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THE genomic deleterious mutation rate (U) and the different algorithms to locate maxima (or minima) in
the multidimensional parameter space. ML employs nu-distribution of mutational effects for fitness, f(s),
merical integration to compute likelihood of data as aare important parameters for several theoretical issues
function of U and f(s) and combines grid searches within evolution (Charlesworth and Charlesworth 1998),
the simplex algorithm (Nelder and Mead 1965; Pressand there has been much recent work on the problem
et al. 1992) to attempt to locate the global maximumof their estimation. There are currently three statistical
likelihood. Convergence is declared when the relativeapproaches to infer U and f(s) on the basis of the distri-
change in likelihood between successive iterations isbution of fitness estimates among inbred mutation accu-
less than a user-defined threshold. The algorithm ismulation (MA) lines maintained under relaxed selection:
guaranteed to converge (although not necessarily to theminimum distance (MD; Garcı́a-Dorado 1997), tradi-
global maximum) and to produce parameter estimatestional maximum likelihood (ML; Keightley 1994), and
if the user sets bounds on valid parameter values. MDMarkov chain-Monte Carlo ML (Shaw et al. 2002). These
uses a stochastic algorithm to produce proposal distribu-methods extract information from the shape of the distri-
tions of line means that are functions of U and f(s)bution of MA line means; this information is not used
and computes “distances” between the empirical andby the Bateman-Mukai method of moments (BM; Bate-
proposal distributions. A grid search is employed toman 1959; Mukai 1964). Recently, Garcı́a-Dorado and
attempt to find the combination of parameter valuesGallego (2003) have compared the performance of
that minimizes the distance. Failure to converge is de-the BM, MD, and ML procedures by computing means
clared if the profile of distance as a function of theand variances of parameter estimates in replicated simu-
parameter of interest (i.e., the marginal of distance mini-lated data sets and concluded that MD tends to produce
mized with respect to all but one parameter) changesmean estimates with the lowest bias and sampling vari-

ance. In this letter, I question the evidence that led to
these claims.

TABLE 1Garcı́a-Dorado and Gallego’s (2003) principal
Comparison of bias and frequency of rejectedclaims are that MD produces unbiased estimates of U

replicates between ML and MD mutationand the mean mutational effect E(s), that MD outper-
parameter estimation proceduresforms ML by producing estimates of U that have lower

bias and smaller mean squared error (MSE), and that
No. of parameter values

Replicates
ML performs more poorly because many estimates are for which

rejected“large outliers.” Table 1 summarizes the data on which
ML is less ML hasGarcı́a-Dorado and Gallego (2003) base their con-

Parameter biased lower MSE ML MDclusions. In 4 of 6 cases mean MD estimates for U ap-
pear to be less biased than ML, and in 5 of 6 cases MD U 2/6 1/6
estimates of MSE are lower. However, there is a notable � 5/6 3/6

E(s) 5/6 4.5/6difference in the number of replicates that were ex-
All parameters 12/18 8.5/18 6/60 15/62cluded on the basis of failure to converge (15/62 for

MD vs. 6/60 for ML; �2 1 d.f. � 3.43, P � 0.064). This Data are from Garcı́a-Dorado and Gallego (2003), Tables
1–4, in which MD and ML are compared using simulated datadifference presumably arises because MD and ML use
that conform to the model assumed. Methods that use the
most similar information supplied by the data are compared:
“CD-MD” and “ML-C”, where available, otherwise “ML-W.” In
the case of E(s) one replicate gave identical ML and MD MSE1Address for correspondence: School of Biological Sciences, University

of Edinburgh, West Mains Rd., Edinburgh EH9 3JT, United Kingdom. estimates, so one-half of a replicate is included in the total.
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Figure 1.—Frequency distribution of estimates
of U from 200 replicated simulations of 200 MA
lines with parameters U � 0.5, � � 0.5, and the
ratio of genetic:environmental variance � 20. U,
�, and E(s) were fitted as unknowns in the model.
There were two further replicates that resulted in
stable estimates of U � 4 (U � 4.48, 4.84) and
eight further replicates that appeared to result in
estimates of U → ∞.

nonsignificantly over a range of three times the parame- MA line data often contain insufficient information
to allow unbiased estimation of mutational parameterster value. This implies that MD can fail to provide esti-
simultaneously. The parameters are confounded in suchmates if the profile is flat in the region of the minimum.
a way that the best estimate of the mutation rate is oftenGarcı́a-Dorado and Gallego (2003) exclude all MD
near a plateau in the profile of distance or likelihood.replicates that fail to converge and any ML replicates
An estimation procedure that rejects nearly one-quarterfor which the ML U estimate exceeds 50.
of such values (Table 1) should not be claimed to showThere is therefore an important difference in the
“no bias” (Garcı́a-Dorado and Gallego 2003). Fur-criteria that were used to exclude replicates. Under ML,
thermore, in cases where U, �, and E(s) are estimatedthe set of nonexcluded replicates can contain some very
simultaneously, a comparison of means or variances oflarge U estimates below the cutoff of 50 (see Figure 1).
parameter estimates cannot substantiate a claim thatI argue that it is highly likely that the excluded MD
one estimation procedure outperforms another if a sig-replicates also tended to be at the upper end of the
nificant proportion of replicates are excluded and dif-distribution of U values and that the exclusion of a
ferent exclusion criteria are employed.higher proportion of these extreme replicates led to

lower bias and lower sampling variance (Table 1). Repli-
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