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ABSTRACT
We present a one-locus model that breaks two symmetries of Mendelian genetics. Whereas symmetry

of transmission is breached by allowing sex-specific segregation distortion, symmetry of expression is
breached by allowing genomic imprinting. Simple conditions for the existence of at least one polymorphic
stable equilibrium are provided. In general, population mean fitness is not maximized at polymorphic
equilibria. However, mean fitness at a polymorphic equilibrium with segregation distortion may be higher
than mean fitness at the corresponding equilibrium with Mendelian segregation if one (or both) of the
heterozygote classes has higher fitness than both homozygote classes. In this case, mean fitness is maximized
by complete, but opposite, drive in the two sexes. We undertook an extensive numerical analysis of the
parameter space, finding, for the first time in this class of models, parameter sets yielding two stable
polymorphic equilibria. Multiple equilibria exist both with and without genomic imprinting, although
they occurred in a greater proportion of parameter sets with genomic imprinting.

THE two alleles at a locus of a diploid individual permanent translocation heterozygosity (e.g., Oenothera
spp.) all individuals are heterozygous for two chromo-are equally represented in its gametes. Segregation

distorters, however, violate fair meiosis by ensuring their some complexes; one complex is transmitted to all func-
tional microspores, and the other to all functional mega-own presence in �50% of the functional gametes of

heterozygotes (Crow 1979). Meiotic drive, in its ex- spores (Holsinger and Ellstrand 1984). In addition
to the evidence provided, the fundamental differencestended sense, refers to “any alteration of meiosis or

gametogenesis that results in preferential transmission in the mechanisms of male and female meiosis make
it highly unlikely that any genetic agent would causeof a particular allele or chromosome” (Ganetzky 1999,

p. 3). A segregation distorter that reduces the viability identical segregation distortion in the two sexes.
Putting mathematical tractability before empirical evi-of heterozygotes can persist in a population as long

dence, models of meiotic drive frequently assumed iden-as its transmission advantage outweighs the decline in
tical segregation ratios in males and females (Feldmanviability. Such a distorter reduces the fitness of most of
and Otto 1991). More realistic ones allowed sex-limitedthe genes with which it is temporarily associated because
segregation distortion, but often imposed significantunlinked genes gain none of the benefits of segregation
constraints on the viability parameters. Bruck (1957)distortion but experience the full viability cost. Thus,
introduced the first of these models. Segregation distor-segregation distorters have been considered paradig-
tion was restricted to males, whereas females showedmatic examples of ultraselfish genes (Crow 1988).
Mendelian segregation. Heterozygotes had the same via-All known systems of meiotic drive involve segregation
bility as homozygotes for the nondriving allele whereasratios that differ between the sexes. The mouse t-haplo-
homozygotes for the driving allele were lethal. Dunntype and the fruit fly SD system are examples of meiotic
and Levene (1961) elaborated a similar model in whichdrive restricted to male meiosis. These haplotypes are
viability selection was replaced by fertility selection intransmitted to �90% of the functional sperm of hetero-
males. Lewontin (1968) combined these features inzygous males but to only half of the ova of heterozygous
a model with male-limited segregation distortion andfemales (Lyttle 1991). Meiotic drive may also be lim-
fertility selection, but allowing viability selection in bothited to female meiosis: mouse In haplotype is present
sexes. Homozygotes for the driving allele were sterile.in 80–90% of the ova of heterozygous females (Agulnik
These early models were tailored to explain a classicet al. 1990, 1993) while maize Ab10-knob is present in
example of meiotic drive, the mouse t-haplotype system.70% of the functional megaspores of heterozygous

Wright (1969) and Hartl (1970) formulated a gen-plants (Rhoades 1942); both are transmitted to half of
eral model of segregation distortion with identical viabil-the gametes of heterozygous males. Finally, in systems of
ity parameters in males and females but, otherwise, un-
constrained. It was Hartl (1970) who provided an
analytical and numerical analysis of the equilibria, find-1Corresponding author: St John’s College, Oxford University, Oxford,

OX1 3JP, United Kingdom. E-mail: francisco.ubeda@sjc.ox.ac.uk ing examples of parameter sets with two polymorphic
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equilibria (one stable). In his analysis, however, Hartl tence of two stable polymorphic equilibria, similar to
what occurs in selection models with differential viabilitydid not find parameter sets with three polymorphic

equilibria (two stable), nor did he consider segregation between the sexes (Owen 1953).
schemes like those in permanent translocation heterozy-
gotes. Another assumption of Hartl’s (1970) model

MODELwas that of identical viability of reciprocal heterozygotes.
Symmetric expression is a classic assumption of popula- Consider an infinite, panmictic diploid population.
tion genetics models that has started to be relaxed after Let the viability of genotypes A1A1, A1A2, A2A1, and A2A2

evidence of genomic imprinting was found. be v11, v12, v21, and v22, where the autosomal allele written
Genomic imprinting refers to a differential expres- first has paternal origin while the one written second

sion of genes depending on their parental origin (Reik has maternal origin. Let the segregation ratio of A1 be
and Walter 2001). Consider an imprinted locus in k in male meiosis and � in female meiosis while the
which the expression of genes with paternal origin is corresponding ratios for A2 are 1 � k and 1 � � (0 �
upregulated while the expression of genes with maternal k, � � 1). Values of k and � less than one-half can be
origin is downregulated. Thus, the expression of A rela- interpreted as segregation distortion in favor of A2 or
tive to B is greater in genotype AB than in genotype negative segregation distortion of A1 (Hiraizumi 1989,
BA (where the allele with paternal origin is mentioned 1990).
first). Such differential expression can cause reciprocal Let the frequency of gametes A1, A2 be x1, x2 in sperm
heterozygotes to have distinguishable phenotypes and and y1, y2 in eggs (0 � xi, yi � 1, and �i xi � �i yi � 1). The
different viabilities (Pearce and Spencer 1992). Most interaction between viability selection and segregation
theoretical work on the population genetics of genomic distortion determines the frequency of allele A1 one
imprinting has been undertaken by Spencer and col- generation later,
leagues (see Spencer 2000 for a review). Their models

wx�1 � v11x1y1 � k(v12x1y2 � v21x2y1) (1a)have considered the effects of selection at autosomal
loci (Pearce and Spencer 1992) and the interaction wy�1 � v11x1y1 � �(v12x1y2 � v21x2y1) (1b)
between mutation and selection (Spencer 1997). The

w � v11x1y1 � v12x1y2 � v21x2y1 � v22x2y2, (2)interaction between genomic imprinting and the segre-
gation distortion, however, has yet to be considered. where the normalizing factor w is known as the mean

