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ABSTRACT
We propose a new method for simultaneously detecting linkage disequilibrium and genetic structure

in subdivided populations. Taking subpopulation structure into account with a hierarchical model, we
estimate the magnitude of genetic differentiation and linkage disequilibrium in a metapopulation on the
basis of geographical samples, rather than decompose a population into a finite number of random-mating
subpopulations. We assume that Hardy-Weinberg equilibrium is satisfied in each locality, but do not as-
sume independence between marker loci. Linkage states remain unknown. Genetic differentiation and
linkage disequilibrium are expressed as hyperparameters describing the prior distribution of genotypes
or haplotypes. We estimate related parameters by maximizing marginal-likelihood functions and detect
linkage equilibrium or disequilibrium by the Akaike information criterion. Our empirical Bayesian model
analyzes genotype and haplotype frequencies regardless of haploid or diploid data, so it can be applied
to most commonly used genetic markers. The performance of our procedure is examined via numerical
simulations in comparison with classical procedures. Finally, we analyze isozyme data of ayu, a severely
exploited fish species, and single-nucleotide polymorphisms in human ALDH2.

WITH the many discoveries of fine-scale markers developed a method called the transmission/disequilib-
rium test (TDT), which uses nuclear family data to de-that represent highly polymorphic loci, linkage dis-
tect real associations in structured populations. To useequilibrium between these markers and disease genes
this type of reliable information, similar family-basedor other trait genes has regained importance (Jorde
methods for testing linkage disequilibrium have been1995). Along with the rapid progress of genetic tech-
developed (e.g., Excoffier and Slatkin 1998; Lazze-niques, assessing linkage disequilibrium has become a
roni and Lange 1998; Spielman and Ewens 1998).current concern. The assessment involves two aspects:
However, family-based methods cannot be used for asso-detecting the presence of disequilibrium and estimating
ciation studies of undomesticated species, such as wild-its magnitude once disequilibrium has been confirmed
life and forest trees, for which no nuclear family records(Weir 1979). Continuous efforts have been made on
are available (Wu and Zeng 2001). Hence, population-such assessments of linkage disequilibrium between al-
based methods that detect linkage disequilibrium evenleles at two or more loci (Hill 1974a,b; Brown 1975;
in the presence of population structure are required.Weir and Cockerham 1978; Slatkin and Excoffier
Pritchard et al. (2000a,b) proposed a population-1996; Luo 1998; Luo and Suhai 1999; Luo et al. 2000;
based method that can detect associations betweenAyres and Balding 2001; Luo and Wu 2001). Methods
marker alleles and phenotypes in structured popula-for linkage disequilibrium-based mapping of target
tions. The essential idea of the method is to decomposegenes have also been developed (Hill and Weir 1994;
a sample drawn from a mixed population into severalKaplan et al. 1995; Xiong and Guo 1997; Meuwissen
unstructured subpopulations and test the association inand Goddard 2000; Wu and Zeng 2001). These meth-
the homogeneous subpopulations. The methods haveods assume homogeneous natural populations. How-
been applied to association analyses in humans (Parraever, if a population is structured, this leads to biased
et al. 1998; Rosenberg et al. 2002) and crop plants, withresults (known as spurious association) that can reject
modified test statistics being used to deal with quantita-a null association between a phenotype and molecular
tive traits (Thornsberry et al. 2001).markers (e.g., Lander and Schork 1994).

To study the population structure, a sample is oftenTo overcome this problem, Spielman et al. (1993)
divided by geographical regions. However, in many cases,
there are no obvious regional units by which subpopula-
tions can be defined. Rather, natural populations have
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a metapopulation has a continuous structure and con- lations that have reached equilibrium under the joint
effects of drift and mutation or migration, Wrightsists of an infinite number of subpopulations, or demes.

Such populations are well described by hierarchical (1945, 1951) found that allele frequencies for loci with
two alleles have a beta distribution; for multiallele loci,models that specify the distribution of genetic structure

among demes. Population subdivision (Nei and Li 1973; the distribution is Dirichlet. We assumed that hyperpar-
ameters are common over subpopulations and the sumPeterson et al. 1999) and other evolutionary forces such

as genetic drift (Hill and Robertson 1968), natural se- of the hyperparameters is also common for all loci.
So, if random sampling of demes is performed from alection (Lewontin 1964), and mutation (Ohta 1982a,b)

affect linkage disequilibrium. Therefore, when assess- metapopulation, estimated hyperparameters describe
ing linkage disequilibrium in natural populations, it is the magnitude of genetic differentiation among sub-
very important to also estimate the magnitude of genetic populations that have reached equilibrium. The mean
differentiation. linkage disequilibrium coefficient over subpopulations

