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ABSTRACT
The genetic architecture of growth traits plays a central role in shaping the growth, development, and

evolution of organisms. While a limited number of models have been devised to estimate genetic effects
on complex phenotypes, no model has been available to examine how gene actions and interactions alter
the ontogenetic development of an organism and transform the altered ontogeny into descendants. In
this article, we present a novel statistical model for mapping quantitative trait loci (QTL) determining
the developmental process of complex traits. Our model is constructed within the traditional maximum-
likelihood framework implemented with the EM algorithm. We employ biologically meaningful growth
curve equations to model time-specific expected genetic values and the AR(1) model to structure the
residual variance-covariance matrix among different time points. Because of a reduced number of parame-
ters being estimated and the incorporation of biological principles, the new model displays increased
statistical power to detect QTL exerting an effect on the shape of ontogenetic growth and development.
The model allows for the tests of a number of biological hypotheses regarding the role of epistasis in
determining biological growth, form, and shape and for the resolution of developmental problems at the
interface with evolution. Using our newly developed model, we have successfully detected significant
additive � additive epistatic effects on stem height growth trajectories in a forest tree.

THE evolution of complex organisms, such as animals ferent loci can be further partitioned into different
types: additive � additive, additive � dominant (or dom-and plants, does not result simply from the direct

transformation of adult ancestors into adult descendants, inant � additive), and dominant � dominant. The pres-
ence of epistasis implies that the influence of a genebut rather involves a cascade of developmental processes

that produce the new features of each generation. An on the phenotype depends critically upon the context
provided by other genes. In the past, the estimation ofincreasing number of evolutionary studies have been

launched to determine the genetic or developmental the additive and nonadditive genetic architecture of a
quantitative trait was based on the phenotypes of relatedchanges in the rate or timing of developmental pro-

cesses that must take place to derive a particular pheno- individuals (Lynch and Walsh 1998), although this
has minimal power to detect the nonadditive genetictype from its ancestor (Rice 1997; Raff 2000; Rougvie

2001). A general view is that the evolution of develop- variances, especially epistatic variance because epistasis
contributes little to the resemblance among relativesmental processes is affected by both the environment

and many genes that act singly and in interaction with (Cheverud and Routman 1995).
The advent of DNA-based linkage maps opens a noveleach other (Lynch and Walsh 1998). However, to accu-

rately predict the direction and rate of trait evolution, avenue for precisely estimating the genetic architecture
of developmental traits (Vaughn et al. 1999). Currenta detailed genetic architecture of how genes act and

interact to control various stages of development must statistical methods proposed to detect the main and
interaction effects of QTL are based on the phenotypesbe quantified.

The genes predisposing for a phenotypic character of a quantitative trait measured at a limited set of land-
mark ages. More recently, Wu et al. (2002, 2003a,b) andthat displays continuous variation among individuals are

referred to as quantitative trait loci (QTL). The genetic Ma et al. (2002) have derived a powerful functional
mapping method for estimating the dynamic changeseffect or variance of QTL includes two components,

additive, due to the cumulation of breeding values, and of QTL effects during a course of ontogenetic growth
through the implementation of universal growth lawsnonadditive, due to allelic (dominant) or nonallelic (epi-

static) interactions. Epistatic interactions between dif- (West et al. 2001) and the structured residual (co)vari-
ance matrix among different time points (see Kirkpat-
rick and Heckman 1989; Kirkpatrick et al. 1990, 1994;
Pletcher and Geyer 1999). This method has proven1Corresponding author: Department of Statistics, 533 McCarty Hall C,

University of Florida, Gainesville, FL 32611. E-mail: rwu@stat.ufl.edu to be statistically more powerful and more precise be-
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cause of a reduced number of parameters being esti- where a is the asymptotic value of g when t → ∞, a/
(1 � b) is the value of g at t � 0, and c is the relativemated and to be biologically more meaningful due to

the consideration of biological principles underlying rate of growth (Bertalanffy 1957). The logistic growth
curve consists of two phases, exponential and asymp-trait development (Wu et al. 2002). However, this model

has not incorporated the estimation process of epistatic totic. The overall form of the curve is determined by
different combinations of parameters a, b, and c.interactions and, thus, cannot examine the role of the

entire genetic architecture in developmental trajectories. In evolutionary biology, a question of how a popula-
tion evolves on a logistic curve is determined by howIn this article, we extend the functional mapping

method to map any QTL (including additive, dominant, selection acts on the growth and by the local geometry
of the curve itself. Some geometric properties of theand epistatic) that transforms allelic and/or nonallelic

