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ABSTRACT
Chicken genome mapping is important for a range of scientific disciplines. The ability to distinguish

chromosomes of the chicken and other birds is thus a priority. Here we describe the molecular cytogenetic
characterization of each chicken chromosome using chromosome painting and mapping of individual
clones by FISH. Where possible, we have assigned the chromosomes to known linkage groups. We propose,
on the basis of size, that the NOR chromosome is approximately the size of chromosome 22; however,
we suggest that its original assignment of 16 should be retained. We also suggest a definitive chromosome
classification system and propose that the probes developed here will find wide utility in the fields of
developmental biology, DT40 studies, agriculture, vertebrate genome organization, and comparative map-
ping of avian species.

THE ability to karyotype an individual or species is chicken expressed sequence tags are deposited in the
dbEST database. Large numbers of chicken full-lengthfundamental for any genome-mapping effort as
cDNAs are already being sequenced and it has beenboth genetic and physical maps are made with reference
predicted that the chicken has 35,000 genes in total. Ato chromosome position. A karyotype provides a wealth
significant barrier to the progress of the chicken ge-of information about the genetic makeup of an animal
nome project, however, has been the fact that the chro-or cell line, e.g., about disease status, infertility, or tumor-
mosomes have not hitherto been fully classified and thusigenesis, and is, in effect, a low-resolution map of the
a large number of genes remain without a chromosomalwhole genome. For most species, chromosomes can be
assignment.distinguished relatively easily by either classical (e.g.,

The chicken genome-mapping project is also devel-G-banding) means or molecular cytogenetics. Birds (class
oping a number of resources essential for the study ofAves) are a notable exception to this because, typically,
a range of scientific disciplines. DNA microarrays arethe diploid number is �80 and because birds have many
being generated to study metabolic functions and im-cytologically indistinguishable microchromosomes.
mune responses (Min et al. 2003; Neiman et al. 2003)The majority of avian genomic studies focus on the
and to analyze global gene expression in target tissueschicken (Gallus domesticus) and the chicken genome-
of chickens (Cogburn et al. 2003). There are also proj-mapping project continues apace. The genetic map now
ects to target gene function by disrupting and gainingcontains �2000 loci within 50 linkage groups, and it
functions with the use of RNAi methods (Hudson et al.covers �4000 cM (Emara and Kim 2003). Over 235 of
2002; Pekarik et al. 2003). The increase in these geno-these loci have homology with known human or mam-
mic resources, easy access to the large chick embryo,malian genes. The number of chicken protein se-
and the application of sophisticated means such as RNAquences deposited in the SwissProt and the TrEMBL
interference and morpholinos provide unique tools fordatabases is between 1000 and 2000 and �600,000
testing gene function in all vertebrates. A resource that
has been unavailable thus far, however, is a set of unique
chromosome identifier probes.
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fibroblast cell cultures established from 5- to 7-day-old embryosdate genes for quantitative traits (Emara and Kim 2003).
(Griffin et al. 1999; Ahlroth et al. 2000). Cells were exam-Chicken accounts for 20% of meat consumption and
ined under phase-contrast microscopy for adequate spreading

most egg consumption worldwide. There is conse- and absence of cytoplasm.
quently extensive research into �200 chicken quantita- Fluorescence-activated chromosome sorting: Chromosomes

were prepared for flow sorting as described previously (Car-tive trait loci encoding for disease susceptibility, immu-
ter et al. 1992), spun briefly (100 � g for 1 min to removenology, leanness, egg production, etc. (Liu et al. 2001;
any debris), and then the supernatant stained with 2 �g/mlMariani et al. 2001; Tatsuda and Fujinaka 2001).
Hoechst 33258 (Sigma, St. Louis) and 40 �g/ml chromomycinMany highly inbred and recombinant inbred chicken A3 (Sigma). Bivariate flow karyotypes were generated on a

lines have large, well-defined pedigrees; thus, chicken FACStar Plus (Becton Dickinson, San Jose, CA) dual laser
is a primary model for the study of quantitative inheri- flow cytometer equipped with two 5-W argon ion lasers. For

chromosomes 1–10 and Z, �400 chromosomes from eachtance in humans and other vertebrates (Jeurissen et al.
peak in the flow karyotype were flow sorted into a 0.5-ml2000; Ledur et al. 2000; Le Bihan-Duval et al. 2001).
Eppendorf tube containing water. For some of the medium-Mapping of quantitative traits, however, requires a chro- sized microchromosomes, single chromosomes were flow