In this article, we propose a new strategy to detect is also written as a function of the hyperparameters, as
linkage disequilibrium between marker loci and simulta- shown later. Therefore, our assumption on hyperpara-
neously estimate genetic differentiation in metapopula- meters has genetic meaning.
tions, extending the empirical Bayesian method of Now, K demes are randomly sampled from the meta-
Kitada et al. (2000). Instead of decomposing a popula- population, and nk individuals are randomly sampled
tion into a finite number of subpopulations, we describe from each deme (k � 1, . . . , K). Given the allele fre-
a distribution for allele frequencies within subpopulations quencies at each deme, the sample counts of alleles,
and test linkage disequilibrium using an information nk � (nk1, . . . , nkI)�, follow a multinomial distribution.
criterion based on hierarchical models that detect either Taking account of uncertainty of the allele frequen-
linkage equilibrium or disequilibrium. Using samples cies, the likelihood of the sample counts is expressed
from randomly sampled localities from a metapopulation, as a marginal-likelihood function, which is a Dirichlet-
we estimate hyperparameters associated with linkage multinomial distribution (e.g., Lange 1995; Rannala
disequilibrium and genetic differentiation, on the basis and Hartigan 1996; Weir 1996; Kitada et al. 2000;
of marginal-likelihood functions derived from prior dis- Balding 2003):
tributions of allele or haplotype frequencies and likeli-

L̃(�|nk) � � . . . �L(p|nk)�(p|�)dphood functions. We assume that individuals mate ran-
domly and that Hardy-Weinberg (H-W) equilibrium holds
in each locality or deme. The method can be applied to �

nk !

�nki !
�(�)

�(� � n) �
I

i�1

�(�i � nki)
�(�i)

. (2)
frequency data of common genetic markers, including
isozymes, mtDNA, microsatellites, and single-nucleotide The total likelihood is the product of the likelihoods
polymorphisms (SNPs). We do not assume independence

of K demes. Here, nk � � I
i�1nki.between marker loci, and linkage states remain unknown.

With a sample size of n, the variance-covariance ma-
We examine the performance of our procedure via nu-

trix of a Dirichlet-multinomial distribution is (n � �)/merical simulations in comparison with classical proce-
(1 � �) times larger than that of the multinomial distri-dures. Finally, we analyze isozyme data of ayu, a severely
bution (Johnson and Kotz 1969). This phenomenon,exploited fish species, and single-nucleotide polymor-
in which the variance exceeds the nominal variance, isphisms in human ALDH2.
called overdispersion. In our hierarchical models, over-
dispersion corresponds to the variation of allele fre-
quencies over subpopulations. With samples of sizeMODELS AND METHODS
n1, . . , nk , our overdispersion, � 2, becomes

Distribution of allele frequencies and genetic differ-
entiation: We consider a metapopulation that consists � 2 �

n � �

1 � �
. (3)

of localities or demes. Hardy-Weinberg equilibrium holds
in each deme. The distribution of the allele frequencies,

Here, n is the mean sample count over K samples givenp � (p1, . . . , pI)�, at each deme is described as a Dirich-
by n � �K

k�1nk/K. For a panmictic population, � 2 is 1;let distribution (Johnson and Kotz 1969),
it takes values 	1 according to the magnitude of genetic
differentiation among subpopulations. On the other�(p|�) �

�(�)

�I
i�1 �(�i)

�
I

i�1

p�i
1
i , (1)

hand, � converges to infinity for a panmictic population.
From Weir’s equation (Weir 1996, p. 48, Equation

where I is the number of alleles and � � �I
i�1�i and � � 2.15), the variance of the allele frequency between sub-

(�1, . . . , �I)� are regarded as hyperparameters for re- populations is expressed as
spective alleles specifying prior distribution. We use this
distribution as a prior for allele frequencies of a subdi- Var[p] �

p(1 
 p)
2n

{FST(2n 
 1) � 1}.
vided population. According to Weir (1996), for popu-
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TABLE 1The term FST(2n 
 1) � 1 corresponds to the dispersion
parameter � 2. From this, Kitada et al. (2000) obtained Notation for number of observed composite genotypes
the relation between � 2 and FST (Wright 1951):

B0/B0 B0/B1 B1/B1

FST �
� 2 
 1
2n 
 1

. (4)
A0/A0 n1 (h 2

00) n2 (2h00h01) n3 (h 2
01)

A0/A1 n4 (2h00h10) n5 (2h00h11 � 2h01h10) n6 (2h01h11)
If the organism is haploid, 2n should be n. By substitut- A1/A1 n7 (h 2

10) n8 (2h10h11) n9 (h 2
11)

ing Equation 3 into Equation 4 and assuming n � 2n, we
Diplotype probabilities are given in parentheses.obtain the relation