effects into final phenotypes during a continuous process growth curve have straightforward biological interpreta-
tions. For example, the slope of the logistic curve at anyof development represented as ontogenetic trajectories or

a path through phenotype-time space (Alberch et al. given time point measures the degree to which the value
of growth is sensitive to a change in age:1979; Wolf et al. 2000). We derive special procedures to

estimate and test the impact of epistasis on trait growth
because a growing body of evidence now shows that dg(t)

dt
� cg(t)�1 �

g(t)
a � . (2)

epistasis plays a more important role in determining
developmental changes than originally thought (Rice Such a slope represents the rate of growth at a given
1997, 2000; Wolf et al. 2000). Epistasis can trigger an time. Thus, if the slope at a point is low, then that value
effect on the evolution of development across different of growth is locally buffered against age changes. The
levels of biological organization and these include the rate of growth drops off linearly as the overall size ap-
molecular mechanisms of gene expression and genetic proaches some limit.
architecture, the evolution of sex and recombination, From a growth curve, we can derive the timing (t I)
the genetic coadaptation and its associated outbreeding of the inflection point, at which the exponential phase
depression, adaptive evolution, and the very process ends and the asymptotic phase begins (Niklas 1994).
of speciation (Wolf et al. 2000). We use a maximum- For the logistic curve, t I is derived as
likelihood-based method, implemented with the expec-
tation-maximization (EM) algorithm, to estimate QTL t I �

ln b
c

. (3)
locations and genetic effects on growth differentiation.
Compared with current mapping methods, our method The inflection point is thought to play an important
of incorporating growth trajectories tends to be more role in shaping ontogenetic growth and development.
powerful and more precise in QTL detection and effect The area under the logistic curve at an interval [t1 t2]estimation, as demonstrated in an example using forest describes the capacity of a given organism to grow over
tree data. In practice, our method is economically more time. Such an area is the integral of the logistic curve,
feasible than previous methods because it needs a expressed as
smaller size of genotyped samples to obtain adequate
power for QTL detection through the use of repeated

G[t1 t2] � �
t 2

t 1

a
1 � be�ct

dtmeasurements for each individual. It can be anticipated
that the method proposed in this article will have poten-
tial implications for understanding the origin and evolu- �

a
c
[ln(b � e�ct 2) � ln(b � e�ct 1)] . (4)

tion of development and the contributions of epistatic
effects to evolutionary changes in the process of develop- Quantitative genetic model: We start with a simple F2ment. population of size n derived from two homozygous lines.

Consider two segregating QTL responsible for a quanti-
tative trait, �k and �l , with three genotypes, QkQk , Qkqk,GROWTH EQUATIONS AND MIXTURE MODEL
qkqk, and QlQl, Q lql , qlql , respectively. Three genotypes

Growth equations: When growth g is plotted against at a QTL are denoted by jk that takes 2, 1, or 0 depending
time t, different forms of growth curves will appear. on the number of capitalized alleles. The genotypic
Among these forms, a logistic growth curve (also re- value of a two-QTL genotype ( jkjl) can be expressed by
ferred to as the sigmoid curve of growth; Niklas 1994) a linear model,
is one of the most ubiquitous, having been derived from

gjk jl � � � xk�k � zk�k � xl�l � zl�l � w��i�� � w��i��fundamental physiological and physical principles
(West et al. 2001). The logistic growth curve can be � w��i�� � w��i�� , (5)
mathematically described by

where � is the overall mean; �k, �k and �l, �l are the
additive and dominant effects of the two QTL, respectively;g(t) �

a
1 � be�ct

, (1)
and i��, i��, i��, and i�� are the epistatic effects between the
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two QTL due to additive � additive, additive � dominant, Logistic mixture model for mapping epistatic QTL: Un-
like traditional statistical models, in which marker infor-dominant � additive, and dominant � dominant interac-

tions, respectively. The dummy variables in Equation 5 mation is associated with phenotypic values measured
at one time point, our model intends to map QTL forare defined as
an infinite-dimensional trait expressed as a function of
time (Kirkpatrick and Heckman 1989; Kirkpatrick
et al. 1990, 1994; Pletcher and Geyer 1999). Yet, thexk �






1 for genotype QkQk at �k

0 for genotype Qkqk at �k

�1 for genotype qkqk at �k , modeling of the functional relationship of a trait with
time needs to be based on the measurements made at
a finite number of landmark ages. It is reasonable to
assume that the phenotypes of an infinite-dimensionalxl �






1 for genotype QlQl at �l

0 for genotype Qlql at �l

�1 for genotype qlql at �l ,
trait measured at all time points 1, . . . , m for each
putative QTL genotype group follow a multivariate nor-
mal density,

zk �




1 for genotype Qkqk at �k

0 otherwise,
fjk jl(y) �

1
(2�)m/2|�|1/2

exp��1
2
(y � gjk jl)

T��1(y � gjk jl)� ,

z l �




1 for genotype Qlql at �l

0 otherwise, where gjk jl is the vector of the expected genotypic values
of the trait measured for m times for a two-QTL genotype
jkjl at �k and �l and � is the residual variance-covariancewith w�� � xkxl , w�� � xkzl , w�� � zkxl, and w�� � zkzl.
matrix of the phenotypes measured at different times.These two QTL can be mapped using a genetic linkage
Assuming that the two putative QTL jointly affect themap constructed from molecular markers. There are
growth process, gjk jl can be modeled by a growth equa-two possibilities for the locations of the two QTL: (1) the
tion. For the logistic curve of Equation 1, we havetwo QTL are located on two different marker intervals or

(2) the two QTL are located on the same marker inter-
val. Consider QTL �k bracketed by two flanking markers gjk jl � [gjk jl(t)]m�1 � �

ajk jl

1 � bjk jle
�cjk jl

t�
m�1

,
�u and �u�1. The recombination fractions are denoted
by ru, rk1, and rk 2, respectively, between the two markers, where each group of growth parameters (a, b, c) corre-
between �u and �k, and between �k and �u�1. The sponds to a different QTL genotype. To increase the
conditional probability of a given QTL genotype, condi- model’s flexibility, the residual (co)variance matrix �
tional upon the marker genotypes for F2 progeny i, can need to be structured using the first-order autoregres-
be generally expressed as sive [AR(1)] model (Davidian and Giltinan 1995),

expressed as�i j k
� Prob(i � jk |�u, �u�1, rk1, rk 2, ru),

which depends on the location of the QTL on the
marker interval, characterized by rk 1 and rk 2. Considering
all possible two-marker genotypes and QTL genotypes, � � 	2








1 
 … 
m�1


 1 … 
m�2

… … � …


m�1 
m�2 … 1








, (8)
�i jk forms a (9 � 3) matrix. If a second QTL �l is located
on a different marker interval [�v, �v�1], the condi-
tional probabilities of a two-QTL genotype given marker in which we assume variance stationarity, i.e., there is the
intervals for progeny i are the product of the corre- same residual variance (	2) for growth at different ages,
sponding probabilities of a one-QTL genotype, i.e., and covariance stationarity, i.e., the covariance of growth

between different ages, decreases proportionally (in corre-�i jk jl
� Prob(i � jk|�u, �u�1, rk 1

, rk 2
, ru) � Prob(i � jl|�v, �v�1, rl 1

, rl 2
, rv) ,

lation 
) with increased time interval (cf. Pletcher and(6)
Geyer 1999). There are two advantages when the struc-

which forms a (81 � 9) conditional probability matrix. tured matrix (8) is used. First, an explicit expression of
If two QTL are located on the same marker interval, the determinant and inverse of � can be derived, which
the conditional probability is expressed as facilitates parameter estimation. Second, with such an

expression, the growth-model-based mapping approach�i jk jk�1
� Prob(i � jk jk�1|�u, �u�1, rk 1

, rk 2
, rk 3

, ru).
can be applied for an arbitrary number of time points.(7)

The assumption of variance stationarity can be satis-
fied by transforming both sides (TBS) of the growthIn Equation 7, denote rk 1

, rk 2
, and rk 3

to be the recombina-
tion fractions between marker �u and QTL �k, between equation (1), as proposed by Carroll and Ruppert

(1984). The transformation at the left side of EquationQTL �k and �k�1, and between �k�1 and marker �u�1,
respectively. For two QTL on the same interval, �i jk jk�1

1 can lead to a homogeneous variance over times,
whereas the transformation at the right side of Equationforms a (9 � 9) matrix.
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1 can preserve the biological properties of growth pa- growth trajectories can be tested by formulating the
following hypotheses:rameters (a, b, c). Thus, with the TBS model, the favor-

able advantages of structuring � according to (8) can
be preserved. H0: a22 � ... � a00, b22 � ... � b00, c22 � ... � c00

H1: Not all of these equalities above hold. (10)We formulate the likelihood function of the pheno-
typic data with m-dimensional measurements as

H0 states that no QTL affect growth trajectories (the
reduced model), whereas H1 proposes that such QTL