In this article, we extend Wright’s (1969) model by fitness of the population.
assigning separate viabilities to reciprocal heterozy- Subtracting (1b) from (1a) yields: w(x�1 � y�1) � (k �
gotes, as might occur at an imprinted locus. This exten- �) (v12x1y2 � v21x2y1). After one generation, x1 � y1 takes
sion is justified by Pearce and Spencer’s (1992) conclu- the same sign as k � �. That is, A1 will be more frequent
sion that systems with genomic imprinting may show in sperm than in eggs if segregation favors A1 more
qualitatively different behavior from otherwise identical strongly in spermatogenesis than in oogenesis, and as
systems without imprinting. Its biological motivation, a consequence A1A2 heterozygotes will be more frequent
however, lies in the work of Naumova et al. (2001) on than A2A1 heterozygotes.
transmission ratio distortion at imprinted loci in the The change in allele frequencies from one generation
human genome. This work finds evidence of a deviation to the next, i.e., x�1 � x1 � �x1 and y�1 � y1 � �y1, are
from Mendelian transmission of paternal and maternal
imprinted regions linked to embryo viability. Thus, from w�x1 �

�w
�x1

x1x2 � (1 � k)v12x1y2 � kv21x2y1 (3a)
both theoretical and empirical perspectives, the exten-
sion of Hartl’s (1970) model to allow the interaction

w�y1 �
�w
�y1

y1y2 � (1 � �)v21y1x2 � �v12y2x1. (3b)of segregation distortion and genomic imprinting seems
justified.

Given that 0 � x1, x2 � 1, and x2 � 1 � x1, variable x �If reciprocal heterozygotes have the same viability,
x1 alone characterizes the frequency of alleles A1 and A2our model reduces to Hartl’s (1970). We complete
in sperm. Similarly, variable y � y1 alone characterizeshis analysis, however, by explicitly considering perfect
the frequency of alleles A1 and A2 in eggs. Henceforth,transmission of one allele in one sex and the other allele
we eliminate the subscripts in variables xi and yi. Anyin the opposite sex as occurs in Oenothera spp. or Isotoma
point (x, y) in the unit square 	 describes the state ofpetraea (Holsinger and Ellstrand 1984). Such a segre-
our system without losing information. 	 is the regiongation scheme is relevant not only because it is exhibited
of space with biological meaning.in nature by permanent translocation heterozygotes but

also because it maximizes the population mean fitness
of our model given heterozygote advantage. In addition,

EQUILIBRIA
we carry out a thorough exploration of the parameter
space in search of parameter sets yielding three poly- An equilibrium (x̂, ŷ) is characterized by the lack of

change of allele frequency over time, i.e., �x � 0 andmorphic equilibria. The aim is to investigate the exis-
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�y � 0. We use the label trivial to designate an equilib- libria (0 and 1) but no more than three nontrivial equi-
libria (φ1, φ2, and φ3). The algebraic expressions of rootsrium in which either A1 or A2 is absent, while nontrivial

refers to all other cases. in p(x̂) � 0 are sufficiently complicated as to convey
little biological insight. Their existence depends notClose form solution: Consider the case �x � 0. From

(3a), ŷ can be written as a function of x̂, only on the sign of � but also on the biological constraint
that requires φ to belong to 	.

Existence and stability: The instabilities of both trivialŷ � �x̂
a2x̂ � a1

a5x̂ 2 � a4x̂ � a3

, (4)
equilibria are sufficient and necessary conditions to
have precisely one stable polymorphic equilibrium orwhere a1 � kv12 � v22, a2 � v22 � v12, a3 � kv21, a4 � v11 �
three polymorphic equilibria (two of them stable andv22 � kv12 � (1 � k)v21, and a5 � v12 � v21 � v11 � v22.
the other unstable; Prout 1968). This is true only if weConsider the case �y � 0. From (3b), x̂ can be written
assume, as we do, that there are no stable cycles in ouras a function of ŷ,
model (Cannings 1969). Ruling out the possibility of
having stable cycles is beyond the scope of this article.x̂ � �ŷ

b2ŷ � b1

b5ŷ 2 � b4ŷ � b3

, (5)
If one of the trivial equilibria is stable and the other

unstable, system (3) may have zero or two nontrivialwhere b1 � �v21 � v22, b2 � v22 � v21, b3 � �v12, b4 � v11 �
equilibria (one of them stable and the other unstable).v22 � (1 � �)v12 � �v21, and b5 � a5.
If both trivial equilibria are stable, system (3) may haveSubstituting (4) into (5) yields a quintic polynomial
one unstable nontrivial equilibrium or three equilibriawith one root at x̂ � 0. This root corresponds to trivial
(one of them stable and the other two unstable). There-equilibrium (0, 0) � 0,
fore, the instability of 0 and 1 is a sufficient but not

x̂[c4x̂ 4 � c3x̂ 3 � c2x̂ 2 � c1x̂ � c0] � 0, (6) necessary condition for the existence of at least one
stable nontrivial equilibrium.where c0 � a2