FST �
1

1 � �
, (5) lations have a Dirichlet (for cases Ij 	 2) or beta (for

cases Ij � 2) distribution. The marginal-likelihood func-
which is also given in Balding (2003). From Equation tion for a subpopulation is obtained from Equations 1,
5, we have 2, and 7 as

� �
1

FST


 1. (6) L̃0(� |n) � C�2nhetero �
J

j�1
� �(�)

�(� � 2n) �
Ij

i�1

�(�( j )
i � 2n(j)

i )
�(�( j )

i ) �, (8)

This coincides with Equation 3 of Rannala and Harti-
where 2n(j)

i , the number of genes for allele i at locus j,gan (1996), which was proposed by Wright (1969) and
is calculated from composite genotypes. The total likeli-gives the rate of gene flow. Thus, the sum of hyperpara-
hood is the product of K likelihood functions for respec-meters � is consistent with the rate of gene flow and
samples. This equation can also be used for haploidhas a relation with FST.
organisms by using ni and C instead of 2ni and C �2nhetero.Linkage equilibrium with population structure: When

Linkage disequilibrium with population structure:genetic data are available from multiple loci, the likeli-
The likelihood for sample haplotypes of a subpopula-hood is obtained as a product of the likelihoods of
tion is also a multinomial distribution:these loci when they are under linkage equilibrium. We

consider diploid organisms. Let the frequency allele i L1(p |n) � C �
i(1)...i( J )

(hi(1)...i( J ))ni(1)...i( J ). (9)
in a subpopulation at locus j be p ( j )

i (j � 1, . . . , J ; i �
1, . . . , Ij), where J is the number of loci. The haplotype

If the haplotypes are observed, the marginal likelihoodfrequency of the subpopulation under linkage equilib-
is given byrium can be written by the product of allele frequencies

over the loci as
L̃1(� |n) � C

�(�)
�(� � n) �

I

i�1

�(�i � ni)
�(�i)

, (10)
h

i
(1)

...i
( J ) � p (1)

i . . . p ( J )
i ,

where I is the number of haplotypes and, for simplicity,where the combination of J alleles i (1) . . . i ( J ) should be
we use a suffix i for haplotypes instead of i (1) . . . i ( J ).i (1)

j . . . i (J )
j , but we use ellipses for simplicity. Let the sam-

However, when analyzing diploid data, we do not ob-ple count for haplotypes be n
i
(1)

...i
( J ) and �n

i
(1)

...i
( J ) � 2n

serve diplotypes (and then no haplotypes), but only(individuals). The likelihood for sample haplotypes
composite genotypes.under H-W equilibrium is a multinomial distribution,

When investigating linkage disequilibrium, the link-
age phase between two alleles may be of most interest.L0(p |n) � C �

i(1)...i( J )

(p (1)
i · · · p (J )

i )ni
(1)

...i
( J ) � C�

J

j�1
�
IJ

i�1

(p (j )
i )2n( j )

i ,
Hence, here we focus on models for two loci with two
alleles and derive the general marginal-likelihood func-where 2n ( j )

i is the number of genes of allele i at locus
tion in the appendix.j. The constant term C � 2n!/�ini(1)...i( J )! is the combina-

Let allele frequencies for two loci be pA0
, pA1

and pB0
,tion of the observed haplotypes. However, we do not ob-

pB1
, and let the haplotype frequencies be h00, h01, h10, h11 inserve haplotypes but genotypes. When composite geno-

a subpopulation. In this case, nine composite genotypestypes Gi(1)...i( J ) are observed, the likelihood is written as
can be observed with specific diplotypes. Let the number

L0(p |n) � C �2nhetero �
i(1)...i( J )

(pGi
(1)

...i
( J ))nG

i
(1)

...i
( J ), (7) of individuals for the genotypes be n1, . . . , n9 (Table 1).

For example, the diplotype for the composite genotype
A0A0B1B1 can be specified by A0B1/A0B1. Under the H-Wwhere C� � n!/�i(1)...i( J )nGi

(1)
...i

( J )! and nhetero is the sum of the
equilibrium assumption, the probability of having theheterozygous loci over n individuals. Under H-W equi-
genotype is h 2

01 and that for A0B0/A0B1 is 2h00h01. Thus,librium, probabilities for heterozygous genotypes are
the probabilities of having genotypes can be written byobtained by duplicating the product of allele frequen-
diplotype probabilities, which are combinations of hap-cies. The term 2nhetero refers to such duplication.
lotype probabilities. However, for double heterozygotes,We assume a priori that allele frequencies of subpopu-
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two diplotypes are possible for the genotypes. In this
D̂TOTAL �

�̂00�̂11 
 �̂01�̂10

�̂2
. (14)

case, A0A1B0B1 is the double heterozygote with observed
number n5. For this genotype, the possible diplotypes

However, this estimator is biased. Let E[D] be the meanare A0B0/A1B1 and A0B1/A1B0. The probability for the
of D at each deme, which can be written asgenotype is then given as 2h00h11 � 2h01h10 (Table 1).