L(�) � �
n

i�1
��

2

jk�0
�
2

jl�0

�ijk jl fjk jl(yi)� , (9) do exist (the full model). The test statistic for testing
the hypotheses (10) is calculated as the log-likelihood
ratio of the reduced to the full model,where the vector � � (ajk jl , bjk jl , cjk jl , rk1

, rl1 , 
, 	2)T con-
tains unknown parameters for the QTL effects, QTL LR � �2[ln L(�̃) � ln L(�̂)], (11)
position, and residual (co)variances. The position param-

where �̃ and �̂ denote the MLEs of the unknown pa-eters rk1
and rl1 depend on whether the two QTL are tested

rameters under H0 and H1, respectively. The LR is as-on different intervals or the same interval.
ymptotically �2 distributed with 9 d.f. An empirical ap-The EM algorithm: The maximum-likelihood estimates
proach for determining the critical threshold is based(MLEs) of the unknown parameters under a two-QTL
on permutation tests, as advocated by Churchill andmodel can be computed by implementing the EM algo-
Doerge (1994). By repeatedly shuffling the relation-rithm (Dempster et al. 1977; Lander and Botstein 1989).
ships between marker genotypes and phenotypes, a se-We have incorporated the growth law (1) into the mixture-
ries of the maximum log-likelihood ratios are calculated,based likelihood function (9) and derived the log-likeli-
from the distribution of which the critical threshold ishood equations to estimate �. In the E step, calculate the
determined.expected conditional (posterior) probability of a two-QTL

We can also test the global effects of different geneticgenotype jk jl given marker genotypes for progeny i,
components, additive, dominant, and epistatic, on the
shapes of entire growth curves. The hypothesis for test-�ijk jl �

�ijk jl fjk jl(yi)

�2
jk �0�2

jl �0�ijk jl fjk jl(yi)
.

ing the additive effect of QTL �k on overall growth
curves can be formulated asIn the M step, these posterior probabilities are used to

solve the unknown parameters on the basis of the log- H0: �k(t) � 0

H1: �k(t) � 0, (12)likelihood equations. The E and M steps are iterated
until the estimates converge.

In practical computations, the QTL position parame- which is equivalent to testing the difference of the full
ters can be viewed as nuisance parameters because two model with no restriction and the reduced model with
putative QTL can be searched at given positions a restriction:
throughout the entire linkage map. The amount of sup-
port for the QTL at particular map positions is often �

2

jl�0

g2jl(t) � �
2

jl�0

g0jl(t). (13)
displayed graphically through the use of likelihood
maps or profiles, which plot the likelihood-ratio test

Thus, the data can be fit by one less unknown parameterstatistics as a function of map positions of the two puta-
under the reduced model (H0) of (12) than under thetive QTL.
full model (H1). An empirical approach for determining
the critical threshold for the hypothesis test of (12) is
based on simulation studies. Phenotypic data followingHYPOTHESIS TESTS
a multivariate normal density are simulated for different

Different from traditional mapping approaches, our groups of QTL genotypes whose time-dependent ex-
functional mapping for epistatic QTL allows for the pected values are restricted using Equation 13. These
tests of a number of biologically meaningful hypotheses. simulated data that include no additive effect due to
These hypothesis tests can be a global test for the exis- QTL �k are analyzed. The threshold value is determined
tence of significant QTL, a local test for the genetic effect on the basis of the distribution of the likelihood ratios
on growth at a particular time point, a regional test for the (LRs) obtained from simulation replicates.
overall effect of QTL on a particular period of growth The test for the dominant effect, �k(t), of QTL �k is
process, or an interaction test for the change of QTL equivalent to testing the difference of the full model
expression across ages. with no restriction and the reduced model with a restric-

Global test: Testing whether specific QTL exist to tion:
affect the shape of growth trajectories is a first step
toward the understanding of the genetic architecture 2�

2

jl�0

g1jl(t) � �
2

jl�0

[g2jl(t) � g0jl(t)]. (14)
of complex phenotypes. The genetic control over entire
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Similarly, the additive and dominant effects of QTL their effects on a period of growth process [t1, t2] can
�l at a time point t can be tested using the following be tested using a regional test approach based on the
restrictions, respectively: areas (Gjk jl [t1, t2], Equation 4) covered by growth curves.

