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ABSTRACT The statistics of the variability of interspike intervals of ganglion cells in
the retina of goldfish are modeled by assuming the noise in an integrate-and-fire
mechanism is proportional to the reciprocal of a normally distributed variable. This
model meets the constraint that the coefficient of variation of the interspike intervals
does not change when the mean firing rate of the neuron changes. Alternative sources
of variability of interspike intervals are discussed.

INTRODUCTION

Under steady stimulation, the firing patterns of sensory neurons show evidence of con-
siderable variability. In the last two decades, investigators have examined the first-
order statistics of maintained firing patterns with the goal of characterizing the
processes responsible for this variability.

This study is concerned with modeling the first-order statistics of the firing patterns
of a particular sensory neuron: the retinal ganglion cell of the goldfish. The model we
shall discuss is designed to accommodate the constraints imposed by findings we re-
ported in a recent study (Levine and Shefner, 1977b). In that study, we examined the
variability of interspike intervals (ISIs), which we characterized by the coefficient of
variation (C standard deviation of ISIs/mean ISI). We observed the properties of C
over long periods of time with respect to the changes in mean firing rate due to stimula-
tion of the retina and those due to drifts. The results of this study indicate that C is
essentially independent of the firing rate of the cell; this independence cannot easily
be accounted for by existing models for the generation of ISIs. We cannot identify
the natures of the independent mechanisms implicated, but we can say that, at least in
this neuron, the signal responsible for increases or decreases in the mean level of
activity of the cell must effectively multiply (or divide) the output of the mechanism
or mechanisms principally responsible for the variability of the ISIs. This requirement
served as the starting point for our speculations about physiologically realizable
mechanisms that could be responsible for the variability of firing patterns in this
neuron.
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A MODEL FOR THE GENERATION OF ISI HISTOGRAMS

In its simplest form, our model assumes that the input to the ganglion cell from more
distal units does not contribute to the variability of the ISIs. That is, the synaptic
activation of the cell, which determines the mean rate at which action potentials are
produced, is essentially a constant over the period in which ISI statistics are being
examined. We assume that the variability of the ISIs is intrinsic to the ganglion cell,
and that this variability multiplies a steady input. It should be noted that this is not a
requirement; the commutative nature of multiplication makes equivalent all models in
which the variability multiplies the input, regardless of the level of the multiplication.
However, Schellart and Spekreijse (1973) have presented convincing evidence that the
source of most of the variability of ISIs in goldfish retinal ganglion cells lies within
the ganglion cell itself.

Consider an electrical model of the ganglion cell. If the input is considered to be a
current, i, it can be divided between a membrane leakage resistance, Rt, and the re-
sistance, Rg, of the part of the neural membrane that is the spike-generating mecha-
nism. The current passing into the spike-generating mechanism, and thus contributing
to the generation of an action potential, will be

ieffective = iRt/(Rt + Rg). (1)

A simple model for converting this effective current into spikes is the integrate-and-
fire model (e.g. Knight, 1972; Stein et al., 1972); in this model, the current is integrated
for a period of time T (the ISI) until a threshold charge (p) is reached.' At this point,
an action potential is produced, and the integrator resets to 0. If the input current is
constant, as we are assuming, and there is no noise, the integral is a straight line whose
slope is given by the value of that constant. That is,

ieffective T = p, (2)
or

T = (Rg/Rc, + I)p/i. (3)
If Rg >> R,t, (for example if the area of the active part of the membrane is small com-
pared to the cell membrane along the conduction pathway), then r will be given ap-
proximately by

7 Rgp/Ri. (4)

Any of the terms on the right-hand side of Eq. 4 might represent a noisy variable,
and thus be responsible for the variability of the ISIs. If either Rg or p is noisy, the
distribution of ISIs will have the same form as the distribution of values of Rg or p.

