix a). Thetial bivalent chromosome pairings are assumed, and

Hackett et al.’s (2001) method, in which random chro- EM algorithm provides accurate estimates for these ge-
notypic values, even when sample size or heritability ismosome pairings are assumed.

Experimental design: Two outcrossing tetraploid par- low (results not shown). If the genotypic values can be
well estimated, the QTL gene effects (a) can also beents are simulated for two fully informative markers and

a QTL with an assumed linkage phase configuration well estimated because, according to our parameteriza-
tion, the sampling variances of â will be reduced relativeshown in display (1). The recombination fractions be-
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TABLE 2

MLEs of allelic action and interaction effects for a QTL bracketed by two flanking markers �� and ���1

under different sample sizes (n) and heritability (H2) levels

n � 200 n � 400 n � 800

Parameter H 2 � 0.2 H 2 � 0.4 H 2 � 0.2 H 2 � 0.4 H 2 � 0.2 H 2 � 0.4

r1 � 0.10 0.10(0.04) 0.10(0.03) 0.11(0.04) 0.10(0.02) 0.10(0.02) 0.10(0.01)

2 � 3.45/1.29 2.37(1.16) 0.88(0.45) 2.97(0.53) 1.11(0.21) 3.20(0.32) 1.19(0.12)
�P

1 � 0.95 0.87(0.34) 0.87(0.20) 0.92(0.22) 0.92(0.13) 0.93(0.12) 0.93(0.09)
�P

2 � 0.35 0.34(0.29) 0.33(0.21) 0.36(0.18) 0.30(0.13) 0.31(0.13) 0.33(0.08)
�P

3 � �0.40 �0.30(0.32) �0.35(0.18) �0.39(0.23) �0.35(0.13) �0.37(0.13) �0.35(0.09)
�Q

1 � 0.84 0.76(0.32) 0.77(0.21) 0.79(0.20) 0.79(0.12) 0.84(0.12) 0.85(0.07)
�Q

2 � 0.31 0.23(0.34) 0.26(0.21) 0.27(0.20) 0.29(0.15) 0.30(0.15) 0.32(0.09)
�Q

3 � �0.29 �0.18(0.39) �0.24(0.20) �0.27(0.19) �0.28(0.12) �0.29(0.11) �0.31(0.08)
�PP

12 � �0.08 �0.08(0.31) �0.05(0.21) �0.08(0.19) �0.07(0.22) �0.08(0.15) �0.09(0.08)
�PP

13 � �0.13 �0.14(0.26) �0.11(0.18) �0.11(0.16) �0.15(0.15) �0.12(0.12) �0.12(0.07)
�QQ

12 � 0.20 0.20(0.33) 0.20(0.21) 0.20(0.21) 0.22(0.18) 0.21(0.15) 0.19(0.08)
�QQ

13 � �0.00 �0.00(0.28) �0.02(0.16) �0.02(0.17) 0.03(0.13) �0.00(0.11) �0.01(0.07)
�PQ

11 � 0.08 0.15(0.58) 0.14(0.29) 0.14(0.36) 0.05(0.21) 0.09(0.18) 0.10(0.15)
�PQ

12 � �0.04 0.04(0.54) �0.00(0.29) �0.08(0.33) �0.05(0.21) �0.07(0.22) �0.01(0.15)
�PQ

13 � 0.08 0.02(0.55) �0.01(0.31) 0.13(0.35) 0.10(0.23) 0.16(0.26) 0.05(0.14)
�PQ

21 � 0.00 �0.05(0.34) 0.02(0.29) �0.03(0.30) 0.01(0.22) �0.03(0.26) 0.00(0.14)
�PQ

22 � �0.02 �0.02(0.39) �0.03(0.31) �0.14(0.39) 0.01(0.22) �0.10(0.22) �0.03(0.14)
�PQ