The hypothesis test for the genetic effect on a period
�
2

jk�0

gjk 2(t) � �
2

jk�0

gjk0(t), (15) of growth process is equivalent to testing the difference
between the full model with no restriction and the re-
duced model with a restriction. The types of restriction2 �

2

jk�0

gjk 1(t) � �
2

jk�0

[gjk 2(t) � gjk0(t)]. (16)
used are similar to Equations 13–20, depending on the
additive effects, dominant effects, or epistatic effects ofThe test for the epistatic effects between the two QTL
different kinds.is equivalent to testing the differences of the full model

Interaction test: The effects of QTL may change withwith no restriction and the reduced model with a restric-
age, which suggests the occurrence of QTL � age inter-tion,
action effects on the growth process. The differentiation

g 22(t) � g 00(t) � g 20(t) � g 02(t), (17) of g(t) with respect to time t represents a slope of the
growth curve (growth rate, Equation 2). If the slopes atfor the additive � additive effect;
a particular time point t* are different between the
curves of different QTL genotypes, this means that sig-2g 21(t) � g 02(t) � g 01(t) � 2g 01(t) � g 20(t) � g 00(t),

(18) nificant QTL � age interaction occurs between this time
point and the next. The test for QTL � age interaction

for the additive � dominant effect; can be formulated with the restriction
2g12(t) � g20(t) � g00(t) � 2g01(t) � g22(t) � g12(t), (19)

�
2

jl �0

dg2jl(t*)
dt

� �
2

jl �0

dg0jl(t*)
dt

(23)for the dominant � additive effect; and

4g11(t) � g22(t) � g20(t) � g02(t) � g00(t) � 2g21(t) � 2g12(t) for the additive effect of QTL �k. The tests for QTL �
age interactions due to the other genetic effects can be� 2g10(t) � 2g01(t),
formulated using Equations 14–20.(20)

The effect of QTL � age interaction on growth can
for the dominant � dominant effect. In fact, these for- be examined during the entire growth trajectories. The
mulations of the restrictions for testing epistatic interac- global test of QTL � age interaction due to the additive
tions of different kinds on growth trajectories are a effect of QTL �k can be formulated with the restriction
simple extension of Cheverud and Routman’s (1995)
epistatic model for specifying the epistasis for a station-

�
m

0




�
2

jl �0

dg2jl(t)
dt

� �
2

jl �0

dg0jl(t)
dt





2

dt � 0. (24)ary trait. Simulation studies are performed to determine
the critical thresholds for hypotheses 14–20.
Local test: The local test can test the significance of the The restriction (24) means that there is the same slope
main (additive or dominant) effect of each QTL and at every time point between the two logistic curves of
the interaction (epistatic) effect between the two QTL QTL genotypes QkQk and qkqk, thus suggesting that the
on growth measured at a time point (t*) of interest. additive effect of �k does not lead to significant QTL �
The tests of additive and dominant effects of individual age interaction on entire growth trajectories. Similar
QTL and their epistatic effects can be made on the basis global tests of QTL � age interactions due to the other
of the corresponding restrictions given in Equations genetic effects can also be made, depending on the
13–20. For example, the hypothesis for testing the addi-

types of restrictions as shown in Equations 14–20.
tive effect of QTL �k on growth at a given time t* can

Test for the timing of development: During its onto-be formulated as
genetic growth, an organism would experience various
developmental events. The genetic determination of theH0: �k(t*) � 0

H1: �k(t*) � 0, (21) timing of development sheds light on the theoretical
integration of evolution and development (Raff 2000;

which is equivalent to testing the difference of the full Rougvie 2001). Using our functional mapping model,
model with no restriction and the reduced model with the genotypic differences in the timing (tI) of the inflec-
a restriction: tion point of maximum growth rate can be tested. Ac-

cording to Equation 2, the test for such a genotypic
�
2

jl �0

g2jl(t*) � �
2

jl �0

g0jl(t*). (22) difference due to the additive effect of QTL �k is based
on the restriction,

Regional test: It is likely that an important develop-
mental event often occurs in a time interval rather than �

2

jl �0

ln b2jl

r2jl

� �
2

jl �0

ln b0jl

r0jl

. (25)
simply at a time point. The question of how QTL exert



1546 R. Wu et al.

TABLE 1

MLEs of the positions of two QTL, each bracketed by a different marker interval, QTL effects described by
growth parameters (a, b, c), and phase probabilities for the QTL located within a marker interval on

linkage group D16 in an interspecific hybrid population of Populus

Position QTL genotype

�1 �2 Q 1q1Q 2q 2 Q 1q1q 2q 2 q1q1Q 2q 2 q1q1q 2q 2

Marker interval TC/CTG-730–TC/CTG-735 AG/CTT-570–AG/CTT-595
Phase probabilitya 0.95 0.90

â 18.80 22.43 25.49 17.56
b̂ 6.86 10.87 89.05 6.33
ĉ 0.4607 0.4730 0.7113 0.4648
t I 4.18 5.04 6.31 3.97

a Linkage phase here is meant between the uppercase allele of the QTL and the dominant alleles of the flanking markers for
both intervals.