3b3 � a1a3b1, c1 � a2
1b2 � 2a3a4b3 � a2a3b1 �

The condition for instability of 0 (see appendix a)a1a4b1 � a1a3b4, c2 � a2
1a5 � a2

4b3 � 2a1a2b2 � 2a3a5b3 �
can be written asa2a4b1 � a1a5b1 � a2a3b4 � a1a4b4, c3 � a2

2b2 � 2a1a2a5 �
2a4a5b3 � a2a5b1 � a2a4b4 � a1a5b4, and c4 � a 2

2a5 � a 2
5b3 � �kv12 �

1
2

v22� � ��v21 �
1
2

v22� � 0. (11)a2a5b4.
Root x̂ � 1, corresponding to trivial equilibrium

(1, 1) � 1, can be factored out of the last equation, This has a simple biological interpretation. In the
vicinity of 0 allele A1 is rare. On one hand, A1 will bex̂(1 � x̂)[d3x̂ 3 � d2x̂ 2 � d1x̂ � d0] � 0, (7)
present mostly in heterozygotes and will be transmitted

where d0 � c1 � c2 � c3 � c4, d1 � c2 � c3 � c4, d2 � c3 � to a fraction k of its bearers’ sperm and a fraction � of its
c4, and d3 � c4. bearers’ eggs. A1 sperm will fertilize A2 eggs, producing

Dividing the previous equation by d3 yields offspring with viability v12, whereas A1 eggs will be fertil-
ized by A2 sperm, producing offspring with viability v21.x̂(1 � x̂)[x̂ 3 � e 2 x̂ 2 � e1x̂ � e0] � 0, (8)
On the other hand, A2 will be present mostly in homozy-

where e2 � d2/d3, e1 � d1/d3, and e0 � d0/d3. gotes and a particular allele will be transmitted to half
The cubic polynomial in (8), p(x), contributes up to of its bearers’ gametes, producing offspring with viability

three equilibria, φ1, φ2, and φ3, that might be nontrivial. v22. Thus, the two terms within brackets in (11) refer to
The close form of the roots in p(x̂ ) � 0 can be written the relative fitness advantage of A1 over A2 via sperm
using Cardano’s formulas (Weisstein 2002), and via eggs, respectively. A1 can invade a gene pool

near fixation for A2 if the sum of these terms is positive.
x̂ φ1

� �
1
3

e 2 � r1 � r2 (9a) Similarly, the condition for instability of 1 can be
written as

x̂ φ2
� �

1
3

e 2 �
1
2
(r1 � r2) �

1
2

i √3(r1 � r2) (9b) �(1 � k)v21 �
1
2
v11� � �(1 � �)v12 �

1
2
v11� � 0. (12)

x̂ φ3
� �

1
3

e 2 �
1
2
(r1 � r2) �

1
2

i √3(r1 � r2), (9c) In the vicinity of 1 allele A2 is rare. On one hand,
A2 will be present mostly in heterozygotes and will be
transmitted to a fraction (1 � k) of its bearers’ spermwhere r1 �

3
√t � √� and r2 �

3
√t � √�.

and a fraction (1 � �) of its bearers’ eggs. A2 spermVariable � represents the discriminant of the cubic
polynomial, will fertilize A1 eggs, producing offspring with viability

v21, whereas A2 eggs will be fertilized by A1 sperm, produc-
� � s 3 � t 2, (10)

ing offspring with viability v12. On the other hand, A1

will be present mostly in homozygotes and a particularwhere s � 1⁄9(3e 1 � e 2
2) and t � 1⁄54(9e1e2 � 27e0 � 2e 3

2).
To summarize, system (3) has at least two trivial equi- allele will be transmitted to half of its bearers’ gametes,
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TABLE 1

Summary of conditions for existence and stability of at least one polymorphic equilibrium

v12 � v21 v12 � v21

Mendelian segregation v12 � v22
1⁄2(v12 � v21) � v22

v12 � v11
1⁄2(v12 � v21) � v11

v11 � v22 � 2v12 � 0 v11 � v22 � v12 � v21 � 0
Segregation distortion

k � � 2kv12 � v22 k(v12 � v21) � v22

2(1 � k)v12 � v11 (1 � k) (v12 � v21) � v11

v11 � v22 � 2v12 � 0 v11 � v22 � v12 � v21 � 0

k � � (k � �)v12 � v22 kv12 � �v21 � v22

(2 � k � �)v12 � v11 (1 � �)v12 � (1 � k)v21 � v11

v11 � v22 � 2v12 � 0 v11 � v22 � v12 � v21 � (k � �) (v12 � v21)

In each of the models considered, the conditions for instability of 0 and 1 are provided first. The last
condition results from adding up the previous two and it is a necessary condition for their satisfaction.

producing offspring with viability v11. Thus, the two the width of the (k, �) region in which there is at least
one polymorphic equilibrium is independent of the sexterms within brackets in (12) refer to the relative fitness

advantage of A2 over A1 via sperm and via eggs, respec- bias in segregation ratios, k � � (see Figure 1a).
Further comparison reveals that a necessary conditiontively. A2 can invade a gene pool near fixation for A1 if

the sum of these terms is positive. for the existence and stability of a polymorphic equilib-
rium encompassing all models in Table 1, except ours,The equivalent set of conditions in models in which

either segregation distortion or genomic imprinting is is that the average viability of heterozygotes has to be
greater than the average viability of homozygotes. Thismissing is summarized in Table 1. In particular, the

comparison between our model and a model without requirement is further relaxed in our model, which is
replaced byimprinting, but otherwise equal, reveals that in the latter