23 � �0.02 �0.18(0.40) �0.02(0.33) 0.08(0.36) �0.02(0.21) 0.03(0.24) �0.02(0.15)
�PQ

31 � 0.20 0.18(0.46) 0.15(0.32) 0.16(0.35) 0.20(0.23) 0.18(0.20) 0.19(0.15)
�PQ

32 � 0.00 0.00(0.53) �0.04(0.33) 0.05(0.38) �0.01(0.23) 0.07(0.23) �0.01(0.14)
�PQ

33 � �0.10 �0.04(0.51) �0.02(0.36) �0.15(0.35) �0.12(0.23) �0.15(0.23) �0.09(0.16)
�PPQ

121 � 0.18 0.09(0.47) 0.04(0.38) 0.14(0.39) 0.07(0.25) 0.20(0.27) 0.18(0.14)
�PPQ

122 � 0.16 0.19(0.57) 0.07(0.32) 0.07(0.39) 0.10(0.25) 0.17(0.25) 0.16(0.16)
�PPQ

123 � 0.04 0.05(0.56) 0.14(0.33) 0.09(0.38) 0.12(0.26) �0.01(0.26) 0.03(0.16)
�PPQ

131 � �0.21 �0.17(0.40) �0.11(0.34) �0.21(0.30) �0.14(0.22) �0.21(0.20) �0.24(0.13)
�PPQ

132 � �0.15 �0.14(0.36) �0.09(0.28) �0.13(0.33) �0.12(0.20) �0.13(0.22) �0.14(0.14)
�PPQ

133 � �0.03 �0.08(0.54) �0.09(0.32) �0.04(0.38) �0.07(0.21) �0.02(0.22) �0.01(0.15)
�PQQ

112 � �0.00 0.05(0.37) �0.11(0.35) 0.08(0.39) �0.04(0.25) �0.01(0.26) �0.01(0.15)
�PQQ

212 � �0.01 �0.08(0.51) �0.01(0.37) 0.08(0.38) �0.08(0.23) �0.04(0.29) �0.01(0.15)
�PQQ

312 � �0.03 0.09(0.59) �0.02(0.33) �0.10(0.41) 0.06(0.24) 0.01(0.25) �0.01(0.16)
�PQQ

113 � �0.02 �0.06(0.52) 0.04(0.31) �0.05(0.29) 0.04(0.18) 0.01(0.20) �0.00(0.14)
�PQQ

213 � �0.01 �0.09(0.48) 0.02(0.31) �0.05(0.25) 0.04(0.20) 0.03(0.22) 0.01(0.13)
�PQQ

313 � 0.00 �0.04(0.47) �0.05(0.35) �0.01(0.35) �0.05(0.16) �0.04(0.21) �0.01(0.13)
�1212 � �0.09 �0.07(0.48) �0.06(0.38) �0.04(0.33) �0.07(0.35) �0.06(0.30) �0.10(0.16)
�1213 � �0.01 0.08(0.48) �0.06(0.37) �0.09(0.37) 0.01(0.25) 0.01(0.23) �0.01(0.15)
�1312 � 0.03 0.05(0.48) 0.08(0.33) �0.05(0.33) 0.02(0.22) 0.05(0.24) 0.03(0.12)
�1313 � 0.03 �0.08(0.43) �0.00(0.27) 0.07(0.30) 0.03(0.18) �0.01(0.17) 0.02(0.11)

The numbers given in the first column (parameter) are the hypothesized values for these QTL parameters. The symbols for
QTL effects are given in the text and in appendix a. The standard errors of the MLEs are estimated from 100 simulations and
are given in parentheses.

to those of m̂ [see the structure of D�1(D�1)T in appen- ing to note that the estimators of tetraallelic effects have
better precision than those of the diallelic dominancedix a]. It is shown that the estimators of additive effects

of alleles for each parent have only one-sixteenth of the effect with two alleles from different parents. From the
structure of D�1(D�1)T, the estimators of different QTLsampling variance of the estimated residual variances.