The likelihood of composite genotypes for the case E[D] � E[h00 
 pA0
pB0

]
of two loci with two alleles is given in Hudson (2001,

� E[h00] 
 E[pA0
]E[pB0

] � E[pA0
]E[pB0

] 
 E[pA0
pB0

]p. 316, Equation 11.6). Expanding the term for the double
heterozygote, we obtain the likelihood function as

� DTOTAL 
 Cov[pA0
, pB0

],

from which we haveL1(p |n) � C �2n2�n4�n5�n6�n8 �
n5

t�0
� n 5

t �(h00)2n1�n2�n4�n5
t(h01)n2�2n3�n6�t

DTOTAL � E[D] � Cov[pA0
, pB0

]. (15)
� (h10)n4�2n7�n8�t(h11)n5�n6�n8�2n9
t, (11)

As pA0
� h00 � h01 and pB0

� h00 � h10, the covariance is
where C� � n!/�9

i�1ni! is a constant term for the combina- expressed as
tion of the multinomial likelihood. The marginal-likeli-

Cov[pA0
, pB0

] � Var[h00] � Cov[h00, h10] � Cov[h00, h01]hood function for a subpopulation is then obtained as

� Cov[h01, h10].
L̃1(� |n) � C �2n2�n4�n5�n6�n8 �

n5

t�0
� n 5

t � �(�)
�(� � 2n) The variance and covariance of a Dirichlet distribution

are Var[pi] � �i(�i 
 �i)/(�2(� � 1)) and Cov[pi, pj] �
�

�(�00 � 2n1 � n2 � n4 � n5 
 t )
�(�00)

�(�01 � n2 � 2n3 � n6 � t )
�(�01) �i�j/(�2(� � 1)) (Johnson and Kotz 1969). Hence, we

have the covariance as a function of hyperparameters:
�

�(�10 � n4 � 2n7 � n8 � t )
�(�10)

�(�11 � n5 � n6 � n8 � 2n9 
 t )
�(�11)

,

Cov
�

[pA0
, pB0

] �
�̂00�̂11 
 �̂01�̂10

�̂2(�̂ � 1)
. (16)(12)

where �11 � � 
 �00 
 �01 
 �10. From Equations 14, 15, and 16, we have the unbiased
Parameter estimation and model selection: We esti- estimator of the mean linkage disequilibrium coefficient

mate parameters by maximizing the negative log mar- correcting spurious association as
ginal-likelihood functions for linkage equilibrium and
disequilibrium. The constant terms C and C � can be Ê[D] �

�̂00�̂11 
 �̂01�̂10

�̂(�̂ � 1)
, (17)

excluded from the estimation procedure. We reparame-
terize hyperparameters with FST by using the relation while correction of r is not trivial because of the denomi-
given by Equation 6 and estimate FST and hyperparamet- nator of Equation 13.
ers numerically as free parameters by using simplex We use the Akaike Information Criterion (AIC; Akaike
minimization. The rate of gene flow � and the dispersion 1973) as a criterion for model selections,
parameter � 2 are then estimated by Equations 4 and 6.

AIC � 2 � LL

�

� 2 � u, (18)Our empirical Bayesian procedure thus offers maxi-
mum-likelihood estimators of genetic differentiation. where LL

�

is the maximum marginal log-likelihood of
We estimate the 95% confidence interval for FST from the model and u is the number of free parameters esti-
the log-likelihood profile, and then estimate 95% con- mated. We can compare various models by this criterion;
fidence intervals for � and � 2 by substituting the lower the model with the lowest AIC value is selected as the
and upper confidence limits of FST into Equations 4 and most parsimonious model. Equation 18 indicates that,
6, respectively. when there are several models with similar values of the

We also estimate the linkage correlation coefficient maximum likelihood, we should select the model with
(Hill and Robertson 1968) as the smallest number of parameters, again following the

principle of parsimony. By using AIC, we can detect link-
age equilibrium or disequilibrium.r̂ �

D̂TOTAL

	Ê[pA0
](1 
 Ê[pA0

])Ê[pB0
](1 
 Ê[pB0

])

, (13)

