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ABSTRACT The 1:1 phase locking of the neural discharge to sinusoidally modulated
stimuli was investigated both theoretically and experimentally. On the theoretical
side, a neural encoder model, the self-inhibited leaky integrator, was considered, and
the phase of the locked impulse was computed for each frequency in the locking
range by imposing the condition that the “leaky integral” u(z) of the driving signal
should reach the threshold for the first time one stimulus period after the preceding im-
pulse. As u(f) can be a nonmonotonic function, this approach leads to results that
sometimes differ from those reported in the literature. It turns out that the phase ex-
cursion is often much smaller than the value of about 180° predicted from previous
analyses. Moreover, our analysis shows a peculiar effect; the phase locking frequency
range narrows when the input modulation depth increases. The theoretical predictions
are then compared with phase-locked discharge patterns recorded from visual cells of
the Limulus lateral eye, stimulated by sinusoidally modulated light or depolarizing cur-
rent. The phases of the locked spikes at each of a number of modulation frequencies
have been measured. The predictions offered by the model fit the experimental data,
although there are some difficulties in determining the effective driving signal.

INTRODUCTION

In the neural cells the external stimulus is first transduced into an internal signal, i.e.
the membrane depolarization called *“generator potential.” This signal, a continuous
one, is then converted into a train of all-or-none pulses, which carry information. It
has been shown that these two processes are anatomically separate (Tomita, 1957,
Fuortes, 1962; Purple and Dodge, 1965).

This paper considers the second process. Neural encoding was first studied as a
linear process, leading experimentally to the determination of its transfer functions in
many preparations. On the theoretical side, the first type of neural encoder model to be
studied was a very simple one, the integrate-and-fire system (Bayly, 1968; Knight, 1969;
Stein et al., 1972); here a pulse is fired whenever the integral of the input signal
reaches a threshold value, the integration starting with the previous pulse. In this
model the output spike density is an exact replica of the input signal (Knight, 1969).

More recently, interest in the nonlinearities of the neural encoding process has
rapidly increased; the linear approach to the study of the behavior of neural cells is, in
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fact, only a first approximation. Much experimental evidence showing clear nonlinear
responses recorded from receptor neurons has been reported (Poppele and Bowman,
1970; French et al., 1972; Poppele and Chen, 1972). In particular, some recent results
obtained by recording the activity of light-adapted ommatidia in the Limulus lateral
eye show that neural encoding in this preparation is markedly nonlinear: even for
modulation depths as low as 5%, the spikes synchronize on the sinusoidally modulated
stimulus; that is, they occur only within a fixed phase interval of the stimulus cycle
(Ascoli et al., 1974). Moreover, completely phase-locked responses, where one spike
always occurs in each cycle at the same phase of the stimulus and where the spike rate is
entrained by the stimulus frequency, can be recorded in the same preparation by modu-
lating the stimulus signal at frequencies close to the discharge rate in absence of modu-
lation (Knight, 1972a; Ascoli et al., 1976).!

On the theoretical side, encoder models more realistic than the integrate-and-fire
model have been proposed and analyzed. The leaky integrator is a slightly more com-
plex model that accounts for some typical nonlinear features of neural cells, such as the
threshold depolarization necessary to elicit a sustained discharge and the phase locking
of the spikes to a cyclic stimulus. Rescigno et al. (1970) analyzed this model, deal-
ing specifically with the phase-locked discharge patterns it produces on cyclic inputs,
while Knight (1972 b) fitted the model to the resonant amplification of the spike density
response occurring in the eccentric cell of the Limulus lateral eye, at modulation
frequencies near the free-run discharge rate.

In this paper we analyze the 1:1 phase-locking behavior of the leaky integrator and
compare the theoretical predictions with empirical phase-locked responses recorded
from Limulus lateral eye visual neurons. A theoretical analysis of phase-locking for
this model has been developed in two previous papers (Rescigno et al., 1970; Knight,
1972a). But as we show below, this analysis is reliable only if the driving signal
always remains above the threshold value for steady firing. Now, in experimental re-
cordings from neural cells, it is often difficult to check if that condition holds. In the
preparation we used, owing to the self-inhibitory feedback of the discharge on itself
(Stevens, 1964; Purple and Dodge, 1965), the effective driving signal is due to the com-
bination of the generator potential with the self-inhibitory potential; only the first of
these can be measured experimentally. Our analysis therefore examines the phase-
locking behavior for every stimulus level and takes into account the self-inhibitory
feedback too. The theoretical predictions can thus be compared with the experimental
data from the Limulus visual cells.