mosomal assignment and this has not yet been possible sorted into tubes.
for traits that map to the smaller microchromosomes. Microdissection of microchromosomes: Since microchro-

mosomes are virtually indistinguishable, it was essential toChicken DT40 cell lines are avian-leukosis-virus-
microdissect single chromosomes prior to PCR amplification.induced B cell lines that exhibit a high ratio of targeted
Briefly, preparations on coverslips were stained with 10%to random integration of transfected DNA constructs Giemsa dye and placed on the stage of a Leica inverted micro-

at homologous loci (Dhar et al. 2001). They are suitable scope. Individual chromosomes were isolated from the cov-
as a model for recombination analysis in vertebrates erslip using a glass needle driven by an electronically con-

trolled micromanipulator attached to the microscope. Theand are being successfully used in gene disruption ex-
needle was then broken in a tube containing 10 �l sterileperiments (Winding and Berchtold 2001). A feature
distilled water prior to PCR amplification (Masabanda andof DT40 cell lines, however, is that they have a high
Griffin 2003). For the smallest microchromosomes, prehy-

degree of chromosomal rearrangements that, to date, bridization of total genomic chicken DNA to metaphase prepa-
could not be karyotyped. rations was performed prior to microdissection.

Finally, there is widespread interest in comparative DOP-PCR generation of chromosome paints: A primary round of
degenerate oligonucleotide primed (DOP)-PCR amplificationgenomics of birds for both genome evolution studies
was performed on these chromosomes to amplify the totaland comparative mapping in commercial species (Burt
DNA (Carter et al. 1992; Telenius et al. 1992). From eachet al. 1999; Shetty et al. 1999). In recent years several of these primary DOP-PCR reactions, 1–2 �l was used as a

comparative mapping studies have focused on individ- template for a secondary DOP-PCR amplification incorporat-
ual chicken macro- and microchromosomes (Crooij- ing biotin-16-dUTP or digoxigenin-11-dUTP (Roche Diagnos-

tics). This facilitated amplification and labeling of the relevantmans et al. 2001; Suchyta et al. 2001; Buitenhuis et al.
chromosome, thus making a chromosome paint (Carter et2002; Jennen et al. 2002), expanding and refining the
al. 1992; Telenius et al. 1992).previously described synteny information between Labeling of bacterial artificial chromosomes and cosmids: For indi-

chicken, human, and mouse. The use of cross-species vidual clone mapping experiments, clones were labeled by
chromosome painting is well established as a quick nick translation (Masabanda et al. 1998) using biotin-16-

dUTP or digoxigenin-11-dUTP (Roche Diagnostics).means of generating comparative genomic data be-
Fluorescent in situ hybridization: This was performed follow-tween species and thus chromosome-specific probes

ing the protocol of Masabanda and Griffin (2003). Briefly,from at least one avian species would further this work.
metaphase preparations were aged for 3 hr at 55�. Labeled

Given this information, it is clear that the concerted probe of 100 ng was dissolved in hybridization buffer (con-
effort to complete and publish the whole chicken ge- taining 50% formamide, 2� SSC, and 10% dextran sulfate).

Chromosomes and probe were brought into contact under anome sequence is a priority (Schmid et al. 2000; Burt
18- � 18-mm glass coverslip, sealed with rubber cement, andand Pourquie 2003). This is imminent and will provide
denatured together on a hot plate for 5 min at 68�. Thean important anchor species between fish and mam-
hybridization was carried out for 12–16 hr.mals. The ability to distinguish all chicken chromosomes Following the posthybridization washes (once for 2 min in

(2n � 78) is a crucial step in this project as, without it, 0.4� SSC/0.3% Igepal at 73�, once for 1 min in 2� SSC/
many genes cannot have proper assignments. Moreover, 0.1% Igepal at room temperature), equilibration for higher

salt concentration in 4� SSC/0.05% Tween 20, and blockingsuch a resource has a range of other applications. In
in 4� SSC/0.1% Tween 20/2% BSA, biotinylated probes werethis article therefore we describe the isolation of unique
detected with Cy3-conjugated streptavidin (1:300 dilution inchromosome identifier probes for each chicken chro-
4� SSC, 0.1% Tween 20, 1% BSA), digoxigenin-labeled paints

mosome either by mapping of individual clones or by with FITC-conjugated antidigoxigenin (1:50 dilution). Finally,
chromosome painting. chromosomes were counterstained with 4�,6-diamidino-2-phe-

nylindole (DAPI) and mounted in Vectashield antifade me-
dium before microscope analysis.MATERIALS AND METHODS