TESTING PERFORMANCE

where E[pA0
] and E[pB0

] are mean allele frequencies over To evaluate the performance of our method, we con-
ducted two sets of simulations. The first simulation ex-subpopulations, which are estimated from sample allele

frequencies. Here, DTOTAL is the linkage disequilibrium amined if our procedure estimates the linkage disequi-
coefficient over subpopulations, E[h00] 
 E[pA0

]E[pB0
], librium and genetic differentiation reliably. The second

simulation compared our estimate of linkage disequilib-and is estimated as
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rium with two other commonly used estimates: an esti- erated from the Dirichlet distribution, where the hyper-
parameters were given as �00 � �(0.64 � 0.16r), �01 �mate from a pooled sample and an average of the esti-
�10 � �0.16(1 
 r), and �11 � �(0.04 � 0.16r). Wemated linkage disequilibrium over subsamples.
set total sample size to 1000 individuals and generatedSimulated data 1: We assumed that the mean popula-
haplotype frequencies for different numbers of locali-tion allele frequencies of the two loci over subpopula-
ties (K � 10, 20, 40, 100) under various r (0, 0.2, 0.4,tions were E[pA0

] � E[pB0
] � 0.5 and hence haplotype

0.6, 0.8) with fixed FST � 0.2. We then calculated samplefrequencies were E[h00] � E[h11] � 0.25(1 � r) and
composite genotype counts on the basis of haplotypeE[h01] � E[h10] � 0.25(1 
 r). We set the sample size to
frequencies assuming H-W equilibrium.50 individuals for each sampling point and generated

We estimated FST, E[D], and hyperparameters on thehaplotype frequencies for 20 geographical samples un-
basis of Equations 8, 12, and 17 for 1000 replicates.der various FST (0, 0.05, 0.10, 0.15, 0.20) and r (0, 0.2,
DMEAN and DPOOL were estimated by the method of Hill0.4, 0.6, 0.8). We then calculated sample composite
(1974b) on the basis of sample composite genotypegenotype counts on the basis of haplotype frequencies
counts at each locality and the pooled counts. A largerassuming H-W equilibrium.
number of sampling points improved the precision ofFor the state of linkage equilibrium (r � 0), given
estimates of FST (Table 3). Our hierarchical model esti-the FST values, sample allele frequencies of two loci were
mated the real values of E[D] correctly over the wholegenerated independently from the beta distribution
range of linkage disequilibrium and numbers of sam-
(�/2, �/2), where � � 1/FST 
 1. Haplotype frequen-
pling points. Precision of the estimates of E[D] was alsocies were then calculated as E[pA0

]E[pB0
] for E[h00]. Other

improved for a larger number of sampling points (Tablehaplotypes were calculated in a similar way. For the case
4). Estimates of DMEAN were biased for weaker linkageof FST � 0, sample allele frequencies of the two loci were
disequilibrium. The biases were decreased for larger r;generated independently from the binomial distribu-
however, the biases were larger than those from thetion Bi(50, 0.5). For linkage disequilibrium, given the
hierarchical model. Estimates of DPOOL were largely bi-FST values, haplotype frequencies were generated from
ased with low precision over the whole range of linkagethe Dirichlet distribution D(�00, �01, �10, �11), where the
disequilibrium and numbers of sampling points. Thehyperparameters were given as �00 � �11 � 0.25�(1 �
results showed that our method works more efficientlyr) and �01 � �10 � 0.25�(1 
 r). For cases of FST � 0,
than classical procedures.sample haplotype frequencies were generated from the

multinomial distribution Mul(50, E[h00], E[h01], E[h10],
E[h11]). APPLICATION TO REAL DATA

We estimated FST, r, and hyperparameters on the basis
Genotype data of the ayu: We analyzed isozyme geno-

of Equations 8, 12, and 13 for 1000 replicates. For all type data for seven samples of the ayu (Plecoglossus alti-
cases with r 	 0, the model of linkage disequilibrium velis) from Japan (K. Yoshizawa, unpublished data).
had smaller values of AIC and was selected. On the Two samples of wild stocks were taken from Biwako Lake
other hand, for all cases of r � 0, the model of linkage (land-locked type) and Nagara River (amphidoromous
equilibrium was selected. Estimates obtained from the type), and five samples were taken from captive brood
best-fit model agreed well with the real values of FST and stocks in hatcheries. The lifespan of ayu is 1 year. These
r, showing that our method works appropriately over a brood stocks have been bred in captivity for between 7
wide range of genetic differentiation and linkage dis- and 26 generations in each hatchery to produce juve-
equilibrium (Table 2). niles for release to enhance severely exploited stocks.