The estimates of dominant effects vary depending upon effect parameters are basically independent. Their de-
pendence occurs only within the QTL effects of thethe type and degree of interactions. If dominant effects

are derived from the two alleles of one same parent, same type. The structure analysis of D�1(D�1)T suggests
that the parameterization process of QTL effects willtheir estimators will be even more precise than those

of the allelic effects. The estimators of dominant effects produce favorable effects on their estimates from the
EM algorithm as described in appendix b.are derived from two alleles of different parents having

the lowest precision, whose sampling variances are 9⁄64 As expected, the allelic (or additive) effects can be
estimated both more accurately and more precisely thanof those of the estimated residual variance. It is interest-
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TABLE 3

The probabilities of detecting a correct linkage phase combination (Pr1), multiple linkage phase combinations
including the correct one (Pr2), and an incorrect linkage phase combination (Pr3) from a total of

576 possible phase combinations between two phase-known fully informative markers and
a putative QTL for two tetraploid plants

n � 200 n � 400 n � 800

H 2 � 0.2 H 2 � 0.4 H 2 � 0.2 H 2 � 0.4 H 2 � 0.2 H 2 � 0.4

Pr1 30 49 39 48 46 53
Pr2 23 37 49 51 53 47
Pr3 47 14 12 1 1 0

the dominant effects, and the dominant effects of lower- quarter to detect two linkage phase combinations and
about one-half to detect an incorrect linkage phase com-order interactions can be estimated more precisely than

the dominant effects of higher-order interactions (Ta- bination. When a sample size or heritability is doubled,
the probability of detecting an incorrect linkage phaseble 2). It is interesting to note that the diallelic domi-

nance effects between two alleles from the same parent combination is reduced. If a sample size of 400 is used
for a trait of H 2 � 0.40, no incorrect linkage phasecan be estimated better than those between two alleles

from different parents. combination will be detected.
The log-likelihood ratios (LRT) of Equation 12 wereFor all kinds of gene effects in bivalent tetraploids, the

estimation accuracy and precision are increased when used to test for the significance of QTL effects under
different sample sizes and heritability levels. Except forsample sizes and heritability levels are increased (Table

2). In general, a sample size of 200 can provide reason- a few cases where N � 200 and H 2 � 0.20, QTL can be
detected at a significance level of P � 0.05 in all 100ably precise estimates of the allelic additive effects for

a quantitative trait with a heritability of 0.20. But the repeated simulations. The critical threshold value was
calculated by simulating data sets with QTL effects setestimation precision can be significantly improved if n

is increased to 400 or for a quantitative trait with an to zero and examining the distribution of the LRT (see
also Hackett et al. 2001). Using the 95% point of theincreased H 2 level. There is not much improvement if

n is further increased from 400 to 800, even for a less distribution of the LRT gives a test of significance at a
5% level for the presence of a QTL.inheritable trait.

For the diallelic dominance effects between two alleles The effects of completely preferential pairings and
random pairings: Doerge and Craig (2000) assumedfrom the same parent, it seems that for a lower heritabil-

ity (0.20) a sample size of at least 400 is needed to that chromosomes pair strictly between homologs dur-
ing polyploid meiosis. If this assumption is true, we willachieve reasonable estimation precision, whereas for a

heritability of at least 0.40 a smaller sample size (200) have only one bivalent pairing pattern, as opposed to
three patterns when incompletely preferential pairingsmay be adequate, compared to the magnitudes of the

actual values of these effects that are hypothesized (Ta- are considered [see expression (2)]. Thus, under this
assumption there will be only 16 gamete genotypes atble 2). For the diallelic dominance effects between two

alleles from different parents, reasonable estimates two informative markers and 4 gamete genotypes at
one QTL for each parent. Such a (16 � 4) matrix ofneed a sample size of at least 400 for a trait with a

heritability of at least 0.40. In general, it is difficult to conditional probabilities with the completely preferen-
tial pairing assumption represents an allopolyploidestimate triallelic dominance effects unless a sample

size is extremely large (say 800). To obtain reasonable model and is a subset of the (36 � 6) matrix used in
our method.estimates for tetraallelic effects, an extremely large sam-

ple size should accompany a highly inheritable quantita- Hackett et al.’s assumption of random bivalent pair-
ings (the autopolyploid model) leads to the same struc-tive trait (see Table 2).

The estimates of all parameters listed in Table 2 were ture of the conditional probability matrix that we have
in our bivalent polyploid model. Because our modelbased on an optimal linkage phase combination se-

lected from all possibilities in terms of the estimated covers the allo- and autopolyploid model, it can be re-
garded as the general polyploid model. Here, we make alikelihood values. The probabilities of detecting a cor-

rect linkage phase combination were estimated for dif- comparison between Hackett et al.’s method and our
method by first looking at the conditional probabilityferent sample sizes and heritability levels (Table 3).