The tests of the control of other genetic components mapping population (Lin et al. 2003). Our functional
mapping proposed above was modified to incorporateover the timing of the inflection point can be similarly

made. the uncertainty of the QTL-marker linkage phase into
the likelihood function (appendix).

Detection of QTL with significant epistasis: The statis-
A CASE STUDY tical model built upon a universal logistic growth law

(West et al. 2001) is used to map epistatic QTL responsi-Materials: The power of our statistical model for map-
ble for growth trajectories in poplars. All of the 19 link-ping QTL affecting growth trajectories was demon-
age groups were scanned on a 2-cM scale for the exis-strated by a case study in poplar trees. A Populus deltoides
tence of a pair of QTL at different genomic locations.clone (designated I-69) was used as a female parent to
We have successfully detected a few pairs of genomicmate with an interspecific P. deltoides � P. nigra clone
locations at which two QTL interact to affect stem(designated I-45) as a male parent (Wu et al. 1992). A
growth trajectories in poplar. Table 1 and Figure 1 illus-total of 450 1-year-old rooted hybrid seedlings from this
trate an example in which a pair of QTL located at thecross were planted at a spacing of 4 � 5 m at a forest
ninth interval [TC/CTG-730, TC/CTG-735] and thefarm near Xuchou City, Jiangsu Province, China. The
thirteenth interval [AG/CTT-570, AG/CTT-595] oftotal stem heights and diameters were measured at the
linkage group D16 (Yin et al. 2002) were found to showend of each of the growing seasons for each tree. Two
significant epistatic effects on stem height growth. Theparent-specific genetic linkage maps each composed of
uppercase alleles of these two QTL were observed to19 linkage groups (roughly representing 19 haploid
be in a coupling phase with dominant alleles of theirchromosomes in poplar) were constructed from restric-
respective flanking coupling markers. The maximumtion fragment length polymorphism, amplified frag-
(93.1) of the landscape of the log-LR test statistics acrossment length polymorphism, and microsatellite markers
the linkage group (Figure 1), greater than the genome-for this hybrid progeny (Yin et al. 2002) and used for
wide threshold at the significance level � � 0.05 (LRT �the genetic mapping of QTL affecting complex traits
85.6) estimated from permutation tests, justifies the ade-of economical importance in forest trees.
quacy of a two-QTL model incorporating growth curves.Methods: Yin et al. (2002) used Grattapaglia and

To show the advantages of our functional mappingSederoff’s (1994) pseudo-test backcross strategy to con-
model, the same data set was analyzed by traditional uni-struct two linkage maps each corresponding to a parent.
variate and multivariate interval mapping approaches.Each testcross marker for these two parent-specific maps
Univariate interval mapping applied to the most differ-is heterozygous in one parent and null in the other.
entiated heights at the oldest age (year 11) measuredBecause the two parents, I-69 and I-45, are heterozygous,
detected no QTL, whereas multivariate interval map-there is no consistent linkage phase among dominant
ping for three representative ages (years 1, 6, and 11)alleles of different markers on the same linkage group;
suggested a marginal QTL at the significance level � �some are in a coupling phase whereas others are in a
0.10 (results not shown). These results indicate thatrepulsion linkage phase (Yin et al. 2002). Thus, unlike
our functional mapping approach is statistically moreQTL mapping in inbred-line crosses, we need to deter-
powerful for detecting QTL from a given mapping pop-mine the correct linkage phase between the QTL and

the markers flanking it for the pseudo-test backcross ulation.
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Figure 1.—The landscape of the log-likelihood ratio for two epistatic QTL across the same linkage group D16 containing 18
markers in poplar (Yin et al. 2002). Two QTL, one located on the ninth marker interval [TC/CTG-730, TC/CTG-735] and the
other located on the thirteenth interval [AG/CTT-570, AG/CTT-595], were detected to epistatically determine the overall shape
of stem height growth. The plot denotes the critical threshold for the existence of significant QTL. The peak of the landscape
corresponding to the genomic locations of two QTL is indicated.