Assuming this current is charging the equivalent capacitance of the membrane, this criterion charge may
be considered as a voltage level. In this sense, the integrate-and-fire model, as we employ it, is similar to vol-
tage threshold models (e.g. Gerstein and Mandelbrot, 1964), except in the particular way in which the thres-
hold is approached.
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For mathematical convenience, we wish to consider variables distributed according to
a normal distribution, a commonly found distribution in biological systems. The nor-
mal distribution is not a reasonable description of the distribution of ISIs, but an
interesting result is obtained if either i or R, is the variable normally distributed.
Since we are assuming i is constant, consider the case of a normal distribution of values
of RC; that is the probability density function:

pl(R,t) = [l/a(2ir)'/2]exp[-(ic - R C)2/2U2]. (5)

The expected distribution of T may be found from the relationship

p(-r)= dR pI(Rt), (6)dT

(Davenport and Root, 1958). Substitution in Eqs. 4 and 5 gives

p(T) = [Rgp/UiT2(27r) l2] * exp[-(x - Rgp/iT)2/2 2] (7)

We define two new variables:

a ix/Rgp, (8)

and

ia/Rgp, (9)

and consider only positive values of T, so that Eq. 7 becomes

p(T) = [I /flT (2ir) /2] *exp[-(a - I/T)2 /202]; r > 0 (lOa)

p(T) 0 ; < 0 (lOb)

which we define as an hyperbolic normal distribution. This is the predicted ISI distri-
bution for the simplest form of our model;2 note that if we had not made the simplify-
ing assumption that Rg >> Rt, T would be replaced by (r - 1) in the argument of this
equation, which would shift the density function one time unit to the right, increasing
the mean by 1.0 while leaving the variance unchanged.
The ratio fl/a determines both the shape of this distribution and the value of C;

changes in a and fd that keep this ratio constant are equivalent to a rescaling of r,
which is the same as a relabeling of the time axis. Thus the variables i, Rg, and p,
which have no effect on this ratio, cannot affect C, although they do affect mean firing
rate. The variables x and a directly affect a and fA, respectively, and therefore changes
in either of these variables lead to changes in the value of C.

2While it is true that the integral of Eq. IOa from - 0 to + Xo is unity, this equation does not give exactly the
correct scaling for an ISI histogram, which is not defined for r < 0. When such values are discarded as physi-
cally unrealizable, the factor 1/(2ir) 1/2 must be increased such that p0p'(T) = 1; in fact, the correction is
negligibly small if a > 2,B, as it is in many of the empirically derived fits to our data. In the figures, the ampli-
tudes have been corrected by the appropriate factor.
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The hyperbolic normal distribution will also be obtained from models in which
either Rg or p is noisy if Rg or p is found to be inversely proportional to a normally dis-
tributed variable. In the case of Rg, this would mean that it is the conductance of the
spike-generating mechanism that is normally distributed, a very reasonable possibility.
In the case of p, it would mean the threshold is somehow determined by the quotient
of some other variable that is normally distributed. We shall discuss the model as if
R,t were the noisy variable, but it should be understood that any of the four variables
in Eq. 4 might equivalently be the noisy one.
We have so far assumed that a single common input current is shunted on its way to

the spike-generating mechanism. However, it is reasonable to conjecture that there are
several inputs to the spike-generating mechanism; one possibility is that inputs ar-
riving along separate dendritic trunks might well be shunted independently. We have
found (Levine and Shefner, 1975, 1977a) that the goldfish retinal ganglion cell receives
inputs from at least four separate processes; these processes are responsible for the
"6on"" and "off" responses from the center and surround mechanisms of the ganglion
cell receptive field. These processes apparently interact with each other pre-emptively;
that is, at any given time only one process determines the output, while the others
temporarily have no effect. If two (or more) independent processes act so that at any
time one of them pre-empts the others, some ISIs will be given by one and some by the
other, and the distribution of ISIs will be a weighted sum of the distributions of ISIs
due to each process. If the processes differ in their modal values, a multimodal dis-
tribution will result.