When N � 200 and H 2 � 0.20, we have only about matrix derived for the general polyploid model listed
in Table 1. From the table it is found that only theone-third probability to detect a correct linkage phase

combination. Other probabilities include about one- conditional probabilities of QTL genotypes of 12 bold-
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faced marker genotypes contain p and the conditional of the allo- and autopolyploid model. Our method has
four significant improvements over these current statisti-probabilities of the rest of the 24 marker genotypes do

not contain p because p is canceled out. This means cal methods for QTL mapping in bivalent polyploids.
First, our method incorporates a general bivalent pair-that p may have a relatively small influence on the condi-

tional probability matrix and therefore on parameter ing mechanism of meiotic configuration by defining
a cytological parameter called the preferential pairingestimates under the general polyploid model when two

markers considered are fully informative. In other factor. The preferential pairing factor (p) is defined as
the propensity of bivalent pairings between more similarwords, for fully informative markers, results from the

autopolyploid model will be similar to those from the rather than less similar chromosomes (Sybenga 1988,
1994, 1995, 1996). Different values of this parameter, rang-general polyploid model. A small simulation study has

confirmed this inference (results not shown). ing from 0 to 2⁄3, describe different degrees of relatedness
between the chromosomes in the set. When p � 0, itHowever, for partially informative markers (R. Wu et

al. 2001), some of the QTL genotypes will be collapsed means that chromosomes pair randomly and that our
method is automatically reduced to the autopolyploidinto one so that the corresponding joint genotypic prob-

abilities will be summed up. For example, for a single- model. When p � 2⁄3, only identical chromosomes can
pair and our method is reduced to the allopolyploiddose restriction fragment (simplex) (Pppp), six QTL

gamete genotypes (P1P2, P1P3, P1P4, P2P3, P2P4, and P3P4) model. Our method therefore represents a general
model for QTL mapping in bivalent polyploids. It can,will be reduced to two (Pp and pp) with each summed

from three gamete genotypes. Similar reductions are in particular, be applied for those polyploids whose
chromosome origins (auto- vs. allopolyploids) are un-also true for two flanking simplex markers. In this case, p

would not be canceled out in the conditional probability known a priori. In a recent review by Soltis and Soltis
(2000), such origin-unknown polyploids commonly oc-matrix and, therefore, will play an important role in

affecting the estimates of QTL position and effect pa- cur in nature. On the basis of the estimate of p, we will
be in a better position to study the origin and relatednessrameters.
of the genomes contained in a polyploid (Sybenga 1996).

The second improvement of our method is a thor-
DISCUSSION

ough exploration of QTL action and interaction effects
on phenotypes in polyploids. As with diploids, the inher-The development of statistical methods for mapping

QTL in polyploids is one of the most difficult tasks in itance mode of QTL in polyploids can be additive or
dominant. But compared with diploids, these gene ac-genetic and genomic study. Although quite a few studies

of linkage analysis have used polymorphic markers in tions and interactions are much more complicated be-
cause of an increased number of alleles and allele com-polyploids (Hackett et al. 1998; Ripol et al. 1999; Luo

et al. 2001; R. Wu et al. 2001, 2002a; S. Wu et al. 2001), binations. Kempthorne (1957) extended the diploid
theory of quantitative genetics to partition genetic ef-we know of only three articles published about the statis-

tical developments of QTL mapping in this recalcitrant fects of a QTL into additive and dominant components
of different within-locus interaction levels in polyploids.group of species (Doerge and Craig 2000; Xie and Xu

2000; Hackett et al. 2001), with one, unfortunately, For a bivalent tetraploid having four different alleles at
a QTL, we are confronted with 4 allelic or additivebased on an improper biological process of polyploid

meiosis (as noted by Hackett 2001). The other two effects, 28 diallelic dominant interaction effects, 48 tri-
allelic dominant interaction effects, and 36 tetraallelicarticles require simplifying assumptions, which are not

likely to hold in real life. Doerge and Craig’s (2000) interaction effects. Because these 120 parameters are
not completely independent, their dependence needsmethod can be appropriate only for extreme allopoly-

ploids, in which chromosome pairings occur strictly be- to be removed to obtain estimable parameters. We used
a parameterization process to reduce these parameterstween two homologs. On the contrary, the assumption

used in Hackett et al. (2001) is random bivalent pair- to 36 independent ones. Such a reduced space of un-
known parameters was also embedded in Hackett etings during meiosis and, thus, that method can fit only

extreme bivalent autopolyploids having identical chro- al.’s (2001) QTL-mapping framework, but those authors
have not provided a tractable estimation of all thesemosomes in the set.