For the 11-color fluorescent in situ hybridization (FISH)
experiment, chromosomes 1, Z, 6, 8, and 10 (pool 1) wereCell culture and chromosome preparation: Metaphase prep-

arations were generated by standard protocols using chicken labeled directly with Cy3-dUTP (Amersham, Buckingham-
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TABLE 1

Summary of chromosome probes identifying each chromosome

Chromosome Chromosome BAC (or cosmid)
Group no. paint isolated? isolated? Linkage group Marker

A 1 � � NA
2 � � NA
3 � � NA
4 � � NA
5 � � NA
6 � � NA
7 � � NA
8 � � NA
9 � � E36C06W08 MCW0134

10 � � E29C09W09 ADL0112
B 11 � � E30C14W10 LEI0143

12 � � E16C17W22 MCW332
13 � � E48C28W13W27 GCT907
14 � � E35C18W14 � C37 GCT903
15 � � E18C15W15 � C37 GCT14
16 � � NOR chromosome MCW371

C 17 � � E41W17 � C24 ADL0293
18 � � E31E21C25W12 FASN
19 � � E52W19 ACACA
20 � � E47W24 � E32 ADL324
21 � � E54 PLOD
22 � � E38 TVSB3
23 � � E27C36W25W26 MCW249
24 � � E49C20W21 GCT905
25 � � — a

26 � � E60E04W23 GCT906
27 � � E59C35W20 GCT22
28 � � E53C34W16 GCT904
29 � � (cosmid) E62 ROS0257
30 � � (cosmid) E65 ROS0263
31 � � (cosmid) E64 ROS0264
32 � � (cosmid) E25C31 —

D 33 � � — —
34 � � — —
35 � � — —
36 � � — —
37 � � — —
38 � � — —

A Z � � NA
A W � � NA

Markers and linkage groups are indicated where known (adapted and expanded upon from Fillon et al.
1998). NA, not applicable.

a Chromosome 25 paint was isolated 11 times following microdissection and flow-sorting experiments. Each
time the paint was bright and specific, leading us to conclude that this chromosome consists mostly of highly
repetitive sequences.

shire, UK); chromosomes 2, 5, 6, 8, and 9 (pool 2) were scribed above. Secondary DOP-PCR products were pooled
(10 �l for pool 1, 10 �l for pool 2, 6 �l for pool 3, and 5 �llabeled directly with Cy5-dUTP (Amersham); chromosomes

3, 5, 7, 8, and 10 (pool 3) were labeled with biotin-16-dUTP for pool 4), ethanol precipitated with an excess of chicken
cot-1 DNA, and resuspended in hybridization buffer. FISH(Roche Diagnostics); chromosomes 4, Z, 7, 9, and 10 (pool 4)

were labeled with digoxigenin-11-dUTP (Roche Diagnostics). proceeded as above except that biotin-labeled probes were
detected with a Cy3.5-avidin conjugate (Amersham). As be-This was achieved first by combining the respective primary

PCR products for each pool [6 �l for chromosomes 1 and 2, fore, digoxigenin-labeled probes were detected using FITC-
conjugated antidigoxigenin antibody (Roche Diagnostics).4 �l for chromosomes 3, 4, 5, 6, and Z, and 2 �l for the rest

(10 �l � �1 �g)], ethanol precipitating, and resuspending Microscope analysis was performed using a Leica DM
epifluorescence microscope and images captured with a Pho-in 10 �l of water. Next, each pool was labeled by incorporating

the relevant dUTP label in the secondary DOP-PCR as de- tometrics CCD camera attached to the microscope, using ei-
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Figure 1.—Eleven-color chromosome painting
of “A group” chromosomes. Chromosome 1, or-
ange/brown; chromosome 2, blue; chromosome
3, green; chromosome 4, red; Z chromosome,
orange/red; chromosome 5, light blue; chromo-
some 6, white; chromosome 7, pale turquoise;
chromosome 8, pale brown; chromosome 9, pale
yellow; chromosome 10, pale purple.