The pseudo-test backcross used here allows for only rameters (Table 1) for four genotypes at two interactive
QTL located on linkage group D16 (Figure 2). As de-the significance tests of the additive effects of the two

QTL and their additive � additive epistasis. The thresh- scribed in hypothesis tests, our functional mapping
approach can be used to test various genetic hypothesesolds at the � � 0.05 level for these tests were calculated

by simulation studies with the restrictions 13 and 17, related to the developmental process on the basis of
estimated growth parameters. The additive effect of therespectively. By comparing the maximum value of the

LRs from the functional mapping approach with these QTL located on the thirteenth marker interval is sig-
nificant throughout the entire growth process mea-thresholds, we found that the additive � additive epista-

sis has a significant impact on the overall differences of sured, but its sign is altered when trees develop into
age 7–8 years (Figure 2). The QTL located on the eighthgrowth curve shapes in stem height growth, whereas these

two QTL each display marginally significant effects. marker interval has nonsignificant additive effect on
growth, but it interacts significantly with the QTL on theTo address a possible violation of the constant vari-

ance assumption in the matrix (8), we incorporate the thirteenth interval. It is not surprising that significant
QTL � age interactions are detected on height growthTBS model (Carroll and Ruppert 1984) into our func-

tional mapping framework. Similar results about the given the change of the signs of the additive and
additive � additive effects (Figure 2).estimation of QTL positions and effects were obtained

from the TBS-based mapping approach (data not shown). Genetic control over the inflection point: Equation 3
describes the coordinates of the inflection point whereYet, the TBS-based mapping approach provides more pre-

cise estimates of growth curve parameters, with sampling the exponential phase ends and the asymptotic phase
begins (Niklas 1994). The difference in the coordinateserrors reduced by 20–50% compared to those from un-

transformed data. between different genotypes provides important infor-
mation about the genetics and evolution of growth tra-The dynamic pattern of QTL effect: The growth curves

of height are drawn using the estimates of logistic pa- jectories. If different growth curves predicted by a QTL
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Figure 2.—The growth curves
of four different QTL genotypes
drawn using parameter sets (a, b,
c) in Table 1 for two QTL detected
on the same linkage group D16.
The coordinates of the inflection
point for each curve are indicated
by the horizontal and vertical
lines. The differentiation pattern
of growth curves beyond the maxi-
mum observed age (11 years), af-
fected by the QTL, is represented
by extended broken curves.

have different ages at the inflection point, this indicates on the basis of clonal replicates. If both parents and
that the inflection point is under genetic determination. offspring are cloned, Wu’s model can estimate the en-
In our example of poplars, significant additive effect tire additive � additive epistatic variance, a partial addi-
due to the QTL on the thirteenth marker interval and tive � dominant epistatic variance, and a partial domi-
significant additive � additive effect on the timing of nant � dominant epistatic variance.
the inflection point are detected. The additive effect of In this article, we present a statistical approach for
the QTL on the thirteenth interval delays the occur- mapping any QTL that exert various genetic effects on
rence of the inflection point by about 0.4 year, whereas growth trajectories based on a genetic linkage map.
the additive � additive effect causes the inflection point Our approach is unique in that it detects and estimates
to occur 0.8 year earlier (Figure 2). Because the inflec- genetic effects due to allelic/nonallelic actions and in-
tion point occurs at a time of maximum growth rate, teractions of QTL from physiological and develop-
the genetic control of growth trajectory implies that it mental principles of growth. This uniqueness makes our
can be genetically modified to increase a tree’s capacity approach advantageous in two aspects and leads us to
to effectively acquire spatial resources. construct a conceptual framework of evolutionary devel-

opmental biology (Arthur 2002).
First, we integrate growth equations into a statistical

DISCUSSION mapping framework to map developmental QTL that
guide the trajectories of organ growth and develop-Increasing evidence has emerged for the role of com-
ment. Separate QTL analyses of growth at different timeplex genetic architecture in regulating the ontogenetic
points are not powerful to follow the dynamics of QTLdevelopment of embryological phenotypes (Cheverud
effects since relationships of growth at different timeset al. 1983; Atchley 1984; Atchley and Zhu 1997;
are not considered. Multivariate QTL analysis combin-Vaughn et al. 1999; Carlborg et al. 2003) and, ulti-
ing all time points takes into account these age-depen-mately, shaping the evolutionary process of organismic
dent relationships (Korol et al. 2001), but it quicklyform (Wolf et al. 2000). However, traditional genetic
becomes intractable when the number of time pointsapproaches are limited in estimating nonadditive effects.
increases. By fitting the expected genetic values at differ-If epistasis is assumed to be absent, as in most quantitative
ent time points by growth curves (West et al. 2001) andgenetic studies, Cockerham’s (1963) model based on a
the residual (co)variance matrix by the AR(1) modelmating design provides a nice estimate of the dominant
(Davidian and Giltinan 1995), our approach esti-variance. Wu (1996) extended Cockerham’s quantita-