THEORY

Leaky Integrator Model

Let us first consider the simple leaky integrator model, without self-inhibitory feed-
back, defined as follows: whenever the “leaky integral” u(r) of the input signal s(¢)

'It is worth noting that here the term *“phase locking” is used only in the strict sense just defined, whereas
it has often been used as a synonym for phase preference or even modulation of the response.
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reaches a constant threshold C, a pulse is fired and u is instantaneously reset to zero; in
the interpulse interval, the input signal determines the # function according to the
equation

du/dt = —yu(t) + s(z), (1)

where v is the leakage constant. Thus #(?) is not always a monotonic time function, its
derivative being negative when u(t) > s()/7.

For a constant stimulus s = s,, the solution of Eq. 1 is u(?) = (so/v)(1 — ™).
The steady-state relation is therefore (Knight, 1972 a):

sl — e7"h) = ~C, (2)

where f; is the rate of discharge.

We restrict ourselves to input signals of the form s(¢) = so(1 + mcos2mvi),
withm < 1 and s, > yC, which is the minimum depolarization needed to elicit firing
in steady conditions (Eq. 2). The leaky integrator model can generate phase-locked
pulse trains when driven with such input signals. In particular, for modulation fre-
quencies v near the free-run impulse rate, one impulse occurs in each cycle, always
in the same position on the input sinusoid (Knight 1972 a; Rescigno et al., 1970).

It is this 1:1 phase locking that interests us. The phase of the locked impulses
can be computed for each frequency by imposing the condition that u(z) should reach
the threshold C for the first time after exactly one stimulus period. From Eq. 1 we
have

t t
u(?) =f s(tYe ¢ -"de’, or u(f) =f so(l + mcos(wt' + @))e "-"d¢’,
0 0
where w = 27 and ¢ is the phase at which the last impulse has occurred. Integration
by parts gives:
u(t) = (So/7)(1 — ™) + (so/v)mcosB[cos(wt + ¢ — B) — e "cos(¢ — B)](3)

where 8 = tan~'(w/v) (0 < B < w/2). Now, for the interpulse interval to coin-
cide with the stimulus period » !, the expression

u(v™") = (so/7)(1 = e”)[1 + mcosBcos(e — B, (4)
must be equal to the threshold C, giving the equation:
cos(e = B) = (V7 + &/ym){yC/so(l - e™) - 1),
or, by using Eq. 2:

VY + o (1 — e "R
cos(e — B) = ~m = ~ l>. (5)

Using this equation, Rescigno et al. (1970) and Knight (1972 a) determined the phase ¢
of phase-locked impulses. However, this phase is a true phase-locking phase only if
u(t) has not already been equal to C within the time interval (0, »~!) (see Fig. 1). A
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sufficient condition for this is that the modulation depth m should be less than
1 — vC/s0,%s0 that the stimulus s(z) never falls below the threshold value for steady
firing yC. In fact, point 4 in Fig. 1 satisfies the conditionsu = s — yu <0 and = C,
so that s < y¥C. The condition s(t) > vC for each time ¢ in the interval (0, »~') there-
fore ensures that the solution ¢ of Eq. 5 is acceptable as a phase-locking phase. But
when s(¢) falls below ¥C in some part of the interval, the solution of Eq. 5 must
always be checked to see whether it is a first-crossing solution.

With this proviso in mind, we shall now investigate in detail the existence and be-
havior of solutions of Eq. 5. The expression in parentheses on the right-hand side of
Eq. 5 vanishes for v = f;. Thus in a frequency range containing f;, the absolute
value of the right-hand side of Eq. 5 is less than one; moreover, if m is sufficiently
small, this range is delimited by the frequencies vy, and v,,,, such that the right-hand
side of Eq. 5 equals —1 or +1, respectively (sce Appendix). Clearly, Eq. 5 has two
solutions for ¢ for each value of » in this range. Let us call ¢, the solution yield-
ingsin(¢ — B) < 0and ¢, the other one.

Let us now decide which solution® corresponds to a stable phase-locking position,
i.e. such that a small displacement—one, for instance produced by noise—of the spike
from the locking phase causes a compensating variation in the successive interval (thus
the delaying of a spike leads to a shortening of the successive interval).* For the un-
stable phase, on the other hand, any perturbation is followed by a further removal
from the locking phase. It is clear that in biological systems, where there is always
some intrinsic noise, only stable phase-locking can be observed. Now, on account of
the preceding definition, stable phase locking corresponds to a positive value for the
derivative du(T)/d¢. In fact an increase in ¢ is equivalent to a delay in the first
spike, while an increase in 4 produces a shorter interval. By computing the derivative
of expression 3 with respect to ¢, the stability condition becomes:

—m(so/ycosB(l — e "")sin(¢ — B) >0
or, since the other factors must be positive:

sin(¢ — B) <O0. (6)
Therefore, only solution ¢, corresponds to stable phase locking.