Simulated data 2: In an ordinary way, researchers The numbers of generations of captive breeding are
would use the sample mean of the linkage disequilib- shown in parentheses with the names of the sampling
rium coefficient in each subpopulation (say, DMEAN) as locations in the Table 5 legend. Two loci were analyzed.
an estimator of the mean linkage disequilibrium coeffi- Four alleles were found at the Gpi locus and three alleles
cient. Although a larger number of sampling points at the Mpi locus. However, two alleles of Gpi and one of
should improve precision of estimates of genetic differ- Mpi were very minor, and so we grouped them with major
entiation, limited sample size in each locality may result ones to obtain nine composite genotypes (Table 5).
in a poor estimate of DMEAN. Another procedure is to esti- We estimated parameters on the basis of composite
mate the mean linkage disequilibrium coefficient from genotype data by using Equations 8, 12, and 13 (Table 6).
pooled genotype data over subpopulations (say, DPOOL). A smaller AIC value was obtained for the model of link-
This procedure neglects the population structure. age equilibrium; thus, linkage equilibrium between Gpi

The mean population allele frequencies of the two loci and Mpi loci was detected. Estimates of FST and � showed
over subpopulations were assumed as E[pA0

] � E[pB0
] � 0.8 very large genetic differentiation and small gene flow.

Generally, genetic differentiation of fish species is smalland hence haplotype frequencies were E[h00] � 0.64 �
0.16r, E[h01] � E[h10] � 0.16(1 
 r), and E[h11] � 0.04 � because of large gene flows caused by migration or lack

of barriers (e.g., McPherson et al. 2001; Gold and Tur-0.16r. Given FST values, haplotype frequencies were gen-
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TABLE 2

Mean linkage correlation coefficients r and FST of the best-fit models estimated from 1000 simulations
under various levels of linkage disequilibrium and population structure

Linkage correlation coefficient (r)

FST 0.0 0.2 0.4 0.6 0.8

0.00 0 (0a) 0.200 (0.043) 0.400 (0.039) 0.601 (0.032) 0.802 (0.024)
0.019 (0.007) 0.019 (0.006) 0.019 (0.006) 0.019 (0.006) 0.020 (0.006)

0.05 0 (0a) 0.201 (0.056) 0.398 (0.050) 0.600 (0.045) 0.800 (0.032)
0.047 (0.012) 0.046 (0.010) 0.047 (0.010) 0.047 (0.010) 0.047 (0.011)

0.10 0 (0a) 0.201 (0.070) 0.398 (0.063) 0.603 (0.053) 0.802 (0.040)
0.096 (0.021) 0.095 (0.017) 0.094 (0.018) 0.094 (0.018) 0.095 (0.020)

0.15 0 (0a) 0.203 (0.083) 0.403 (0.075) 0.600 (0.064) 0.803 (0.044)
0.142 (0.028) 0.142 (0.024) 0.142 (0.024) 0.142 (0.025) 0.142 (0.029)

0.20 0 (0a) 0.194 (0.095) 0.401 (0.085) 0.603 (0.070) 0.801 (0.048)
0.190 (0.034) 0.191 (0.028) 0.190 (0.031) 0.192 (0.031) 0.193 (0.037)

The sample size was set to 50 individuals for each sampling point and haplotype frequencies for 20 geographi-
cal samples were generated. The mean allele frequencies of the two loci were assumed as E[pA0

] � E[pB0
] � 0.5.

The numbers in parentheses are the standard errors of the estimates.
a In all replicates, the model of linkage equilibrium was selected.

ner 2002). However, the result obtained here is natural to 0.01 for 17 subpopulations, with an average of 
0.45
(Peterson et al. 1999, Table 4). Strong linkage disequi-because the sample comprised three different groups:

land-locked, amphidoromous, and captive brood stocks librium was found, which is consistent with the analyses
by Peterson et al. Estimates of FST and � also showed thatin successive breeding for many generations.

Human SNPs: We analyzed SNPs reported by Peter- genetic differentiation of human ALDH2 was large with
a small gene flow.son et al. (1999) in the human aldehyde dehydrogenase

2 gene ALDH2.
We focused on sites 1 and 2 from the six sites reported

DISCUSSION
by Peterson et al. The haplotype frequencies were esti-
mated from the haplotype configurations given in their We have proposed a new method, based on genotype

frequencies of geographical samples, to detect linkageTable 2 as h11 � H1 � H4 � H6 � H8 � H9, h12 � H3,
h21 � H2, and h22 � 0. We estimated parameters using disequilibrium between markers and to simultaneously

estimate genetic differentiation by taking populationEquation 8 from the allele frequencies at the two sites
within ALDH2 genotyped in 756 people from 17 popula- subdivision into account. The method detected linkage

disequilibrium and estimated linkage disequilibrium co-tions across five continents (Table 7). We also estimated
parameters for estimated haplotypes on the basis of efficient and FST correctly.