Figure 1.—Comparison of exis-
tence and stability conditions. We
consider four viability sets: (1.6, 2.6,
2.6, 1.6), (1.6, 1.5, 1.5, 1.6), (1.6, 2,
3.2, 1.6), and (1.6, 1, 2, 1.6). These
are arranged as a table; columns
show absence or presence of geno-
mic imprinting while rows show av-
erage heterozygote advantage (a)
and average heterozygote disadvan-
tage (b). To facilitate the compari-
son, the viability of heterozygotes in
the absence of imprinting corre-
sponds to the average viability of
heterozygotes in its presence. To
further simplify, the viability of ho-
mozygotes is the same within and
across examples. The shaded area
represents the region of the param-
eter space (k, �) in which existence
and stability conditions are satis-
fied, thus yielding at least one stable
equilibrium.
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Figure 2.—Comparison of population mean fitness. Consider the viability set (0.75, 1, 1.5, 0.5). With Mendelian segregation
and sex-independent segregation distortion (a) the frequency of alleles in males and females is the same (z), and the population
mean fitness (wz) is a function of one variable. The stable equilibrium with Mendelian segregation, M, maximizes wz but the
introduction of sex-independent segregation distortion (kn � �n � 0.6) results in a stable equilibrium, Dn, with lower w value.
This is true for any kn value. With sex-specific segregation distortion (b) the frequency of alleles can differ in males (x) and
females (y), and w is a function of two variables. To facilitate the comparison we consider a segregation scheme (k s, � s) such
that 1⁄2(k s � � s ) � k n . In particular, segregation scheme (0.3, 0.9) results in a stable equilibrium, Ds, with a w value higher than
the one corresponding to M. This is true for some (k s, � s) only. Solid circles indicate locally stable equilibria; open circles indicate
unstable equilibria. Solid lines represent allele frequency trajectories with arrows indicating the direction of temporal change.
Dashed lines represent population mean fitness values.

(k � 1 � �)v12 � (1 � k � �)v21 � v11 � v22. (13) where wz � v11z2 � (v12 � v21)z(1 � z) � v22(1 � z)2.
A polymorphic equilibrium (�z � 0 with z � 0, 1) corre-

Figure 1b illustrates this singularity of our model.
sponds to a critical point of the mean fitness function

There, we provide a particular set of viabilities (v11, v12, (dwz/dz � 0). Furthermore, this equilibrium is stable
v21, v22) such that v12 � v21 � v11 � v22. In the absence

if the critical point satisfies the conditions for a maxi-
of imprinting, v12 � v21 � a, the set of conditions for

mum, that is, 1⁄2(v12 � v21) � v11, v22 (see Figure 2a).
existence and stability cannot be satisfied for any (k, �)

Sex-independent segregation distortion (k � �), how-
while in the presence of imprinting with 1⁄2(v12 � v21) �

ever, sends the equilibrium away from the mean fitness
a the equivalent set of conditions is satisfied by some

maximum (see Figure 2a; Eshel 1985). System (3) re-
(k, �).

duces to
The special cases in which one or both of the exis-

tence and stability conditions are met with strict equality
wz �z � �12

dwz

dz
� �12 � k�(v12 � v21)� z(1 � z). (15)are considered in appendix a.

Population mean fitness: Another singularity of our
Term (1⁄2 � k)(v12 � v21) prevents the equivalencemodel lies in the value taken by the population mean

between polymorphic equilibrium and critical point.fitness at equilibrium. While it is a maximum with Men-
Sex-specific segregation distortion may or may notdelian segregation, the introduction of sex-independent

result in an increase of the population mean fitness atsegregation distortion results in its reduction. However,
equilibrium compared to its corresponding value givensex-specific segregation distortion may increase the
Mendelian segregation (see Figure 2b). The equiva-mean fitness at equilibrium compared to the corre-
lence between polymorphic equilibrium and criticalsponding value with Mendelian segregation.
point is possible as long as the necessary condition k �The allele frequencies in eggs and sperm given Men-
� � 1 is satisfied. All critical points, however, are saddledelian segregation (k � � � 1⁄2) are the same (x � y �
points (see appendix b). The population mean fitnessz) after one generation. System (3) reduces to
maxima are confined to the corners of 	; in any of
these corners all individuals carry and give birth to thewz �z �

1
2

dwz

dz
z(1 � z), (14)

highest viability genotype.
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TABLE 2

Classification of parameter sets according to the number of nontrivial equilibria they produce and their stability

No. of polymorphic equilibria

0 1 0 1 2 3 Total

v12 � v21

� � — 1,076,203 — 12 1,706,215
— (0.2510) — (3 
 10�6) (0.2510)

� � 1,863,947 — 4,749 — 1,868,696
� � (0.4348) — (0.0011) — (0.4359)
� � — 1,314,369 — 0 1,314,369

— (0.3066) — (0.0000) (0.3066)

Indeterminate 26,957 634 4 0 27,595
(0.0063) (0.0001) (10�6) (0.0000) (0.0064)

Total 1,890,904 2,391,206 4,753 12 4,286,875
(0.4411) (0.5578) (0.0011) (3 
10�6)

v12 � v21

� � — 18,184,520 — 1,192 18,185,712
— (0.2357) — (1.5 
 10�6) (0.2357)

� � 38,445,946 — 184,966 — 38,630,912
� � (0.4982) — (0.0024) — (0.5006)
� � — 20,197,168 — 0 20,197,168

— (0.2617) — (0.0000) (0.2617)

Indeterminate 137,620 12,053 285 0 149,958
(0.0018) (0.0002) (4 
 10�6) (0.0000) (0.0020)

Total 38,583,566 38,393,741 185,251 1,192 77,163,750
(0.5000) (0.4976) (0.0024) (1.5 
 10�6)

The parameter sets investigated were all combinations of the viabilities vij in the range (0, 2) at intervals of
0.1 and segregation ratios (k, �) in the range (0, 1) at intervals of 0.04. Sets are classified by the number of
nontrivial equilibria and the stability (�) or not (�) of the trivial equilibria (0 and 1). First-order conditions,
however, fail to characterize the stability of the trivial equilibria for those sets labeled “indeterminate.” Each
cell contains the number of parameter sets observed; its proportion with respect to the total is given in
parentheses. Em dashes refer to impossible cases.