There is an implicit assumption in our model: the noisy variable takes values dis-
tributed according to a normal distribution, but it maintains a constant (or nearly
constant) value for the duration of each ISI. The most direct mechanism would be
one in which the variable takes a value and holds it until a spike occurs; the spike could
serve as a trigger to reset the variable to a new (random) value. Such a formulation is
assumed by Gestri (1971), in a model in which threshold (p) varies.
The other alternative is that the noisy variable changes its values independently of

when the spikes occur. If the variable changes continuously but slowly, or if the inter-
vals between changes are long compared to the ISIs, the model predicts the same re-
sults as when the variable resets at each spike, for it will be virtually constant within
any given ISI. This formulation predicts high serial correlations between ISIs, with the
serial correlations being greater and remaining large for higher orders when the firing
rate increases. This prediction of high serial correlation coefficients is inconsistent with
the data of Schellart (1973), although Gerstein and Mandelbrot (1964) noted some
serial correlation, particularly for short intervals. If the relative rate of change of the
noisy variable is taken to be of the same order as the ISI, the serial correlation co-
efficients become smaller (though the prediction of an increase with an increase in firing
rate remains), but the predicted ISI distribution will be slightly different. As the rate
of change greatly exceeds the rate of firing action potentials, the serial correlation co-
efficients should go to zero; however, the predicted distribution of ISIs becomes less
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skewed, and the model no longer predicts that C will remain independent of firing rate.
In the limit, this model approaches random-walk models and predicts an ISI histogram
best fit by a gamma distribution of order equal to the ratio of the rate of change of the
noisy variable over the firing rate.

METHODS

Data Collection
Experiments were performed on the isolated retinas of common goldfish (Carassius auratus),
15-20 cm long. Fish were stored in aquariums at about 25'C, with a light-dark cycle of 12 h
each. Retinas were isolated by the standard procedure (MacNichol and Svaetichin, 1958;
Levine and Abramov, 1975) and placed receptor side uppermost in an experimental moist cham-
ber maintained at 24°C. Pure humid oxygen was directed at the retina at a flow rate of 90
ml/min.

Extracellular ganglion cell responses were recorded with etched platinum-iridium wire
electrodes; the indifferent contact was made with a cotton wick soaked in the vitreous humor
and looped around the edge of the retina. Action potentials were amplified, shaped into pulses
by a level detector, and fed into a Hewlett-Packard 2100A laboratory minicomputer (Hewlett-
Packard Co., Palo Alto, Calif.). The time of occurrence of each spike was recorded to the
nearest millisecond; after each data collection period (or gate), the computer analyzed these
data and printed a summary of the interspike interval statistics for that gate.

ISI histograms were accumulated in 50 bins of either 1, 2, or 5 ms for the 1st s of each gate
(including the interval from the last spike in the 1st s to the first spike in the 2nd s); the bin
width was selected to accommodate the firing pattern observed. These data were collected in
conjunction with other experiments (Levine and Shefner, 1975, 1977a); after the collection of
the ISI histograms (in darkness), various stimulus flashes were presented to the retina. However,
there was at least 20 s of darkness preceding each second during which a histogram was ac-
cumulated. The histograms presented in this paper are the averages of 10-90 individual 1-s
histograms, with at least 30 s intervening between consecutive gates. The rare 1-s periods in
which fewer than five spikes occurred were discarded.

Curve-Fitting Procedures
Hyperbolic normal distributions were fit to the histograms obtained. Curve fitting was facili-
tated by noting that the histograms generally have a clearly identifiable mode. The mode,
Tm, of the hyperbolic normal distribution may be found by setting the first derivative of the
probability density function to 0, giving

Tm = (1/213)[(a/213)2 + 2] - a/2132. (11)

We first determined the mode and chose an arbitrary value of d; a could then be calculated from

a = l/Tm - 2/32Tm. (12)

The amplitude of the predicted curve was then computed at Tm and compared to the observed
amplitude. An iterative procedure was employed to select a value of, for which these ampli-
tudes matched. The complete predicted curve was then generated from the values of a and A.