In this article we report on the development of a novel components. In fact, it is impossible to obtain accurate
and precise estimates of these 36 independent parametersstatistical methodology for QTL mapping in bivalent

polyploids that represent an important group of poly- on the basis of a sample size we can have in practice, using
a traditional treatment for QTL mapping in diploids.ploids including alfalfa, potato, and wheat. Using exten-

sive simulations, we examined the robustness and per- The efficient estimation of these 36 quantitative ge-
netic parameters in tetraploid mapping, therefore, of-formance of this bivalent polyploid method in estimating

QTL effects, QTL position, and QTL linkage phase rela- fers the third improvement of our method over the
current methods. In this article, we incorporate the EMtive to known-phase markers under different sample

sizes and heritability levels. We also compared the results algorithm (Lander and Botstein 1989; Meng and
Rubin 1993) and techniques of experimental design tofrom our method and the current methods on the basis
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estimate QTL effects at different levels. In a statistical the estimates of QTL parameters. In the real world, many
mixture model for QTL mapping, the EM algorithm polyploids undergo multivalent formations. Our bivalent
can provide robust estimates for the expected means polyploids cannot solve the issues arising from multivalent
of QTL genotypes. This advantage is combined with a formation, which leads to be typical genetic phenomenon
parameterization process to provide robust estimates of of double reduction (Butruille and Boiteux 2000). Last
QTL effects that constitute the QTL genotypic means. but not least, our bivalent tetraploid model should be
Through a parameterization process, the sampling vari- extended to study polyploids at a higher polyploidy level.
ance of the estimator of each QTL effect is only a small The model reported in this article represents a platform
portion of the sampling variance of the estimated resid- on which complicated problems related to polyploid
ual variance (see appendix a). Also, the influences of mapping can be solved within our framework, integrat-
the estimator of one QTL effect by other effects are ing statistics, genetics, computer science, and cytology.
limited within the QTL effects of similar nature [see We thank two anonymous reviewers for their constructive com-
the structure of D�1(D�1)T]. These two favorable proper- ments. This work is partially supported by an Outstanding Young
ties of the parameterized QTL effects assure the estima- Investigator Award of the National Natural Science Foundation of

China (30128017), a University of Florida Research Opportunity Fundtion precision of QTL actions and interactions, as dem-
(02050259), and a University of South Florida Biodefense grantonstrated in the simulation study.
(7222061-12) to R.W. The publication of this manuscript is approvedThe correct characterization of linkage phases is a as a journal series no. R-08795 by the Florida Agricultural Experiment

prerequisite for genome mapping in species like poly- Station.
ploids, in which homozygous inbred lines cannot be
obtained. In this article, we used a modified EM algo-
rithm to simultaneously estimate linkage and linkage
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APPENDIX A: PARAMETERIZATION OF GENE EFFECTS

All the main and interaction effects in bivalent tetraploids should be parameterized to obtain a group of estimable
parameters. In this article, the parameterization of these gene effects is based on different constraints posed on
them. The constraints on the allelic (main) effects are expressed as

�
4

u1�1

�P
u1

� �
4

v1�1

�Q
v1

� 0,

which lead to six estimable independent parameters. The constraints on the diallelic interaction effects are

�
4

u1�1

�PP
u1u2

� �
4

v1�1

�QQ
v1v2

� 0, u1 � u2, v1 � v2 ,

�
4

u1�1

�PQ
u1v1

� �
4

v1�1

�PQ
u1v1

� 0,

which lead to two independent parameters for interactions between two alleles from parents P and Q, respectively,
and nine independent parameters for interactions between two alleles each from a different parent. The constraints
on the triallelic interaction effects are