Polymorphic corners, i.e., (0, 1) and (1, 0), are unat- of all combinations of values in v taken at intervals 0.1
within the range [0.1, 1.9] and values in s taken attainable with sex-independent segregation ratios, Men-

delian or not. However, a population fixed for heterozy- intervals 0.04 within the range [0.02, 0.98]. Special cases
(0, 1) and (1, 0) were considered above and in appen-gote A1A2 results from the segregation scheme (k, �) �

(1, 0). This equilibrium is stable and a local w maxi- dix b.
This analysis (see Table 2 for results) shows that withmum when v12 � v11, v22. Similarly, a population fixed for

heterozygote A2A1 results from the segregation scheme imprinting, 50% of all {v, s} sets produce only trivial
equilibria while the other 50% bear at least one poly-(k, �) � (0, 1). This equilibrium is stable and a local w

maximum when v21 � v11, v22 (see appendix c). morphic equilibrium (48% of the polymorphic equilib-
ria are stable). Without imprinting, 44% of all {v, s} sets
produce only trivial equilibria while the remaining 56%

NUMERICAL RESULTS
bear at least one polymorphic equilibrium (50% of the
polymorphic equilibria are stable).The complex algebraic expression of φi requires the

use of numerical methods to identify sets of parameter Multiple equilibria: Our numerical analysis confirmed
the existence of parameter values yielding two polymor-values v � (v11, v12, v21, v22) and s � (k, �) yielding

multiple polymorphic equilibria. Describing the param- phic equilibria (Hartl 1970) and found, for the first
time, parameter values yielding three polymorphic equi-eter space in terms of number of polymorphic equilibria

produced is the purpose of this section. libria. The frequency of the former is small (�2.4 in
103) while the frequency of the latter is very small (�1.5Each {v, s} depicts a specific instance of (1) that might

have up to three polymorphic equilibria. We have calcu- in 105). Multiple polymorphic equilibria were found
both with and without imprinting. The fraction of suchlated the equilibria for �81 million {v, s} sets consisting
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Figure 3.—Multiple equilibria in parameter subspace (k, �). We separate parameter sets yielding two equilibria from those
yielding three equilibria in columns. Also we separate parameter sets with genomic imprinting from parameter sets without
genomic imprinting in rows. The area of each square is proportional to the number of parameter sets yielding multiple equilibria
for a pair (k, �). Given the difference in magnitude between two and three equilibria, the scale used for the latter is 10 times
larger than the one used for the former.

cases, however, was substantially greater in the presence of Mendelian segregation in one sex but perfect drive
in the other.of imprinting. In particular, the fraction of cases produc-

ing two equilibria was increased by a factor of two while The lack of multiple equilibria with equal segregation
distortion in the two sexes is a well-known result. Thethe fraction producing three equilibria was increased

by a factor of five. lack of multiple equilibria when drive in one sex is
perfectly compensated by drag in the opposite sex is aIn an attempt to characterize the parameter space

where there are multiple equilibria, the number of v novel observation. The detail of our numerical analysis
provides strong evidence for the validity of this observa-sets yielding two or three equilibria was plotted against

s (see Figure 3). The parameter subspace {(k, �)|0 � tion but we have no mathematical proof. It is also inter-
esting that the probability of having multiple equilibriak, � � 1} has two diagonals: the main diagonal (k � �)

and the secondary diagonal (k � � � 1), which are increases with the distortion strength of one allele in
one sex while the other sex shows Mendelian segrega-axes of mirror symmetry. The main diagonal reflects

interchangeability of the sexes while the secondary one tion or slight segregation distortion against the same
allele.reflects interchangeability of alleles A1 and A2. The most

prominent features of these plots are the absence of Three equilibria: In this section we focus on parame-
ter values yielding three equilibria. Table 3 presentsmultiple equilibria on the diagonals and a higher proba-

bility of observing multiple equilibria in the proximity some examples while Figures 4 and 5 make a detailed
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TABLE 3

Examples of {v, s} sets yielding three equilibria

Viability: Segregation: Equilibria

(v11, v12, v21, v22) (k, �) (x1, y1) (x2, y2) (x3, y3)

(k � �)(v12 � v21)
�0 (0.4, 1.0, 1.3, 1.6) (0.98, 0.50) (0.9353, 0.6629) (0.8488, 0.5492) (0.4280, 0.2342)

(0.5, 1.5, 0.7, 1.0) (0.22, 0.98) (0.5075, 0.9477) (0.2603, 0.7341) (0.1326, 0.4688)
(0.6, 0.9, 1.5, 1.4) (0.94, 0.38) (0.9324, 0.6796) (0.6432, 0.3351) (0.4497, 0.2111)
(0.6, 1.0, 1.7, 1.7) (0.94, 0.46) (0.9261, 0.7074) (0.8867, 0.6365) (0.2873, 0.1495)
(0.7, 1.5, 1.0, 1.6) (0.50, 0.86) (0.7870, 0.9152) (0.6154, 0.8000) (0.2049, 0.3278)
(0.7, 1.9, 1.3, 1.9) (0.34, 0.98) (0.5427, 0.9274) (0.3548, 0.7507) (0.1301, 0.3401)
(0.8, 1.8, 1.2, 1.9) (0.46, 0.90) (0.7880, 0.9397) (0.4216, 0.6620) (0.1245, 0.2308)
(1.0, 1.1, 0.7, 0.4) (0.02, 0.70) (0.5132, 0.8223) (0.2000, 0.6364) (0.1212, 0.5590)