So, if m is low enough, real phase locking occurs for each frequency in the range
(Vmin> Pmax); With increasing » in this range, the locking phase ¢, increases continuously
from the value tan~! 27y, /¥ — 7 to tan~' 27w, /v, with an excursion of about (but
slightly over) 180°. For larger modulation depths, such that s(z) falls below the value
~C in some part of the cycle, a check must be carried out to see whether ¢, is a first
crossing solution of Eq. 5; we did this by numerically computing the corresponding

2Note that from the steady relation (Eq. 2): | — ¥C/sy = e~ "0, which decreases exponentially with in-
creasing v.

3we expect one solution and only one to represent a stable phase-locking position, since if both were stable
(or unstable), two intermediate unstable (or stable) positions would also exist.

“The “monotonicity” of the leaky integrator model (Knight, 1972 a) ensures that this compensation cannot
in any case exceed the original displacement.
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FIGURE | u(t) function corresponding to a solution of Eq. 6 that is not a first crossing solution.
Parameter values: f = 5 spikes/s, v = 16 s*!,m=04,» = 34Hz

FIGURE 2  u(t) function corresponding to the solution of Eq. 6 for three different modulation
frequencies; other parameter values: f = 5 spikes/s, ¥ = 16 s\ m=02.

function u(t), as given by Eq. 3. It turns out that for » = v, the solution is re-
ally a phase-locking phase, whereas as the frequency is decreased, the function u(z)
presents a relative maximum that rises with decreasing v. The frequency at which this
maximum reaches C is actually the lower end of the locking range. This behavior is
shown in Fig. 2. Finally, in Fig. 3 we have plotted the phase of real phase locking vs.
v for several modulation depths and two different values of the ratio y/f; (clearly the
solution of Eq. 5 depends only on the dimensionless variables v/f, and v /f;).

Fig. 3 shows that when m is increased, the phase excursion becomes smaller than
180° and the frequency range becomes asymmetrical with respect to f; in the direction
of high frequencies. Moreover there are frequencies where an increase of the input
modulation depth causes the loss of the 1:1 phase-locking condition (see the frequency
range between the arrows).’ These effects depend on the above-discussed behavior of
the u(r) function. At the lower value of v/f, (1.6) the effects arise for higher
modulation depths than at the higher one (3.2).

Leaky Integrator with Self-Inhibitory Feedback

To introduce self-inhibitory feedback into the model, we only have to replace the
stimulus s(¢) by the difference s(¢) — I(¢) in the integral form of u(¢) where I(¢) is the
self-inhibitory potential. This is built by adding, at the moment of each spike, an in-
crement A, which then decays exponentially with time constant 7. Since our analysis

5 Using an electronic analogue of the model, we found that when 1:1 phase locking is lost, a more compli-

cated phase locked pattern occurs: for instance a 3:2 pattern (three impulses every two cycles) followed, by
further increasing m, by a 5:3 one, a 2:1, etc.
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FIGURE 3  ¢(») function predicted by the leaky integrator: (@) v/fp = 3.2, () v/fo = 1.6.

is confined to phase-locked patterns, I(¢) turns out to be a pseudo-stationary inhibitory

potential; after every spike it reaches the value A4,/(1 — e /"), where T is the inter-

spike interval. Therefore: I(f) = A,e™/"/(1 — e T/"). Computing the integral rela-

tive to the added term is trivial and leads to the phase-locking equation:

R [ 7C
S

my o(1 — ™)

KCxy 1 1
+ - ’ 7
solyr = 1) (1 —eV 1 - e‘“’/")] X

cos(¢ — B) =

where K = 4,7/C.
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It again happens that two solutions exist for any frequency » within a range con-
taining f;; they differ for the sign of sin (¢ — §). As before let us call ¢, the solution
corresponding to sin (¢ — B) < 0. We first note that the solutions ¢, and ¢, do
not coincide for every value of cos (¢ — ) different from —1 or +1. Moreover, for
reasons of continuity, the same solution always corresponds to a stable phase locking
with varying », and also if the strength A of self-inhibition is varied. Thus, for the
self-inhibited model too, we expect ¢, to be the stable phase. On the other hand, it is
very hard to carry out an analytical study of the stability in this case; we have there-
fore checked our conclusion by simulating the model with an electronic analogue. In
fact, the stable phase is ¢,, as when there is no self-inhibition.

As in that case, this approach is only reliable if the driving signal s(¢) — I(?) is
always greater than yC. Otherwise the solutions obtained must be numerically
checked to be first crossing solutions. In Fig. 4 we report the function ¢(») for some
values of K, 7, and v. In this case we have chosen not to use the underlying dimension-
less variables to simplify the comparison between theoretical predictions and experi-
mental data. It is worth noting that the self-inhibitory feedback does not introduce
new qualitative features in the ¢(v) trend. As before, when the modulation depth in-
creases, the range of the phase-locking phase becomes smaller than 180°, and the fre-
quency range becomes displaced with respect to f, towards higher frequencies (the
asymmetry increasing with m). Moreover, there are frequencies at which phase lock-
ing is lost with increasing input modulation depth.