tive genetic model to estimate the epistatic variances mates a considerably reduced number of parameters,
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which thus increases significantly the power to detect age disequilibrium mapping should be integrated within
the functional mapping framework. Linkage disequilib-epistasis. Second, because biological principles are in-
rium-based mapping provides a powerful tool for fine-corporated, our approach sheds better light on the inte-
scale mapping of complex traits (Lou et al. 2003) and,gration of development and epitasis. Our approach
thus, the combination of this mapping strategy with ourallows for the understanding of the genetic basis for
functional mapping can gain better insights into thegrowth and development at the cutting edge of biology
genetic basis of development and evolution.(Raff 2000; Arthur 2002). Growth and development
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TABLE A1

Conditional probabilities of QTL genotypes given the marker genotypes for �u and �u�1

under different marker-QTL linkage phases

Coupling markers Repulsion markers

Marker-QTL Marker-QTL Marker-QTL Marker-QTL
phase 1 phase 2 phase 1 phase 2

Marker genotype Qq qq Qq qq Qq qq Qq qq

MumuMu�1mu�1 1 0 0 1 1 � � � � 1 � �
Mumumu�1mu�1 1 � � � � 1 � � 1 0 0 1
mumuMu�1mu�1 � 1 � � 1 � � � 0 1 1 0
mumumu�1mu�1 0 1 1 0 � 1 � � 1 � � �

� � rk1
/ru, where ru is the recombination fraction between two markers �u and �u�1 and rk1

is the recombination
fraction between the marker �u and the QTL �k. Double crossover is ignored.

TABLE A2

Conditional probabilities of the QTL genotypes of two QTL, �k and �k�1, bracketed by two markers, �u and
�u�1, conditional on the marker genotypes under different marker-QTL linkage phases

Marker-QTL phase Marker genotype Q kqkQ k�1qk�1 Q kqkqk�1qk�1 qkqkQ k�1qk�1 qkqkqk�1qk�1

Two coupling markers
Combination 11 MumuMu�1mu�1 1 0 0 0

Mumumu�1mu�1 1 � �1 � �2 �2 0 �1

mumuMu�1mu�1 �1 0 �2 1 � �1 � �2

mumumu�1mu�1 0 0 0 1

Combination 12 MumuMu�1mu�1 1 1 0 0
Mumumu�1mu�1 �2 1 � �1 � �2 �1 0
mumuMu�1mu�1 0 �1 1 � �1 � �2 �2

mumumu�1mu�1 0 0 0 0

Combination 21 MumuMu�1mu�1 0 0 1 0
Mumumu�1mu�1 �2 �1 1 � �1 � �2 0
mumuMu�1mu�1 0 1 � �1 � �2 �1 �2

mumumu�1mu�1 0 1 0 0

Combination 22 MumuMu�1mu�1 0 0 0 1
Mumumu�1mu�1 �1 0 �2 1 � �1 � �2

mumuMu�1mu�1 1 � �1 � �2 �2 0 �1

mumumu�1mu�1 1 0 0 0

Two repulsion markers
Combination 11 MumuMu�1mu�1 1 � �1 � �2 �2 0 �1

Mumumu�1mu�1 1 0 0 0
mumuMu�1mu�1 0 0 0 1
mumumu�1mu�1 �1 0 �2 1 � �1 � �2

Combination 12 MumuMu�1mu�1 �2 1 � �1 � �2 �1 0
Mumumu�1mu�1 0 1 0 0
mumuMu�1mu�1 0 0 1 0
mumumu�1mu�1 0 �1 1 � �1 � �2 �2

Combination 21 MumuMu�1mu�1 �2 �1 1 � �1 � �2 0
Mumumu�1mu�1 0 0 1 0
mumuMu�1mu�1 0 1 0 0
mumumu�1mu�1 0 1 � �1 � �2 �1 �2

Combination 22 MumuMu�1mu�1 �1 0 �2 1 � �1 � �2

Mumumu�1mu�1 0 0 0 1
mumuMu�1mu�1 1 0 0 0
mumumu�1mu�1 1 � �1 � �2 �2 0 �1

�1 � rk1
/ru, �2 � rk2

/r, where ru, rk1
, and rk2

are the recombination fractions between markers �u and �u�1,
marker �u and QTL �k, and QTL �k and �k�1, respectively. Double crossover is ignored.