�0 (0.2, 1.1, 1.1, 1.9) (0.78, 0.98) (0.8252, 0.9398) (0.7592, 0.8869) (0.5601, 0.6812)
(1.4, 0.9, 0.9, 0.3) (0.02, 0.42) (0.7266, 0.8334) (0.5610, 0.7259) (0.0300, 0.2194)
(0.3, 1.1, 1.1, 1.8) (0.66, 0.98) (0.8154, 0.9679) (0.5476, 0.7438) (0.0832, 0.1226)

�0 (1.5, 1.0, 0.9, 0.3) (0.42, 0.02) (0.9488, 0.9142) (0.5200, 0.2769) (0.3093, 0.0713)

These examples are classified according to the sign of the product (k � �)(v12 � v21). In the absence of imprinting the product
is null.

exploration of two of them. Figure 4 provides a large- the continuum {0.4 � k � 0.6} 
 {0 � � � 0.1}. Equation
p v(x̂) � 0 [where the subscript denotes that p(x̂) hasscale picture of equilibria considering the whole range

of values that k may take. Figures 5 and 6, however, zoom been evaluated in v] implicitly defines a surface for the
equilibrium frequency of A1 as a function of k and �.in the window of (k, �) values where three polymorphic

equilibria exist. This surface is known in nonlinear dynamics as the
catastrophe surface (Poston and Stewart 1978). InFigure 4 considers v � (0.3, 1.7, 0.5, 1) and explores

the continuum 0 � k � 1 in the proximity of � � 0.98. the region studied, the surface folds over itself, allowing
a vertical line to intersect it at three points. Points onStarting with � � 0.7, for k � 0.5 fixation of A2 is the

only stable equilibrium. As the value of k decreases past the upper and lower sheets of the pleat are locally stable
equilibria whereas points on the middle sheet are locally0.5, a polymorphic equilibrium steals the stability from

fixation of A2. This polymorphic equilibrium vanishes unstable (see Figure 5a).
The projection of the fold onto the (k, �) plane isfor a further decrease in k past 0.3. Past 0.11 two imagi-

nary roots become real. For k � 0.11 fixation of A1 and known as the cusp curve (Poston and Stewart 1978).
Sudden changes in the number of equilibria, from onea polymorphic equilibrium are simultaneously locally

stable, whereas fixation of A2 and a second polymorphic to three and back again, take place at this curve. The
cusp curve has two branches diverging from a point (seeequilibrium are both unstable (see Figure 4a).

With � � 0.7 we get a maximum of two simultaneous Figure 5b); at this point all three equilibria coincide
while on either of the branches two of the three equilib-polymorphic equilibria. An increase in � to 0.9 keeps a

similar scenario but brings about three simultaneous rium frequencies coincide because � v � 0. Between the
branches, � v � 0 and p v(x̂) has three real roots whilepolymorphic equilibria as inflection points I1 and I2

come closer. In window 0.36 � k � 0.41 two polymor- outside the branches � v � 0 and p v(x̂) has a single real
root.phic equilibria are simultaneously locally stable, whereas

fixation of A1, A2, and another polymorphic equilibrium On one hand, if the curve resulting from taking a
vertical slice of the catastrophe surface at � � 0.03 isare all unstable. Before and after this window, there is

a single polymorphic stable equilibrium (see Figure 4b). walked from right to left, there is a gradual decrease in
the value of x̂ until k � 0.53, beyond which point x̂Finally, with perfect drive in oogenesis inflection points

I1 and I2 merge. In window 0.29 � k � 0.38 there are suddenly drops to a lower value and so does w (see
Figure 6). This sudden change in the value of x̂ is thethree polymorphic equilibria, two of them simultane-

ously stable, while in window 0 � k � 0.29 there are “catastrophe” that gives the surface its name. On the
other hand, if the curve is walked from left to right,two polymorphic equilibria, one of them stable. In k �

0.25 the stability of the two simultaneous equilibria re- there is a gradual increase in the value of x̂ until k �
0.56, beyond which point x̂ suddenly jumps to a higherverses (see Figure 4c).

Figure 5 considers v � (1, 0.5, 1.3, 0.3) and explores value and so does w. In the window 0.53 � k � 0.56
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Figure 4.—Roots of our system
as a function of k. Consider the
viability set (0.3, 1.7, 0.5, 1). The
x component of the equilibrium
value is drawn as a function of k.
Solid lines denote locally stable
equilibria; dashed lines, unstable
equilibria; and dotted lines, unfea-
sible equilibria (values of x �0 or
�1 are devoid of biological mean-
ing). These roots are drawn for
three values of �: (a) 0.7, showing
a maximum of two polymorphic
equilibria; (b) 0.9, showing a max-
imum of three polymorphic equi-
libria; (c) 1, where regions with
two and three polymorphic equi-
libria fuse.

there are three polymorphic equilibria, the middle of selective force favors the formation of a polymorphic
equilibrium, the second force becomes relevant in awhich delimits the basins of attraction of the other two

polymorphic equilibria. polymorphic population and favors the fixation of one
allele. This pair of antagonistic forces exists in all butIn all cases of parameter values yielding three poly-

morphic equilibria, two of them are stable and one is one of the three equilibria under a viability scheme with
imprinting but fails to explain all cases in the absenceunstable. Although we suspect that the system precludes
of imprinting (see Table 3).cases of one stable and two unstable equilibria we cannot

reject the possibility that these exist in exceedingly rare
numbers. Otherwise, {v, s} sets producing three polymor-