FIGURE 4 ¢(v) function predicted by the self-inhibited leaky integrator. Parameter values: f; =
5 spikes/s,y = 16s~ L K=2,7=05 s, and modulation depths as quoted.
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EXPERIMENTAL APPROACH

The experiments reported below were carried out to obtain quantitative measurements
of phase-locked responses against which to test the theory described above. In this
connection the relevant quantities are: (a) the locking phase at the frequency of the
free-running discharge, ¢(f;), which would depend only on the leakage constant (see
Eq. 7); (b) the phase excursion A¢ = @(Vpax) — @(Vmin), SWepPt by ¢ as the stimula-
tion frequency is varied. In previous analyses of the model, Ag is always about 180°,
while in our treatment it can be much lower. The precise (always increasing) trend of
¢(v) has been predicted theoretically, too. Note that ¢ is the phase-shift of the spike
from the maximum of the driving signal.

Electrophysiological experiments were performed on the Limulus lateral eye visual
neurons. Recordings from retinular and eccentric cells were made while sinusoidally
modulating the stimulus at frequencies near the discharge rate in the absence of
modulation, in order to get phase-locked responses. Now, in the presence of light
stimulation, two processes are performed in these visual cells: transduction of light into
generator potential, and encoding of generator potential into spike trains. The en-
coding process is known to occur in the axon hillock of the eccentric cell (Purple and
Dodge, 1965; Tomita, 1957); nevertheless the spikes invade the cellular body electro-
tonically, and as a result of the electrical coupling, can be recorded from the retinular
cells too. As regards the generator potential, simultaneous recordings from pairs of
visual cells in the same ommatidium (Smith and Baumann, 1969) show no appreciable
delay between the time-courses of the generator potentials recorded in retinular cells
and the eccentric one. Therefore it should be possible to study the neural encoding
process by recording from retinular cells too and, in our case, by measuring the phase
of the locked spikes with respect to the generator potential. In the responses of
retinular cells that we have analyzed, spikes of the amplitude of a few millivolts
appeared superimposed on the modulated generator potential, so that the phase of
the spike with respect to the generator potential could be directly measured. Current
stimulation has also been used; in this case the current itself is generally assumed to
be the signal driving the discharge (Knight et al., 1970), and we therefore measured the
phase of the spikes with respect to the modulated current.

METHODS

The Biological Preparation

Limulus poliphemus specimens with a 4-6-inch carapace were sent by air from the Marine Bio-
logical Laboratory (Woods Hole, Mass.) in a moist barrel. As soon as they arrived, the ani-
mals were put in a pond with circulating aerated sea water and fed fresh mussels. During the
journey about 10%; of the animals died, but the survivors soon showed apparently good health.
Experiments were performed on excised lateral eyes. The eye was drawn out with a small
carapace frame and split horizontally along the major axis of the ommatidium with a small
microtome. The inferior half of the eye was mounted in a small chamber, with the carapace
frame clamping it, with the exposed tissue facing upwards. The chamber was filled with just
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enough seawater to cover the cut. The experiments were performed at room temperature
(about 20°C).

Recording Technique

Micropipettes filled with 2.7 M KCl having resistances between 5 and 50 MQ were used to im-
pale the visual neurons. The micropipette, held by a Leitz micromanipolator (E. Leitz, Inc.,
Rockleigh, N.J.), was lowered under visual control. Cells belonging to ‘exposed ommatidia, or
to ommatidia immediately below these, were impaled. Recordings were taken from eccentric
cells or retinular cells with distinguishable spikes; the cells were assigned to one of these two
classes according to the features of spikes and generator potential observed (retinular cells,
small spikes and high generator potential; eccentric cells, large spikes and low generator po-
tential). Electrical connections to the micropipette were made by Ag-AgCl electrodes. The ref-
erence electrode was another Ag-AgCl wire, which made contact with the extracellular fluid by
an agar bridge. The electronic arrangement used for recording consisted of a unity-gain pre-
amplifier with capacitance neutralization and a bridge circuit that made it possible to balance
the potential drop across the electrode resistance when current was passing through the cell.
Resting potentials in the 30-50 mV range were typically found in retinular cells and slightly
higher ones in eccentric cells; cell impedances (not always measured) were about 5 MQ. These
values were maintained during the course of each experiment with a minimum drift. Cells firing
when put in the dark were discarded.