ther the Vysis/Digital Scientific “Smart Capture” software or tion and DOP-PCR isolated seven unique paints for the
the Leica Q-FISH software for the 11-color experiments. smallest chromosomes that do not cohybridize with one

another or with any probe from chromosome 20 to 32
(e.g., Figure 3).RESULTS

In this study, we have isolated and assigned at least
one chromosome paint or locus specific to each of the DISCUSSION
40 chicken chromosomes (Table 1). We made chromo-

To the best of our knowledge, this is the first reportsome paints for chromosomes 1–10, Z, and W by flow
of a complete karyotype of any avian species and a criti-sorting �400 chromosomes and DOP-PCR (Figure 1
cal step for the completion of the chicken genome map.and materials and methods). For chromosomes
Presently microchromosomes are identified in terms of11–32 (except 25) we identified at least one locus-spe-
genetic linkage groups following experiments per-cific FISH probe associated with a known linkage group
formed in East Lansing, Michigan, Compton, Unitedand all but chromosomes 14–17, 20–22, and 32 are
Kingdom, and Wageningen, The Netherlands, and thuscharacterized by a chromosome paint isolated by flow
assigned number(s) are preceded by the letter E, C,sorting or microdissection of a single microchromo-
and/or W. Here we associated our probes with mostsome followed by DOP-PCR. Dual-color hybridization
known linkage groups (Fillon et al. 1998; Crooijmansof paints and bacterial artificial chromosomes (BACs;
et al. 2000), but for chromosomes 25 and 33–38 noFigure 2) permitted assignment of paints to known link-
linkage was established (Table 1). A priority thereforeage groups. For chromosomes 33–38, prehybridization

of genomic DNA to metaphases followed by microdissec- will be to sequence tag these chromosomes by isolation

Figure 2.—Dual-color hybridization of chro-
mosome paint for chromosome 18 (green) and
BAC (red) from linkage group E31E21C25W12 to
illustrate how chromosome paints were assigned
linkage groups.
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Figure 3.—Dual-color chromosome painting
of chromosomes 37 (red) and 38 (green). The
inset (50% size) indicates DAPI images of chro-
mosomes without the paints covering them.

of genomic DNA from the chromosome paints, sequenc- Suzuki et al. 1999). Similar experiments with microchro-
mosomes are now possible.ing, cloning into BAC or cosmid vectors, and rehybridiz-

ing simultaneously with the original chromosome Chicken chromosome paints are essential for the
characterization of aberrant avian karyotypes, e.g., chro-paint by dual-color FISH to confirm the origin of the

clone. Preliminary data suggest that clones map back mosomally abnormal individuals or aberrant cell lines.
They have been used in the characterization of func-to the original chromosomes in this way in �20% of

experiments. Thus we estimate that to isolate clones tional domains in the BRCA2 gene (Warren et al. 2002)
and for DT40 karyotyping (Fukagawa et al. 1999). De-and establish linkage groups and/or sequence tags for

all remaining microchromosomes, 1–2 more years of tecting chromosome aberrations in DT40 can be a key
step in addressing questions of genome stability, DNAexperimentation are necessary.

The ability to distinguish each chicken chromosome repair, gene expression, cell death, cell division, and
nondisjunction. In the postgenomic era, it is becomingis also key to the development of genome maps in other

avian species. Cross-species FISH is a well-established increasingly apparent that three- and four-dimensional
genome organization in the interphase nucleus is cen-means of generating low-resolution physical gene maps

(Wienberg and Stanyon 1995; O’Brien et al. 1997). tral to development and disease. Assaying for the posi-
tion of chromosome territories is a well-establishedThis commonly makes use of human chromosome paints

on the metaphases of other mammals but, to date, has means of establishing genome organization and our
chromosome probes have made it possible to beginbeen applied relatively rarely to nonmammalian verte-

brates (Suzuki et al. 1999; Nanda et al. 2000; Suchyta to study structure and arrangements of chromosome
territories in chicken cells (Habermann et al. 2001). Inet al. 2001). Priority avian species for comparative gene

mapping are those of commercial interest, e.g., turkey, so doing, evolutionary conserved principles of genome
organization have been established.goose, duck, and quail. Less common species, however,

warrant investigation and our macrochromosome paints The classification of chicken chromosomes varies in
the literature. Depending on definitions given by differ-have already found utility in establishing that, in con-

trast to mammals, avian chromosomes are remarkably ent authors, chicken has been reported as having be-
tween 6 and 10 pairs of macrochromosomes (Smithconserved throughout evolution (Shetty et al. 1999;
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Figure 4.—Dual-color experiment using a
chromosome paint for chromosome 19 (green)
and BAC BW065G09 (for the NOR chromosome
16, red) to illustrate the size differential. Pixel
measurements of the relative sizes of the two chro-
mosomes indicate that chromosome 19 is an aver-
age of 1.25 times larger than chromosome 16;
however, it is clear that the majority of the chicken
genome mapping community do not favor a
change of assignment.