DISCUSSION
phic equilibria do not have obvious common features.
It would be reasonable to think that they require two The one-locus model we present in this article further

generalizes earlier models of sex-specific meiotic drivepairs of opposing forces. These forces could be provided
on the one hand by average heterozygote advantage, (Wright 1969; Hartl 1970) by allowing nonequiva-

lence of the viabilities of reciprocal heterozygotes, asv12 � v21 � v11 � v22, and on the other hand by a segrega-
tion bias toward formation of the least viable of the two might occur at an imprinted locus. It also extends the

analysis of Hartl (1970), considering the case of per-heterozygotes, (k � �)(v12 � v21) � 0. While the first
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Figure 6.—Section of Figure 5 at � � 0.03. Solid portions
of the curve represent locally stable equilibria whereas dashed
portions of the curve represent unstable equilibria. Polyno-
mial p(x) has three roots in the interval 0.531–0.557. The
arrows represent sudden (“catastrophic”) changes in the equi-
librium of the system due to small variations in k. The change
in population mean fitness that accompanies these jumps is
also indicated.

a system of permanent translocation heterozygotes (e.g.,
Oenothera spp. and I. petraea) in which perfect meiotic
drive of one allele in one sex is balanced by perfect
drag of the same allele in the other sex (Holsinger
and Ellstrand 1984). This observation does not rely
on the differential viability of reciprocal heterozygotes.

Eshel (1985) contends that selection on unlinked
modifiers favors Mendelian segregation at a polymor-Figure 5.—Roots of p(x) as a function of k and �. Consider

the viability set (1, 0.5, 1.3, 0.3). The catastrophe surface (a) phic locus because mean viability is increased by mod-
is drawn in the window [0.35, 0.75] 
 [0.0, 0.1] where it folds ifiers that reduce the strength of segregation distortion.
over itself. The projection of the boundary of the fold onto However, his model assumed equal segregation distor-
the (k, �) plane is known as a catastrophe curve (b). Outside

tion in the two sexes, and his elegant solution of athe fold, the system has none or one polymorphic equilibrium,
major evolutionary puzzle is unlikely to apply (at leastwhereas it has three polymorphic equilibria within the fold.

The line along the catastrophe surface and across the catastro- in unmodified form) if segregation ratios are allowed
phe curve corresponds to the section used to draw Figure 6. to differ between the sexes. This is because unlinked

modifiers will sometimes favor enhanced segregation
distortion if one of the heterozygous classes is the mostfect drive in favor of one allele in one sex and against
fit genotype. Eshel’s solution to the puzzle of Mendelianthe same allele in the other sex, and exploring the
segregation could be rescued if it were assumed thatparameter space in search of parameter sets yielding
most balanced polymorphisms involve heterozygotestwo stable polymorphic equilibria.
with lower viability than one of the homozygous classes.Stable polymorphic equilibria in single-locus models
This might be the case if most polymorphisms wereof viability selection maximize population mean fitness
maintained by segregation distortion, or by analogousunder the constraint of Mendelian segregation. A segre-
intragenomic conflicts, rather than by classical heterozy-gation ratio other than Mendelian but equal for both
gote advantage.sexes drives this equilibrium away from the optimal pop-

Using numerical analysis, we have shown that ourulation mean fitness, however. We have shown that the
model can have multiple polymorphic equilibria. Whilelatter result does not need to be true if the segregation
parameter sets yielding two equilibria are rare (�2.4 inratio is allowed to differ between the sexes. For example,
103), parameter sets yielding three equilibria are evenif one of the heterozygote classes has higher fitness than

both homozygote classes, mean fitness is maximized by rarer (�1.5 in 105). Cases of multiple equilibria are not
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APPENDIX A
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·
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� 0.
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However, they are sufficient but not necessary if multiple
equilibria are taken into consideration.

Conditions for stability of a nontrivial equilibrium:
The first-order approximation of system (1) evaluated
in the proximity of equilibrium (x̂, ŷ) is





x�

y�





�




�x�/�x|(x̂,ŷ) �x�/�y|(x̂,ŷ)

�y�/�x|(x̂,ŷ) �y�/�y|(̂x,ŷ)









x
y




, (A4)

where

w
�x�

�x �
(x̂,ŷ )

� v11ŷ(1 � x̂ ) � v22x̂(1 � ŷ )

� (k � x̂)(v12(1 � ŷ) � v21ŷ) (A5a)

w
�x�

�y �
(x̂,ŷ )

� (v11 � v22)x̂(1 � x̂ )

� (k � x̂)(v21(1 � x̂) � v12x̂) (A5b) Figure A1.—Family of neutral equilibria when k � 1 � �.
This family is drawn in 	 for the values of k indicated beside
each curve.w

�y�

�x �
(x̂,ŷ )

� (v11 � v22)ŷ(1 � ŷ)

� (� � ŷ)(v12(1 � ŷ) � v21ŷ) (A5c) v11

v22

�
1 � k

�

v12

v12 � v21

�
1 � �

k
v21

v12 � v21

. (A6)
w

�y�

�y �
(x̂,ŷ )

� v11x̂(1 � ŷ) � v22ŷ(1 � x̂)
If v11 � (1 � k)v21 � (1 � �)v12, 1 is a double equilibrium
and �(G1) � 1. Thus 1 is unstable whenever� (� � ŷ)(v21(1 � x̂) � v12x̂). (A5d)

v22

v11

�
k

1 � �

v21

v12 � v21

�
�

1 � k
v12

v12 � v21

. (A7)Let G be the gradient matrix in (A4) and g(
) �

2 � tr(G)
 � det(G) be the characteristic polynomial
associated with the linearized system, where tr(G) stands If v22 � kv12 � �v21 and v11 � (1 � k)v21 � (1 � �)v12,
for the trace of G and det(G) refers to its determinant. both 0 and 1 are double equilibria, and (7) can be fully
The necessary and sufficient conditions for local stability factored,
of (x̂, ŷ) are g|
�1 � 0 and �g/�
|
�1 � 0.