Stimulus Features

The activity of the impaled cells was recorded on magnetic tape after adaptation to the steady
level of the stimulus used. The mean rate of firing was then always below 10 spikes/s. As a rule,
this rate slowly declined throughout the experiment. Only the runs with nearly stable firing
rates were analyzed. Sinusoidally modulated light or depolarizing current were used to stimu-
late impaled cells. In some cases, however, a steady light and a sinusoidal current were applied
simultaneously to modulate the activity of the-cells around a level of excitation produced by
the natural stimulus. This system may be called “hybrid stimulation.” The modulation depth
m of a sinusoidally modulated signal is defined, as under Theory, as the dimensionless ratio be-
tween half the peak-to-peak amplitude of the signal and its mean value.

For the current stimulus, m was selected on the stimulating device. For the recordings with
light stimulation, the modulation depth of the generator potential was measured, when pos-
sible, on the recorded signal.

Lastly, for hybrid stimulation, the generator potential excursion was estimated as the
product of the measured impedance of the cell and the amplitude of the sinusoidal current. The
single ommatidium was illuminated with an optical fiber 50 gm in diameter touching the
cornea. That the impaled cell did not fire when the light stimulus was applied to a contiguous
ommatidium proved the selectivity of the stimulation. The light source was a 100-W tungsten-
halogen lamp. The total light power leaving the fiber had a maximum value of about 0.1 uW.
An electromechanical device provided with feedback control allowed varying light levels and
modulation depth.

Data Analysis

The cycle histograms reported in the text were obtained by means of a signal processor, the
Laben Correlatron 1024 (LABEN, Milano, Italy). This processor produces cycle histograms by
dividing every cycle into equal consecutive time bins of preset duration and counting the
number of spikes occurring in each bin, over many input cycles. The time duration of the
reported cycle histograms is one full cycle.
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FiGURE 5 Phase locked discharge pattern: several sweeps were superposed on the screen of the
storage oscilloscope synchronized with the stimulus. The phase of the locked spikes can be ob-
tained by estimating its average distance from the maximum of the generator potential. The
lower trace represents the light stimulus. Calibrations: 35 ms/div, abscissa; 2 mV/div, ordi-
nates. Resting potential and zero stimulus level correspond to the lower edge of the picture.

For the cycle histograms of responses to light stimulation, the processor was triggered at
every maximum of the light. At the frequencies used, generator potential is about 180° out of
phase with respect to the light stimulus (Knight et al., 1970). This implies that the generator
potential maximum occurs near the center of the histograms.

In any case the phase of the locked spikes with respect to the modulated generator potential
was estimated directly from pictures of the patterns obtained on the screen of a storage oscillo-
scope synchronized with the stimulus signal (Fig. 5). The phases were measured from the
maximum of the generator potential, located by fitting a sinusoid against the generator po-
tential waveform.

In the case of current stimulation, the phase of locked spikes with respect to current can be
accurately measured on the cycle histograms. The cycle histograms of responses to current
stimulation start from the minimum of the current (¢ = —180°). The delay in detection of the
spikes by the processor was taken into account in the phase measurements. Wherever possible,
about 120 cycles were taken to generate the cycle histograms.

RESULTS

Fig. 6 shows the cycle histograms of responses of a retinular cell to sinusoidally modu-
lated light impinging on the impaled ommatidium. The firing rate of the cell when
stimulated by unmodulated light (free-run rate f;) declined slowly from 5.3 spikes/s at
the beginning of the recording to 5.1 spikes/s at the end.

All the histograms consist of a single peak. The narrowest peaks appear in the histo-
grams at 5 and 5.4 Hz, 109, modulation depth of the light, and those at 5 Hz, 5.3 Hz
and 5% modulation depth, which are also the nearest to the free-run rate. They corres-
pond to discharge patterns where one spike is fired in each stimulus cycle, always at
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FIGURE 6 Cycle histograms of responses of a retinular cell to 5 and 107, modulated light. The
histograms start from the maximum of the light stimulus. About 120 cycles were averaged for each

histogram. Time bin: S ms. fy . 5.2 spikes/s.

unmodulated discharge
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FIGURE 7 Interval histograms for the unmodulated discharge and some of the runs of Fig. 6.
Time bin: 5 ms.
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FIGURE 8 Cycle histograms of the responses to light modulated at a frequency very near f,.
Generator potential modulation depths were as marked. fy = 7.4 sp/s. Time bin: 3 ms.