and Burt 1998; Ladjali-Mohammedi et al. 1999; Smith In conclusion, this study is the first to classify the
smallest of the chicken chromosomes and to provide aet al. 2000). Auer et al. (1987) were able to distinguish

chromosomes 1–18 by G-banding and named the NOR complete karyotype of any avian species. This is a critical
step in the completion of the chicken genome map andchromosome number 17 using silver staining. Miller

et al. (1996) and Wain et al. (1998), however, named it the resources developed here will have a wide range of
applications.chromosome 16, and, in the majority of publications,

this dogma is maintained wherever the chromosome is J.S.M. was supported by the Biotechnology and Biological Sciences
given an assignment at all. Our own pixel measurements Research Council grant 100/D13572 awarded to D.K.G. and D.W.B.

M.S. was supported by the Deutsche Forschungesgemeinschaftof the size of DAPI signals from the NOR chromosome
(SCHM 484/21-1 and 21-2). P.C.M.O. was supported by Wellcomecompared to the others in �20 different individuals
Trust grant 068419 awarded to M.A.F.-S.indicated that it is significantly smaller than chromo-

some 19 (Figure 4). We propose that previous assign-
ments (Auer et al. 1987; Miller et al. 1996; Wain et

LITERATURE CITEDal. 1998) overestimated the size of the chromosome
because the silver staining preferentially recognizes this Ahlroth, M. K., E. H. Kola, D. Ewald, J. Masabanda, A. Sazanov

et al., 2000 Characterization and chromosomal localization ofchromosome, making it appear larger. Nevertheless, we
the chicken avidin gene family. Anim. Genet. 31: 367–375.propose that the assignment of 16 should remain to Auer, H., B. Mayr, M. Lambrou and W. Schleger, 1987 An ex-

avoid the confusion that would arise from reassigning tended chicken karyotype, including the NOR chromosome. Cy-
togenet. Cell Genet. 45: 218–221.it at this late stage. From discussions with colleagues, it

Buitenhuis, A. J., R. P. Crooijmans, E. S. Bruijnesteijn van Coppen-seems that this is the view of the majority of the chicken raet, A. Veenendaal, M. A. Groenen et al., 2002 Improvement
genome mapping community. In Table 1, we thus pro- of the comparative map of chicken chromosome 13. Anim. Genet.

33: 249–254.pose the definitive classification system. Group A is com-
Burt, D., and O. Pourquie, 2003 Genetics. Chicken genome—posed of chromosomes 1–10, Z, and W (cytogenetically science nuggets to come soon. Science 300: 1669.

distinguishable macrochromosomes tractable in a flow Burt, D. W., C. Bruley, I. C. Dunn, C. T. Jones, A. Ramage et
al., 1999 The dynamics of chromosome evolution in birds andkaryotype). Group B is composed of chromosomes
mammals. Nature 402: 411–413.11–16 (large microchromosomes up to and including Carter, N. P., M. A. Ferguson-Smith, M. T. Perryman, H. Telenius,

the NOR chromosome). Group C is composed of chro- A. H. Pelmear et al., 1992 Reverse chromosome painting: a
method for the rapid analysis of aberrant chromosomes in clinicalmosomes 17–32 (small microchromosomes associated
cytogenetics. J. Med. Genet. 29: 299–307.with known linkage groups) and group D chromosomes Cogburn, L. A., X. Wang, W. Carre, L. Rejto, T. E. Porter et al.,

33–38 (smallest microchromosomes not associated with 2003 Systems-wide chicken DNA microarrays, gene expression
profiling, and discovery of functional genes. Poult. Sci. 82: 939–known linkage groups at the time of writing). This classi-
951.fication builds on our own previous work and that of Crooijmans, R. P., J. Vrebalov, R. J. Dijkhof, J. J. van der Poel

Vignal, Fillon, and colleagues (Fillon et al. 1998; Grif- and M. A. Groenen, 2000 Two-dimensional screening of the
Wageningen chicken BAC library. Mamm. Genome 11: 360–363.fin et al. 1999; Schmid et al. 2000). In particular, the

Crooijmans, R. P., R. J. Dijkhof, T. Veenendaal, J. J. van der
assignments of the group B and C chromosomes and Poel, R. D. Nicholls et al., 2001 The gene orders on human

chromosome 15 and chicken chromosome 10 reveal multipletheir linkage groups follow those of Schmid et al. (2000).