Obviously, multimodal distributions cannot be fit by a single hyperbolic normal distribution.
We have fit all our multimodal histograms with the weighted sum of two (or three) hyperbolic
normal distributions, a scheme similar to that employed by Pernier and Gerin (1975) to fit bi-
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FIGURE 1 Distribution of 548 ISIs from a red off center ganglion cell firing at a rate of 16.12
spikes/s. The shaded area represents the histogram; the smooth curve is a hyperbolic normal
distribution fit to the data (a = 0.0169, fi = 0.0051).

modal distributions. A weighting factor, a, was chosen that multiplied the first hyperbolic
normal distribution; the second distribution was then multiplied by (1 - a) so that the in-
tegral of the sum of the two density functions would be unity.

RESULTS

A total of 63 averaged ISI histograms were obtained from 36 different ganglion cells;
of these, 16 cells were red "on" center units, 18 were red "off" center units, and 2 were
apparently unresponsive. A typical unimodal histogram is shown in Fig. 1; the shaded
area represents data and the smooth curve is a hyperbolic normal distribution. Most
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FIGURE 2 Distribution of 953 ISIs from a red off center ganglion cell firing at a rate of 24.57
spikes/s. The smooth curve is a hyperbolic normal distribution fit to the data (a = 0.0320,
1# = 0.0205). (An additional 79 intervals were longer than 100 ms, and therefore do not appear
on the figure.)
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of the unimodal histograms obtained appear roughly similar to this one, displaying
slightly more or slightly less skew. Some histograms, however, were highly skewed so
that there was a finite probability of occurrence for intervals many times longer than
,r,. An example of such an histogram is shown in Fig. 2; a hyperbolic normal dis-
tribution has also been fit to this histogram. We did not observe any distributions ap-
proximating a Poisson distribution, in contrast to findings in the cat olivary complex
(Goldberg et al., 1964), optic tract (Herz et al., 1964), midbrain (Skvaril et al., 1971),
and forebrain (Smith and Smith, 1965). However, our observation is consistent with
another study of goldfish isolated retina (Schellart, 1973), in which exponential dis-
tributions were found to be exceedingly rare.
Approximately half of the cells we observed displayed multimodal ISI histograms;

generally two peaks were evident, though occasionally a third peak could be discerned.
About 1/3 of the red on center cells and 2/3 of the red off center cells investigated dis-
played multimodal tendencies. Fig. 3 shows an example of a bimodal distribution in
which the more prominent peak occurs at the shorter ISIs, Fig. 4 shows one in which
the larger peak is at the longer ISIs, and Fig. 5 shows a trimodal histogram. During
an experiment the same cell may exhibit each of the patterns exemplified in Fig. 3
and 4; that is, the relative magnitudes of the two peaks may change over time. In some
cases the shift may be so extreme that a unimodal cell becomes bimodal, or vice versa.

DISCUSSION

The hyperbolic normal distribution predicted by our model gives qualitatively good
fits to all the unimodal distributions we have obtained, using only two parameters.
Similarly, the multimodal histograms can be fit by a weighted sum of hyperbolic nor-
mal distributions (five parameters for bimodal, eight for trimodal). The summation of
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FIGURE 3 Distribution of 1,216 ISIs from a red off center ganglion cell firing at a rate of
26.44 spikes/s. The smooth curve is the weighted sum of two hyperbolic normal distributions fit
to the data. One hyperbolic normal (ca = 0.0595, ,B = 0.0640) accounts for 65% of the ISIs; the
second (a = 0.0141, ,B = 0.0046) accounts for the remaining 35%.
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FIGURE 4 Distribution of 1,525 ISIs from a red off center ganglion cell firing at a rate of
43.60 spikes/s. The smooth curve is the weighted sum of two hyperbolic normal distributions fit
to the data. One hyperbolic normal (a = 0.0960, ,B = 0.0770) accounts for 20% of the ISIs,
the second (a = 0.0468, ,B = 0.0140) accounts for the remaining 80%. (One additional interval
was longer than 100 ms.)