x̂ 2(1 � x̂)2(k � �)(1 � k � �)(x̂ � (e 2 � 1)) � 0.Let G0 (G1) be matrix G evaluated in 0 (1). Assuming
(A8)the system does not present stable cycles, at least one

nontrivial equilibrium is stable whenever both trivial From the last expression it is obvious that whenever
equilibria are locally unstable. 0 is locally unstable if k � � or k � � � 1 the identity is true for any x̂.
g|G0,
�1 � 0 and �g/�
|G0,
�1 � 0, which yields kv12 � �v21 � Thus, a first family of neutral equilibria results from
v22. 1 is locally unstable if g|G1,
�1 � 0 and �g/�
|G1,
�1 � substituting k � � in (4),
0, which yields (1 � k)v21 � (1 � �)v12 � v11.

x̂ � ŷ. (A9)Note that the first set of conditions for the existence
of at least one nontrivial equilibrium corresponds to

A second family of neutral equilibria results from substi-the instability of both 0 and 1 while the second set of
tuting k � � � 1 in (4),conditions corresponds to the stability of 0 and 1. To

summarize, the stability conditions are sufficient but
x̂ �

(1 � �)ŷ
� � (1 � 2�)ŷ

. (A10)not necessary conditions for the existence and stability
of at least one trivial equilibrium.

Strict equality: If v22 � kv12 � �v21, 0 is a double equilib- These families of equilibria (see Figure A1) are stable
rium and the leading eigenvalue of G0, �(G0), takes in the sense that deviations from a particular equilib-
the unit value. Thus we need to recur to second-order rium yield a succession of states closer to the family of
conditions to characterize the stability of 0. Following equilibria although not necessarily closer to the initial
the general solution of Lessard and Karlin (1982), equilibrium. Changes from one equilibrium to another
for eigenvalue 1 problems we can conclude that 0 is within a family are governed by random gametic drift.

Instability conditions (A6) and (A7) reduce tounstable whenever
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(k � �)(1 � k � �)(�v 2
21 � kv 2

12) � 0 (A11a)
H �





0 v11 � v22 � v12 � v21

v11 � v22 � v12 � v21 0





. (B4)
(k � �)(1 � k � �)((1 � k)v 2

21 � (1 � �)v 2
12) � 0.

(A11b) Consequently, |H1| � 0, |H2| � � (v11 � v22 � v12 �
v21)2 and unless v11 � v22 � v12 � v21 the critical point
does not satisfy the condition for maximum. Instead,

APPENDIX B the fact that |H2| � 0 for any (x, y) indicates that (x̃, ỹ)
is always a saddle point. This result reduces the potentialAssuming equal segregation ratio in both sexes the
maxima to the borders of 	. Even more, the derivativesmean fitness function takes the form
of w along the borders take constant values and, there-

wz � v11z 2 � (v12 � v21)z(1 � z) � v22(1 � z)2. (B1) fore, candidates for maxima are restricted to one of the
four corners of 	.This function is defined for values of z in the interval

[0, 1].Given that this interval is closed and bounded
and that w is a continuous function, Weierstrass’s theo- APPENDIX C
rem guarantees the existence of a global maximum.

When k � 1 and � � 0, Equations 3 simplify toThe first-order condition �w/�z � 0 defines a critical
point z̃ that corresponds to a maximum only if the sec-

w�x �
�w
�x

x(1 � x) � v21(1 � x)y (C1a)ond-order condition �2w/�z2 � 0 is satisfied. Straight
differentiation from (B1) yields �2w/�z2 � 2(v11 � v22 �
v12 � v21). Thus, z̃ is a maximum whenever v12 � v21 � w�y �

�w
�y

y(1 � y) � v21(1 � x)y . (C1b)
v11 � v22.

Allowing a different segregation ratio in each sex, the And the equilibria result from solving the system
mean fitness function takes the form

(1 � x̂)��w�x
x̂ � v21ŷ � � 0 (C2a)w � v11xy � v12x(1 � y) � v21(1 � x)y

� v22(1 � x)(1 � y). (B2)
ŷ ��w�y1

(1 � ŷ) � v21(1 � x̂)� � 0. (C2b)
This function is defined in 	. Once again, Weier-

strass’s theorem guarantees the existence of a global Equation C2a is satisfied when x̂ � 1, in which case
maximum. Now, first- and second-order conditions are (C2b) implies (v11 � v12)ŷ(1 � ŷ ) � 0. The latter is true
those corresponding to multivariate optimization. Let whenever ŷ � 0, ŷ � 1, or v12 � v11. Similarly, Equation
H be the matrix of second derivatives (a.k.a. the Hessian C2b is satisfied when ŷ � 0, in which case Equation C2a
matrix), requires that (v12 � v22) x̂(1 � x̂ ) � 0. The latter is true

whenever x̂ � 0, x̂ � 1, or v12 � v22.
Simple inspection provides three equilibria: the trivialH �





�2w/�x 2 �2w/�x�y
�2w/�y�x �2w/�y 2





. (B3)
ones at 0 and 1 and the polymorphic corner (1, 0).
The corner equilibrium is stable whenever v12 � v11, v22.

The first-order condition �w/�x � �w/�y � 0 defines There is one other polymorphic equilibrium in 	 but
a critical point (x̃, ỹ) that corresponds to a maximum this is always unstable. Boundary x � 1 comprises a
only if the Hessian matrix is negative semidefinite; i.e., family of equilibria when v12 � v11 while boundary y �
hTHh � 0 for any column vector h � (h1 , h2). Matrix 1 comprises a family of equilibria when v12 � v22.
H satisfies the second-order condition if and only if When � � 1 and k � 0 we reach analogous results
|H1 | � 0 and |H2 | � 0, where Hn is a submatrix formed with the roles of A1 and A2 reversed. To summarize,
by the n first rows and columns of matrix H (minor of corner (0, 1) is a stable equilibrium whenever v21 � v11,
order n of matrix H). Straight differentiation from (B2) v22. Boundaries x � 0 and y � 1 comprise families of

equilibria when v21 � v22 and v21 � v11, respectively.yields