With a hierarchical model, we estimate the geneticEquation 10 (Tables 7 and 8). The AIC value for the
model of linkage disequilibrium was smaller than that structure in a metapopulation, rather than decompose

a population into a finite number of randomly matingfor linkage equilibrium. Our estimate of r was 
0.60,
whereas the original authors’ estimates varied from 
0.96 subpopulations. The sum of hyperparameters � coincided

TABLE 3

Mean FST estimated from 1000 simulations under various levels of linkage disequilibrium
for different numbers of sampling points

FST � 0.2, E[pA0
] � 0.8, E[pB0

] � 0.8

r K � 10 K � 20 K � 40 K � 100

0 0.180 (0.047) 0.193 (0.036) 0.195 (0.027) 0.198 (0.020)
0.2 0.181 (0.048) 0.193 (0.037) 0.196 (0.028) 0.198 (0.021)
0.4 0.180 (0.049) 0.190 (0.036) 0.195 (0.028) 0.198 (0.022)
0.6 0.183 (0.052) 0.192 (0.039) 0.197 (0.030) 0.198 (0.023)
0.8 0.183 (0.056) 0.191 (0.044) 0.197 (0.034) 0.198 (0.025)

Total sample size was fixed at 1000 individuals. The numbers in parentheses are the standard errors of the
estimates.
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TABLE 4

Performance of the hierarchical model in comparison with classical procedures

FST � 0.2, E[pA0
] � 0.8, E[pB0

] � 0.8

E[D] (r) K � 10 K � 20 K � 40 K � 100

0.0 
0.001 (0.014) 0.000 (0.010) 0.000 (0.008) 0.000 (0.006)
(0.0) 
0.000 (0.017) 0.001 (0.012) 0.001 (0.009) 0.003 (0.006)


0.001 (0.025) 0.000 (0.018) 0.000 (0.014) 0.000 (0.010)
0.026 0.025 (0.016) 0.025 (0.012) 0.025 (0.009) 0.026 (0.007)
(0.2) 0.042 (0.016) 0.043 (0.075) 0.042 (0.008) 0.042 (0.006)

0.036 (0.026) 0.033 (0.020) 0.033 (0.015) 0.034 (0.011)
0.051 0.051 (0.014) 0.051 (0.014) 0.052 (0.011) 0.051 (0.007)
(0.4) 0.059 (0.014) 0.059 (0.014) 0.058 (0.010) 0.056 (0.006)

0.066 (0.022) 0.066 (0.022) 0.067 (0.017) 0.066 (0.011)
0.077 0.077 (0.021) 0.076 (0.016) 0.077 (0.011) 0.077 (0.008)
(0.6) 0.080 (0.022) 0.078 (0.017) 0.077 (0.012) 0.073 (0.007)

0.096 (0.032) 0.096 (0.024) 0.098 (0.017) 0.097 (0.011)
0.102 0.102 (0.023) 0.102 (0.016) 0.102 (0.012) 0.102 (0.009)
(0.8) 0.102 (0.025) 0.101 (0.018) 0.100 (0.012) 0.094 (0. 008)

0.125 (0.033) 0.127 (0.024) 0.129 (0.016) 0.128 (0.012)

Total sample size was fixed at 1000 individuals. The numbers are means estimated from 1000 simulations
with standard errors in parentheses. Lines are arranged in threes as follows: top (E[D]), mean of the linkage
correlation coefficient at each deme estimated by the hierarchical model; middle (DMEAN), sample mean of the
linkage disequilibrium coefficient in each deme; bottom (DPOOL), estimates of the linkage disequilibrium
coefficient based on pooled genotypes over demes.

with the rate of gene flow, and FST was written by �. We territory. Even for marine fish, which can disperse widely
because of the lack of barriers in oceans, the stock con-also showed by Equation 17 that the magnitude of link-

age disequilibrium depends on that of genetic differen- cept is popular in fishery resource management (Waples
1998). In breeding seasons, fish species generally gathertiation. Our model assumes metapopulations, which in-

cludes Wright’s island model as a special case (Wright to spawning grounds where they mate randomly. As a
result of such breeding patterns, the assumption of1940); hence the relationship between � and FST can be

applied for these population models. The metapopula- Hardy-Weinberg equilibrium may be valid in each local-
ity. Furthermore, in humans, whose population struc-tion concept fits with ecology of wildlife that have lim-

ited movement ability and may mate randomly in their tures may be more complex than those of wildlife, it has