1373Complete Karyotype of the Chicken

inter- and intrachromosomal rearrangements. Mol. Biol. Evol. patibility complex/NOR microchromosome and evidence for
high-frequency recombination associated with the nucleolar orga-18: 2102–2109.

Dhar, P. K., E. Sonoda, A. Fujimori, Y. M. Yamashita and S. Takeda, nizer region. Proc. Natl. Acad. Sci. USA 93: 3958–3962.
Min, W., H. S. Lillehoj, S. Kim, J. J. Zhu, H. Beard et al., 2003 Profil-2001 DNA repair studies: experimental evidence in support of

chicken DT40 cell line as a unique model. J. Environ. Pathol. ing local gene expression changes associated with Eimeria max-
ima and Eimeria acervulina using cDNA microarray. Appl. Micro-Toxicol. Oncol. 20: 273–283.

Emara, M. G., and H. Kim, 2003 Genetic markers and their applica- biol. Biotechnol. 24: 24.
Nanda, I., E. Zend-Ajusch, Z. Shan, F. Grutzner, M. Schartl ettion in poultry breeding. Poult. Sci. 82: 952–957.

Fillon, V., M. Morisson, R. Zoorob, C. Auffray, M. Douaire et al., 2000 Conserved synteny between the chicken Z sex chromo-
some and human chromosome 9 includes the male regulatoryal., 1998 Identification of 16 chicken microchromosomes by

molecular markers using two-colour fluorescence in situ hybrid- gene DMRT1: a comparative (re)view on avian sex determination.
Cytogenet. Cell Genet. 89: 67–78.ization (FISH). Chromosome Res. 6: 307–313.

Fukagawa, T., N. Hayward, J. Yang, C. Azzalin, D. Griffin et al., Neiman, P. E., J. J. Grbic, T. S. Polony, R. Kimmel, S. J. Bowers et
al., 2003 Functional genomic analysis reveals distinct neoplastic1999 The chicken HPRT gene: a counter selectable marker for

the DT40 cell line. Nucleic Acids Res. 27: 1966–1969. phenotypes associated with c-myb mutation in the bursa of Fab-
ricius. Oncogene 22: 1073–1086.Griffin, D. K., F. Haberman, J. Masabanda, P. O’Brien, M. Bagga

et al., 1999 Micro- and macrochromosome paints generated by Pekarik, V., D. Bourikas, N. Miglino, P. Joset, S. Preiswerk et al.,
2003 Screening for gene function in chicken embryo usingflow cytometry and microdissection: tools for mapping the

chicken genome. Cytogenet. Cell Genet. 87: 278–281. RNAi and electroporation. Nat. Biotechnol. 21: 93–96.
O’Brien, S. J., J. Wienberg and L. A. Lyons, 1997 ComparativeHabermann, F. A., M. Cremer, J. Walter, G. Kreth, J. von Hase

et al., 2001 Arrangements of macro- and microchromosomes in genomics: lessons from cats. Trends Genet. 13: 393–399.
Schmid, M., I. Nanda, M. Guttenbach, C. Steinlein, M. Hoehn etchicken cells. Chromosome Res. 9: 569–584.

Hudson, D. F., C. Morrison, S. Ruchaud and W. C. Earnshaw, al., 2000 First report on chicken genes and chromosomes 2000.
Cytogenet. Cell Genet. 90: 169–218.2002 Reverse genetics of essential genes in tissue-culture cells:

‘dead cells talking’. Trends Cell Biol. 12: 281–287. Shetty, S., D. K. Griffin and J. A. Graves, 1999 Comparative paint-
ing reveals strong chromosome homology over 80 million yearsJennen, D. G., R. P. Crooijmans, B. Kamps, R. Acar, A. Veenendaal
of bird evolution. Chromosome Res. 7: 289–295.et al., 2002 A comparative map of chicken chromosome 24 and