about the same phase so that the firing rate is exactly equal to the modulation fre-
quency; in this case we consider the discharge to be exactly phase-locked with the
stimulus signal. For stimulation frequencies farther away from f; or, at a given fre-
quency, for lower modulation depth (see the two histograms at 5.45 Hz), the peaks in
the histograms get broader and broader. As can be seen by visual inspection on the
screen of the oscilloscope synchronized with the stimulus signal, the discharge patterns
still tend to phase lock on the stimulus, with partial entrainment of the discharge rate.
For instance, at 5.45 Hz and 5% modulation depth, the mean firing rate is about 5.3
spikes/s, against a free-run rate of about 5.1 spikes/s; the spike tends to fire at a given
phase but there is an increasing delay until the spike falls behind by a full cycle; the
spikes are allowed only one phase interval, which they sweep cyclically. Some features
of the modulated discharge are better displayed by the interval histograms. These are
shown in Fig. 7 for the same runs of Fig. 6. The histograms of exactly phase-locked re-
sponses are narrower than those for the unmodulated discharge, while, at frequencies
where only partial entrainment occurs, the interval histograms become broader and
asymmetric (m = 5%) or even bimodal (m = 109;). The same qualitative features
appear in all the responses we recorded; phase-locked responses can be obtained in
almost all cells, although difficulties may be encountered in very noisy cells.

Another general feature appearing in all the recordings (obtained during light or
current stimulation) is that the phase-locking phase is independent of the stimulus
modulation depth for v = f; (Fig. 8), whereas it is dependent on it when » is different
from f,.

Fig. 9 shows the cycle histograms of responses of another retinular cell stimulated by
sinusoidally modulated light with several modulation depths. For the lower modula-
tion depth (corresponding to 5% in the generator potential), the shape of the cycle
histograms shows that firing occurs with a strong phase preference, but without a com-
plete entrainment of the firing rate from the stimulation frequency. At the inter-
mediate modulation depth there is, instead, a true phase locking with complete en-
trainment. The responses for the higher modulation depth illustrate the typical effect
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FIGURE9 Cycle histograms of the responses of a retinular cell to light modulated at two different
frequencies with the quoted modulation depths. Free-run rate fo = 6.7 spikes/s. Time bin: 3 ms.
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FIGURE 10 Cycle histograms of the responses of a retinular cell to light stimulation with three
different modulation depths. f; = 3.2 spikes/s; v = 3.4 Hz. Time bin: 10 ms.
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FIGURE 11 Cycle histograms of responses of an eccentric cell to 1.3 nA depolarizing current
(m = 0.2). Insert: plot of measured ¢ vs. ». The delay in detection of the spikes by the pro
cessor was taken into account. The fitting curve corresponds to K =1, 7 =0.5s, ¥ =23 s
Time bin: 5 ms.

predicted by the theory: the asymmetrical shape of the cycle histogram obtained at
6.43 Hz for the higher modulation depth clearly shows that the discharge is not really
phase locked and measurement of the mean rate of discharge confirms that the firing
rate entrainment is not complete in this case. Instead, for the higher stimulation
frequency (6.91 Hz), an increase in the input modulation depth produces a narrowing
of the peak in the cycle histogram. In general, the phase-locking condition is lost at
suitable frequencies, as the stimulus modulation depth increases.

Fig. 10 refers to another cell where this effect appears very clearly. Other data show
that the loss of phase locking also occurs in the case of current stimulation. .

Fig. 11 shows the cycle histograms of the responses of an eccentric cell stimulated
with 1.3 nA depolarizing current at several frequencies arcund the free-run rate f; of
about 5 spikes/s, while the insert is a plot of the estimated ¢ values vs. » (the con-
tinuous curve is a theoretical fit which is explained below). Note the regular increase
of ¢ with increasing v, a feature occurring in all the experiments performed, and the
frequency range asymmetry with respect to f; in the direction of high frequencies. The
total phase excursion is about 100°.
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TABLE 1

Cell . Current ¢ (/o)
Cell type g.p. amplitude intensity ) Light Carrent
my nA spikes/s

73/1 R 4 3 53 -50 + 6
73/4 R 1.2 S. -3
74/19 R 7 h 7. =75 0
75/2 R 1 7. -15
75/2 R 0.5 4. -20
75/3 R 5 h 59 -54 +5
75/5 R 5 h 7. —65 0
75/6 R 4 — 23 -80

74/16 E 13 5. -32
74/18 E 1 8.8 -34
74/18 E 0.5 6.7 -34

R, retinular; E, eccentric; h, hybrid stimulation.

Tables I and II give some quantitative data for light and/or current stimulation in
several cells. The phase of the locked spikes at the free-run frequency, ¢(f;), which
appears in the last column of Table I, was obtained by interpolation between the esti-
mated phases at the nearest frequencies used.