TABLE 5

Allozyme composite genotype frequencies for seven samples of the ayu from Japan

Sampling location

Genotypes GM-1a GM-2a NGa GFb SGc HSa OTa

A0A0B0B0 1 1 65 32 4 3 79
A0A0B0B1 0 2 25 8 7 2 0
A0A0B1B1 0 0 1 2 3 0 0
A0A1B0B0 9 9 7 41 14 30 30
A0A1B0B1 17 18 2 5 27 23 0
A0A1B1B1 9 7 0 2 16 5 0
A1A1B0B0 18 17 0 7 5 19 2
A1A1B0B1 35 36 0 3 18 16 0
A1A1B1B1 11 10 0 1 6 2 0
Total 100 100 100 100 100 100 111

GM, Gunma (26); NG, Niigata (7); GF, Gifu; SG, Shiga; HS, Hiroshima (21); and OT, Oita (11) Prefecture.
Numbers in parentheses are the numbers of generations in captive breeding.

a Captive brood stocks.
b Wild (amphidoromous type).
c Wild (land-locked type).
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TABLE 8TABLE 6

Estimated linkage correlation coefficient between Estimated worldwide linkage correlation coefficient between
sites 1 and 2 in the human ALDH2 gene and geneticGpi and Mpi loci and genetic differentiation

among seven samples of ayu differentiation among 17 human populations

ModelsModels

Linkage LinkageLinkage Linkage
equilibrium disequilibrium equilibrium disequilibrium

LLa 
1444.79 
1247.85LLa 
1073.25 
1093.89
AIC 2152.50 2195.78 AIC 2895.58 2503.70

r — 
0.601r — 0.024
FST 0.280 [0.168, 0.455] 0.209 FST 0.204 0.234 [0.166, 0.295]

� 3.908 3.267 [2.390, 5.024]�b 2.576 [1.198, 4.952] 3.787
�2c 29.164 [17.920, 46.825] 22.039 �2 18.917 21.608 [15.598, 26.943]

a Maximum log-likelihood without the multinomial con-a Maximum log likelihood without the multinomial constant
term C � in Equations 8 and 12. stant term C in Equations 8 and 10.

b Rate of gene flow.
c Dispersion parameter.

this treatment was appropriate. Consider a simple case
of three haplotypes with sample counts n1, n2, and n3,

been reported that geographic clusters often correspond where n3 � 0. The marginal-likelihood function for a
closely to predefined regional or population groups or subpopulation is a Dirichlet-multinomial distribution:
collections of geographically similar populations (Rosen-

L1(�1, �2, �3 |n1, n2, n3) �
�(�1 � �2 � �3)

�(�1 � �2 � �3 � n1 � n2)
�(�1 � n1)

�(�1)
�(�2 � n2)

�(�2)
.berg et al. 2002). In actual populations, various levels of

subdivision may exist (Excoffier 2001), and the num- (19)
ber of demes should be very large with continuous sub-

Using the relation of �(n � 1) � n�(n), the first termdivision. In ecological studies, sampling points may in-
of this equation can be written ascrease year by year, which increases the accuracy of our

method. �(�1 � �2 � �3)
�(�1 � �2 � �3)(�1 � �2 � �3 � 1) . . . (�1 � �2 � �3 � n1 � n2 
 1)Estimates of hyperparameters were based only on fre-

quencies counted in the samples, and alleles that did not � {(�1 � �2 � �3 � 1) . . . (�1 � �2 � �3 � n1 � n2 
 1)}
1.

(20)appear were assigned frequency 0. Here, we consider if

TABLE 7

Haplotype frequencies at two sites (sites 1 and 2) in the human ALDH2 gene among 17 human populations,
calculated from Table 2 of Peterson et al. (1999)

Alleles Haplotypes

Populations Site 1 Site 2 h00 h01 h10 h11 2n

Biaka 10 23 69 23 10 0 102
Cambodian 7 9 33 8 7 0 48
Chinese 10 16 68 16 10 0 94
Japanese 16 10 72 10 16 0 98
S. Korean 13 14 53 14 13 0 80
Taiwanese 10 20 55 21 10 0 86
Black Thai 14 23 63 23 14 0 100
CEPH 49 14 1 14 49 0 64
Finn 65 16 1 16 65 0 82
Swede 76 13 1 13 76 0 90
Cheyenne 66 9 27 9 66 0 102
Mayan 51 11 38 11 51 0 100
Navajo 75 7 10 7 75 0 92
Pima 50 21 19 21 50 0 90
Karitiana 56 19 23 19 56 0 98
R. Surui 83 1 4 1 83 0 88
Ticuna 66 15 22 23 53 0 98
World 717 241 559 249 704 0 1512
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where lG is the number of diplotypes consistent with observed composite genotypes can be written as the sum

of the multinomial distribution for haplotype frequen-the genotype G. The likelihood function for composite
cies. From above L1, the marginal-likelihood functiongenotypes is then written by using diplotype probabili-

ties as is obtained as
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