�
4

v1�1

�PPQ
u1u2v1

� �
3
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�
4
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�
4

v2�v1�1

�PPQ
u1v1v2

� 0,

which lead to 12 independent parameters. The constraints on the tetraallelic interaction effects are
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which lead to four independent parameters.
By these parameterization constraints, a total of 120 QTL effect parameters contained in the genotypic values

Pu1
Pu2

Qv1
Qv2

(1 � u1 � u2 � 4, 1 � v1 � v2 � 4) in Equation 8 can be reduced to 35 independent estimable parame-
ters. Without loss of generality, 6 independent allelic (main) effect parameters are assigned as �P

1, �P
2, and �P

3 for
parent P and �Q

1 , �Q
2 , and �Q

3 for parent Q. Thirteen diallelic interaction parameters are assigned as �PP
12 and �PP

13 for
two alleles from parent P; �QQ

12 and �QQ
13 for two alleles from parent Q; and �PQ

11 , �PQ
12 , �PQ

13 , �PQ
21 , �PQ

22 , �PQ
23 , �PQ

31 , �PQ
32 , and

�PQ
33 for two alleles, one from parent P and the other from parent Q. Twelve triallelic interaction parameters are

assigned as �PPQ
121 , �PPQ

122 , �PPQ
123 , �PPQ

131 , �PPQ
132 , and �PPQ

133 for three alleles, two from parent P and one from parent Q; and
�PQQ

112 , �PQQ
212 , �PQQ

312 , �PQQ
113 , �PQQ

213 , and �PQQ
313 for three alleles, one from parent P and two from parent Q. Four tetraallelic

interaction parameters are assigned as �1212, �1213, �1312, and �1313.
The vector (m � (�u1u2v1v2

)36�1, 1 � u1 � u2 � 4, 1 � v1 � v2 � 4) of the 36 QTL genotypic values can be expressed
in terms of these assigned effect parameters. We have

m � Da,

where D is a design matrix expressed as
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and a is the vector of gene effects, expressed as

[��P
1�P

2�P
3�Q

1 �Q
2 �Q

3 �PP
12 �PP

13 �QQ
12 �QQ

13 �PQ
11 �PQ
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13�
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132 �PPQ
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113 �1212�1213�1312�1313]T.

In appendix b, we provide the EM algorithm for estimating m̂, from which the MLEs of a are solved:

â � D�1m̂.

The sampling variance of â is thus Vâ � D�1Vm̂(D�1)T � D�1 (D�1)T
̂2. We have D�1(D�1)T �

which has two desirable properties: (1) the elements on its diagonal are much smaller than one, ranging from 9⁄64

to 1⁄36, and (2) most elements off its diagonal are zero. The first property implies that the sampling variance of each
estimator in the vector a from our parameterization approach is always smaller than the estimated residual variance.
The second property suggests that different estimators in vector a are independent of each other.

APPENDIX B: IMPLEMENTATION OF THE EM ALGORITHM

The parameter vector in which we are interested is denoted by �. But the estimation of this vector is not most
efficient from a computational standpoint. As explained in the text, we define a new vector � � (m, r1 or r2, 
2,
p), which can be more easily estimated by implementing the EM algorithm (Dempster et al. 1977; Meng and Rubin
1993). The log-likelihood of the new vector is given by
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
, (B1)

with derivatives
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where we define
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which could be thought of as a posterior probability that progeny i (i � 1, . . . , N) has QTL genotype u1u2v1v2

(1 � u1 � u2 � 4, 1 � v1 � v2 � 4). We then implement the EM algorithm with the expanded parameter set {�,
P}, where P � {Pu1u2v1v2

}. Conditional on P, we solve for the zeros of �/��mlog L(y|�)to get our estimates of � under
the constraints of displays (10) and (11) (the M step). The estimates are then used to update P (the E step), and
the process is repeated until convergence. The values at convergence are the MLEs.

The log-likelihood equations for the MLEs of m and 
2 are given as
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The QTL position and the preferential pairing factor are generally estimated using the grid approach by fixing
them at particular values in their space. The values of these two parameters, at which the maximum-likelihood value
is obtained, are their MLEs.