One result is clear from Table I—there is a systematic discrepancy between the

values of ¢(f;) obtained with light or current stimulation in retinular cells. The
TABLE II
Cell and Variation , % ¥
stimulation type fo coefficient m Ay ¢'(%o) (K=1) (K= 2)
spikes/s ° °/Hz
73/1 c 0.24 0.05 60 90
53 25 35
1 0.12 0.06 90 65
73/4 c 5 0.21 0.22 60 60 14 17
74/19 1 0.1 0.15 80 50
7 20 25
h 0.1 0.15 70 45
75/2 c 7 0.05 0.075 110 75 25 30
c 4 0.05 0.15 120 65 15 18
75/3 1 0.23 0.15 45 45
59 21 26
h 0.22 0.10 75 60
75/6 1 23 0.35 0.2 40 25 25 30
74/16 c 0.035 0.22 90 30
5 23 30
c 0.035 0.1 100 50
74/18 c 8.8 0.055 0.2 90 50 20 23
c 6.7 0.065 0.2 100 58 16 19
Abbreviations asin Table L.
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FIGURE 12 a. Phase-locked pattern recorded from an eccentric cell stimulated by light with 509
modulation depth; b. free discharge pattern at the same level of light.

first group have a large negative value, while the second are near zero. This finding will
be discussed below.

In recordings from eccentric cells, the comparison between the two stimulation
methods is not easy, the generator potential modulation being masked by the after-
spike hyperpolarization (Fig. 12). By current stimulation in eccentric cells, we found
values of ¢(f;) intermediate between those obtained in retinular cells with light or
current stimulation (see the last three rows of Table I).

In Table II we report other relevant parameters for the same cells reported in
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Table I. The third column shows the variation coefficient, defined as the ratio between
the standard deviation and the mean value of the interspike intervals, and giving a
measure of the amount of noise in the discharge. This coefficient varies from one cell
to another and is strongly influenced by the adaptation state of the cell. For instance, a
dark-adapted cell normally has a variation coefficient much larger than the same cell in
light-adapted conditions (see.cell 73/1). The modulation depth m reported in the
fourth column concerns the generator potential in the case of light stimulation; with
current stimulation, it is simply the modulation depth of the current injected into the
cell; in the case of hybrid stimulation, m is calculated as described in Methods.

The total phase excursion A¢ = @(Vpa) — ©(Vmin) (using the same notations as
under the Theory) is reported in the fifth column.

There are some difficulties in evaluating A¢; the noise broadens the peaks in the
cycle histograms at modulation frequencies near the limits of the locking range. The
discharge is still considered phase locked if this broadening is not excessive and if the
interval histograms are not bimodal. The A¢ values so obtained vary from one cell to
another and with the input modulation depth, but they appear to be independent of the
type of stimulation and cell; their mean value is about 80°. Moreover Ay is lower for
the cells with higher variation coefficient. This point will be discussed below.

In the sixth column of Table II we report the slope ¢'(f;) of the curve (v) for
v = f;, estimated as the ratio of the induced phase variation of the locked spikes to the
difference in frequency between the two stimulation frequencies nearest f;. The last
two columns give the v values by which the model reproduces the experimental slope at
fo. These values depend obviously on the values of the self-inhibition parameters K
and 7; we have given them realistic values: 1 and 2 for K and 0.5 s for 7 (Knight et al.,
1970). The feasibility of fitting the model to these experimental data and the meaning
of such a fit are discussed below.

THEORETICAL ANALYSIS AND DISCUSSION

Let us summarize here the main features of the experimental data reported above: (a)
the phase at the free-run rate f, is, within the limits set by experimental error, inde-
pendent of m; (b) the frequency range where the phase locking occurs is often not cen-
tered on f;, but is displaced towards high frequencies, and the phase excursion is gen-
erally below 100°; (c) there are frequencies at which an increase in the input modula-
tion depth destroys phase locking. All these features are present in the behavior of the
self-inhibited leaky integrator model investigated under Theory. The next step would
be to fit the estimated ¢ values for the various stimulation frequencies used in each ex-
periment to the theoretical curve ¢(»). Now it is worth noting that, for the locking
phase at the free-run frequency, Eq. 7 yields: ¢(fy) = tan (2w fy/v) — =/2, inde-
pendent of m and of the self-inhibition strength coefficient K. Thus the leakage con-
stant vy should be immediately evaluated by measuring ¢(f;). Unfortunately, the
systematic discrepancy between the ¢(f;) values obtained with different types of
stimulation in retinular cells makes them unusable for this purpose. However, the
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FIGURE 13 ¢ values measured in one retinular cell, 30% light-stimulated at several frequencies.
The generator potential modulation depth was estimated 147, in all the range. 1 Jfo =7 spikes/s.
The fitting curve corresponds to the model parameters: K = 2,7 = 0.5s,v = 30s™ .

model could still reproduce the trend of the experimental phases against the stimulation
frequency, regardless of the numerical values of the phases. In Figs. 13 and 14 we
report the experimental phases obtained from the retinular cell 74/19 and the fitting
curves by the model. Note that the theoretical and experimental scales are shifted by a
different amount for light or current stimulation. In this fit we have assumed the
value 2 for the self-inhibition strength coefficient K and 0.5 s for the decay constant 7 of
self-inhibition. These are acceptable values of K and 7, as can be seen from the re-
sponses to steps of current (see for instance Fuortes and Mantegazzini, 1962) and from
the transfer functions (Dodge, 1968; Knight et al., 1970). For the leakage constant we
have used the value 30 s~'. This value of v, as shown by a previous paper (Barbi et al.,
1975), is not too high to be compatible with the data reported for transfer functions
and yields a good fit to our experimental data.