Smith, J., and D. W. Burt, 1998 Parameters of the chicken genomehuman chromosome 11. Anim. Genet. 33: 205–210.
(Gallus gallus). Anim. Genet. 29: 290–294.Jeurissen, S. H., A. G. Boonstra-Blom, S. O. Al-Garib, L. Hartog

Smith, J., C. K. Bruley, I. R. Paton, I. Dunn, C. T. Jones et al., 2000and G. Koch, 2000 Defence mechanisms against viral infection
Differences in gene density on chicken macrochromosomes andin poultry: a review. Vet. Q. 22: 204–208.
microchromosomes. Anim. Genet. 31: 96–103.Ladjali-Mohammedi, K., J. J. Bitgood, M. Tixier-Boichard and

Suchyta, S. P., H. H. Cheng, J. Burnside and J. B. Dodgson, 2001F. A. Ponce De Leon, 1999 International system for standard-
Comparative mapping of chicken anchor loci orthologous toized avian karyotypes (ISSAK): standardized banded karyotypes
genes on human chromosomes 1, 4 and 9. Anim. Genet. 32:of the domestic fowl (Gallus domesticus). Cytogenet. Cell Genet.
12–18.86: 271–276.

Suzuki, T., N. Kansaku, T. Kurosaki, K. Shimada, D. Zadworny etLe Bihan-Duval, E., C. Berri, E. Baeza, N. Millet and C. Beaumont,
al., 1999 Comparative FISH mapping on Z chromosomes of2001 Estimation of the genetic parameters of meat characteris-
chicken and Japanese quail. Cytogenet. Cell Genet. 87: 22–26.tics and of their genetic correlations with growth and body compo-

Tatsuda, K., and K. Fujinaka, 2001 Genetic mapping of the QTLsition in an experimental broiler line. Poult. Sci. 80: 839–843.
affecting body weight in chickens using a F2 family. Br. Poult.Ledur, M. C., R. W. Fairfull, I. McMillan and L. Asseltine, 2000
Sci. 42: 333–337.Genetic effects of aging on egg production traits in the first laying

Telenius, H., N. P. Carter, C. E. Bebb, M. Nordenskjold, B. A.cycle of White Leghorn strains and strain crosses. Poult. Sci. 79:
Ponder et al., 1992 Degenerate oligonucleotide-primed PCR:296–304.
general amplification of target DNA by a single degenerateLiu, H. C., H. H. Cheng, V. Tirunagaru, L. Sofer and J. Burnside,
primer. Genomics 13: 718–725.2001 A strategy to identify positional candidate genes confer-

Wain, H. M., A. A. Toye, S. Hughes and N. Bumstead, 1998 Tar-ring Marek’s disease resistance by integrating DNA microarrays geting of marker loci to chicken chromosome 16 by representa-and genetic mapping. Anim. Genet. 32: 351–359. tional difference analysis. Anim. Genet. 29: 446–452.
Mariani, P., P. A. Barrow, H. H. Cheng, M. M. Groenen, R. Negrini Warren, M., A. Smith, N. Partridge, J. Masabanda, D. Griffin et al.,

et al., 2001 Localization to chicken chromosome 5 of a novel 2002 Structural analysis of the chicken BRCA2 gene facilitates
locus determining salmonellosis resistance. Immunogenetics 53: identification of functional domains and disease causing muta-
786–791. tions. Hum. Mol. Genet. 11: 841–851.

Masabanda, J. S., and D. K. Griffin, 2003 Generation of chromo- Wienberg, J., and R. Stanyon, 1995 Chromosome painting in mam-
some paints: approach for increasing specificity and intensity of mals as an approach to comparative genomics. Curr. Opin. Genet.
signals. Biotechniques 34: 530–536. Dev. 5: 792–797.

Masabanda, J., R. Friedl, A. Sazanov, J. M. Lahti, H. Li et al., 1998 Winding, P., and M. W. Berchtold, 2001 The chicken B cell line
Mapping of five members of the cyclin gene family on chicken DT40: a novel tool for gene disruption experiments. J. Immunol.
chromosomes by FISH. Chromosome Res. 6: 231–233. Methods 249: 1–16.

Miller, M. M., R. M. Goto, R. L. Taylor, Jr., R. Zoorob, C. Auffray
et al., 1996 Assignment of Rfp-Y to the chicken major histocom- Communicating editor: R. S. Hawley