hyperbolic normal distributions to generate multimodal distributions is what is pre-
dicted if independent inputs pre-empt control of the spike-generating mechanism. We
do not know what these independent inputs may be; however, possible candidates are
the independent processes we have described for goldfish ganglion cells (Levine and
Shefner, 1975; 1977a).
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FIGURE 5 Distribution of 1,931 ISIs from a red on center ganglion cell firing at a rate of 41.98
spikes/s. The smooth curve is the weighted sum of three hyperbolic normal distributions fit to
the data. One hyperbolic normal (a = 0.0625, ,B = 0.0625) accounts for 39.5% of the ISIs, a
second (a = 0.0404, , = 0.0068) accounts for 53.5%, and the third (a = 0.0204, , = 0.0020)
accounts for the remaining 7%.
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An alternative mechanism that predicts multimodal distributions is one in which the
cell somehow changes from a "bursting" state to a "resting" state. This is the premise
of the "pseudo-Markov" model of Ekholm and Hyvirinen (1970). Schellart (1973)
has found that goldfish ganglion cells do not meet the conditions of a Markov model,
but this is not a necessary feature. This premise is also consistent with the suggestions
of Smith and Smith (1965) that a "Poisson shower" is switched on or off by a mecha-
nism either intrinsic or extrinsic to the cell. In this class of models, one process acts to
determine the activity of a second process; while this is certainly possible, we believe
that our observation of trimodal histograms renders it less likely than a mechanism in
which independent processes pre-empt each other.

Still another possibility has been suggested by Ten Hoopen (1966a) and Bishop
et al. (1964), who postulate the existence of inhibitory impulses which, when they
coincide with an excitatory impulse, cancel that impulse. However, this scheme should
predict that the second mode will lie in the range from two to about two and a half
times the fundamental Tm, depending on the strength of serial dependency of the ISIs
and the exact shape of the distribution. In most of our distinctly bimodal histograms
the second mode is 5-20 times lon-ger than the first, which renders this an unlikely
explanation for our data.

While the hyperbolic normal distribution gives a creditable fit to all of our observed
ISI histograms, the gamma distribution (e.g. Kuffler, et al., 1957; Stein, 1965; Ten
Hoopen, 1966b) sometimes provides a better fit. However, the gamma distribution
does not afford good fits to many ISI histograms; for example the data in Fig. 2 cannot
be fit by a gamma distribution of any order. More significantly, a change in input to
the neuron would affect firing rate through a change in the order of the gamma dis-
tribution, leading to a positive correlation between C and total numbers of spikes.
Thus, the gamma distribution does not readily satisfy the constraints imposed by our
data.
One of the most interesting models in the literature is one in which a membrane po-

tential is assumed to rise to threshold according to a random walk with superimposed
drift (Gerstein and Mandelbrot, 1964; Johannesma, 1968; Pernier, 1972; Pernier and
Gerin, 1975). This model yields an expression for predicting the ISI histogram that
bears a superficial resemblance to the hyperbolic normal distribution; however, the two
parameters of the equation may be identified with the threshold of the spike-generating
mechanism and the drift or diffusion rate (excitation of the cell), rather than being re-
lated to parameters of the statistical distribution of a noisy variable. C would be re-
lated to the product of the two variables, and thus may easily be held constant while
the firing rate changes if the threshold decreases as the excitation increases. However,
one would expect to change the firing rate by changing excitation only; additional as-
sumptions are needed for this model to satisfy the requirement of our data that C not
be correlated with firing rate.

Other ways have been proposed to account for the shape of ISI histograms. Several
schemes incorporate temporal properties in the spike-generating mechanism of inte-
grate-and-fire models; these include a deterministic but changing threshold (e.g.
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Rodieck, 1967; Stein, 1965; Geisler and Goldberg, 1966), and a "leaky" (Stein et al.,
1972) or "forgetful" (Knight, 1972) integrator. Both of these features have been in-
corporated into the model presented by Schellart (1973), who predicted variously
shaped ISI distributions based on,an assumed Gaussian noise added to the input. But
this model cannot predict that C will remain constant as firing rate changes, even if it
is modified so that the noise multiplies the input.
Our model does hold C constant and provides qualitatively good fits to the data;