In Table II we have reported the v values yielding the right slopes ¢'( f;). Al-
though these values are only indicative, because the best fit to the whole of the experi-
mental data could occur for slightly different -y values, yet they give a useful indication
of the possible values of y. They range between 15 and 30 s~! with the assumed values
for the other parameters of the model (K and 7). It is worth noting that the values of v
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obtained in this way coincide for light and current stimulation (see cell 73/1), and no
systematic differences appear between the two types of stimulation. On the other hand,
these v values yield phase excursions A¢ generally greater than the experimental ones.
This can be accounted for by the noise affecting the discharge. In fact, by simulating a
noisy discharge with an electronic analogue of the leaky integrator, we saw that the
estimates of Ay obtained by the same criterion as in the experimental case are lower (by
about 30° for a variation coefficient of 0.2) than the Ay obtained when there is no
noise.

Coming back to the nonequivalence of light and current stimulation, we have
found in retinular cells, it can be ascribed to the capacitive couplings of ommatidial
cells. In fact, if capacitances play a role in the electrical connections between these
cells, a difference must be expected between light stimulation (which affects all retinular
cells in the ommatidium uniformly, thus annulling the effect of the capacitances be-
tween them) and current stimulation, which acts selectively on the impaled cell. In this
context the comparison of generator potentials simultaneously recorded from retinular
and eccentric cells in the same ommatidium would clarify a possible filtering action of
the junction between these cells. A difference between light and current stimulation
may be expected to appear also in recordings from eccentric cells, but this would be
much lower than that occurring in retinular cells, due to the rectifying properties of
the eccentric-retinular electrical junction (Smith and Baumann, 1969). The small shift
between the theoretical and experimental scales we found by fitting the locking phases
obtained from current-stimulated eccentric cells (see Fig. 11) confirms this inference.
Moreover, experimental evidence of the equivalence of light and current stimulation in
the eccentric cell has been obtained by measuring there the transfer functions of the
encoding process by both methods of stimulation (Knight et al., 1970). Phase-locking
analysis would probably yield a more precise test of that equivalence than that ob-
tainable from transfer function measurements, but the phase measurements with light
stimulation are difficult for the disclosed reasons.

As a final remark, the v values reported in Table I do not show on the whole a clear
correlation to the firing rate f;, whereas this occurs in the crayfish stretch receptor
neuron (Fohlmeister et al., 1974). Yet the cells where phase-locked responses have
been recorded at two different levels of excitation show an increase of  with increasing
firing rate. However, our data do not give a conclusive answer to this problem.

APPENDIX
Let us call Y(v) the right hand side of Eq. 5:

-7/
Y(») = (V¥ + w?/ym) [((1—:27? - 1],

whence: Y(0) = —(1/m)e” "™,
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FIGURE 15 Y(v) function. Parameter values: fy = 5 spikes/s, ¥ = 16 sh

The Y(») first derivative is given by:

3 ‘Y_C"_ e"Y/'
Vo) = ey ¢ YLEG S
Y+ w my (1 - e

yielding Y'(0) = O; further computations show that Y"(0) < 0.

Thus Y(v) starts at » = 0 with zero slope and then decreases.

Moreover, Y () is the product of two monotonically rising functions of », the first positive
and the second vanishing for » = f; that suggests that Y(») first decreases, reaching a nega-
tive minimum, and then always increases, vanishing for » = f;. Fig. 15 plots the typical trend
of the function Y(v), numerically computed for the parameter values v = 16 s~!, f; = §
spikes/s, and two values of m (quoted). Now, if m is less than the value m_; = 1 — yC/s,,
itis Y(0) < —1, and the »,,;, frequency is defined; m < m_, is also the sufficient condition
for the u(#) monotonicity (see text). Moreover, let us call m* the m value (>m;,) at which
the Y(v) minimum equals —1. Since the phase-locking condition cannot hold at zero fre-
quency, for m > m* the relative maximum of u(¢) within the time interval (0,»~") will reach
the firing threshold for a modulation frequency that is actually the lower end of the phase-
locking range. In fact, as we checked by numerical computations, this effect begins for an m
value intermediate between m_;, and m*.
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