however, a stronger test would be to submit our predictions to a statistical analysis. Pre-
dicting ISIs according to an hyperbolic normal distribution is equivalent to predicting
that the distribution of the reciprocals of the intervals (instantaneous frequency den-
sity) be normal. One way to test whether a distribution is a normal distribution is to
examine the moments (particularly the first four) of the distribution. We performed
this analysis for the 25 clearly unimodal distributions we obtained. The first moment
(mean) of the frequency density distributions agreed reasonably well with the values
of a obtained by fitting the hyperbolic normal distribution to the ISI histograms.
Similarly, the second moment (variance) agreed quite closely with the values of,2.
However, the third and fourth moments were significantly larger than expected for nor-
mal distributions of the given variances.
The analysis of the moments of the frequency density distribution indicates that

while the hyperbolic normal distribution may predict a major portion of the variance
of the ISIs, it does not completely account for the variability of the ISIs. Other sources
of variability not distributed according to the hyperbolic normal distribution may be
present (see below); in addition, even an ISI distribution that appears unimodal might
have a second mode, which either is too small to be clearly discerned or is camouflaged
by close proximity to the recognized mode. We thus should not expect the frequency
density distribution to pass statistical tests for normality, in terms of moments, probit
analysis, or any other criterion.
We could improve the correspondence of the model to our data by introducing

various additional parameters. One obvious possibility is to change the assumed
shape of the distribution of the noisy variable; of course, with complete freedom in
choosing the shape of the input distribution, any -output can be generated. However,
with only a few very reasonable assumptions concerning upper and lower limits of an
otherwise normally distributed variable, all the requisite corrections may be effected.
Another possible adjustment to the model would be to postulate an additional

source of independent Gaussian noise; a multiplicative combination of this noise
source with the hyperbolic normal distribution would allow us to fit any of the ob-
served ISI histograms while retaining C's independence of firing rate. This second
noise source could be extrinsic to the ganglion cell; that is, it could represent a
variability of the input. Slow variations of the input that change the mean firing rate
from sample to sample will smear the averaged ISI histogram, and increase the vari-
ability of the observed ISIs. There could also be a fast component of variability in the
input current, arising either from synaptic noise in the distal retina, or from the re-
ceptors themselves (Rodieck, 1967). If invertebrate preparations are a valid indicator
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of receptor noise, stimulation would act to reduce C in the receptors (Dodge, et al.
1968; Ratliffet al., 1968), so C should decrease for the on response. Our data (Levine
and Shefner, 1977b) in fact show a small but significant decrease in C during the stimu-
lus, regardless of whether the particular unit responds with an increase or a decrease in
firing rate; that the decrease in C is very slight may indicate that this source of noise
is a minor contributor to the total variability. Additional sources of noise might be
intrinsic to the ganglion cell, representing rapid variations in any of the parameters in
Eq. 4, or slow variations in the parameters in the numerator. The concatenation of a
distribution derived from any of these sources with the hyperbolic normal distribution
can satisfactorily fit any of our data.
We have presented our model as a possible mechanism that correctly predicts the

shape of ISI histograms from goldfish ganglion cells while meeting the constraint that
C be independent of changes in firing rate. This model is not applicable to all neurons;
while many neurons in various parts of the nervous system display ISI histograms simi-
lar to what we have observed (e.g. Corrigall and Sherebrin, 1976; Kozak and Reit-
boeck, 1974; Pernier and Gerin, 1975; Pfeiffer and Kiang, 1965), others, such as those
neurons that yield Poisson-like ISI histograms (see above) do not. Similarly, some
neurons seem to share with goldfish ganglion cells the feature that C is constant over a
considerable range of maintained stimulation (e.g. Gestri et al., 1966; Mastebroek
et al., 1977), while others do not (e.g. Goldberg et al., 1964; Werner and Mountcastle,
1963). It seems reasonable to us that neurons may possess several mechanisms that
contribute to the variability of ISIs, and that any of these may be the dominant
mechanism in different neurons. The hyperbolic normal distribution is predicted by
one possible mechanism that we propose for consideration as a contributor to ISI
variability.
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