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ABSTRACT We present a detailed investigation of the use of an extrapolation tech-
nique to decrease running times of sedimentation equilibrium experiments. If concen-
tration profiles are available at time AT, 2 AT, 3AT, . . ., c"(r) = c(r, n AT), then the
Aitken transformation replaces the c"(r) by c"(r) = [c. (r) c" (r) - c2(r)
[c"+ (r) + c"l (r) - 2c.(r)]. We show that the E"(r) converge to the equilibrium
values ca. (r) much more quickly than the c, (r). Savings in time are shown to range
from a factor of approximately 2 for meniscus depletion experiments to factors of be-
tween 4 and 8 for lower speeds or smaller molecular weights. It is also shown that
the technique is quite sensitive to noise, so that an accurate optical system is required
to allow its optimal use.

INTRODUCTION

A potential drawback in the use of equilibrium sedimentation experiments, especially
for unstable systems, is the length of time required to attain equilibrium. The short-
column approach proposed by van Holde and Baldwin (1) and further implemented by
one of us (2) can greatly decrease the time required at the expense of somewhat reduced
accuracy and loss of potentially useful higher molecular moments. Overspeeding pro-
cedures (3,4) can speed up the attainment of equilibrium spectacularly, but they re-
quire prior knowledge of the parameters of the system and careful control of experi-
mental procedures (4). These overspeeding procedures may prove useless or can even
extend the equilibrium times if some components of the system are "pelleted" at the
speeds used and precipitate out of solution or form gels at the base of a cell. Griffith (5)
recommends the experimental approximation of the final concentration distribution by
the simultaneous formation of a number of synthetic boundaries in the ultracentrifuge
cell. This procedure appears to be quite effective but also requires prior knowledge of
the system to be measured in order to take full advantage of the procedure.

Baurain et al. (6) have proposed experimental estimation of the equilibrium concen-
tration differences across the solution column by the extrapolation to infinite time of
the differences observed during the approach to equilibrium. They assumed that the
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concentration distributions (at sufficiently large times) can be described as the sum of
the equilibrium distribution and of the first eigenfunctions. This assumption appears
to be generally valid, as Archibald (7) showed for single-component ideal systems and
as has been predicted for a number of nonideal systems (8, 9) and self-associating sys-
tems' at sufficiently large times. The procedure of Baurain et al. uses a successive
approximation technique to estimate the equilibrium concentration difference across
the solution column. As described, this procedure yields only the weight-average
molecular weight. We present here a more general approach for predicting the equilib-
rium distributions throughout the whole solution column and illustrate this procedure
with dat. obtained by numerical solutions of the Lamm equation for various types of
systems. Experimental implementation of this suggestion could provide a means for
ultracentrifugal characterization of unstable preparations because of the shorter
equilibration times involved.

THEORY

The concentration profile for many systems can be expressed as

c(r,t) = c(r, x) + E Aj(r) exp(-Xjt). (1)

where t is the time, r is radial position, and the Xi are real, positive, eigenvalues that
can be ordered as A, < <2 A3 < ... . To motivate the following analysis, notice
that if one could eliminate the first eigenvalue term, the approach to equilibrium would
be more rapid because the second term decays to zero more quickly. A nonlinear trans-
formation due to Aitken (10) accomplishes just that elimination. Suppose that r is
fixed and measurements of c(r, t) are available at times tn = n.At, n = 1,2,3, .... Let
the corresponding values of c(r, t) be denoted by c,. Then ifwe consider the sequence

A Cn+1 Cn- I CR 2Cn= -c(2
Cn+ I + Cn,_ I- 2cCn

it will be found that the sequence ct converges to c(r, c) more rapidly than the
original sequence of values. A similar transformation can be made for the concentra-
tion gradient. This transformation can be considered equivalent to fitting the concen-
trations observed for each radius at three equispaced times to a single exponential
relaxation, independently of the behavior at any other radius, and thus it is subject to
the same restraints and pitfalls as a three-point fitting procedure.
Two remarks are in order at this point. First, the efficiency of the method depends

on how well separated the X's are. Analysis of results from the rectangular approxima-
tion (8) and of our previous equilibrium system studies (9)' shows that the eigen-
values are well separated for most sedimentation equilibrium experiments involving a
single sedimenting chemical component. Secondly, there is a loss of accuracy asso-

'Johnson, M. L., G. H. Weiss, and D. A. Yphantis. 1976. Unpublished results.
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ciated with the use of Eq. 2 because of the second difference of the cn appearing in the
denominator. Hence one needs to start with intrinsically accurate data. If the data
were completely noise-free, then one could use higher-order analogues of Eq. 2 to
reduce the time to equilibrium even more dramatically (12). The noise is, however, the
limiting factor. Notice that although we started by assuming that c(r, 1) can be
written as an eigenfunction expansion, this need never be ascertained directly since the
algorithm of Eq. 2 is a strictly numerical one. Hence one need only calculate the suc-
cessive Cn to see whether they approach a constant value that should be the equilibrium
concentration.

Ifwe rewrite Eq. 1 as

Cn = c.ZO + A,Bn + Rn, (3)
where,B = exp(-XAt), then Cn is found to be

(~Rn_i + a~- R,n+1 - 2Rn) + (Rn+1 Rn- - R2)1(A,f")
Cn = C,, + (# + 1/# - 2) + (Rn+l + Rn-1 - 2RI)/(Afin) ' (4)

so that, when the Rn are smaller than A #n, Cn - c is roughly of the order of Rn rather
than being of the order ofA fPn, which would be the case if the original concentrations
were used for the extrapolation. It should be noted that the Rn in Eq. 4 can also repre-
sent arbitrary deviations, such as random error, so that the evaluation of Eq. 2 is not
seriously degraded as all concentrations approach the equilibrium value, even though
it may appear that Eq. 2 essentially requires a division by (a noise-modulated) zero
(vide infra). The error in the estimated concentration is least when r is such that A (r)
vanishes. In the rectangular approximation the value of Rn, at sufficiently large time,
can roughly be represented as Rn = B4, in which case Eq. 4 becomes

A - c + AB(4n-2(1 _ #3)2Xn X
c,

A(1 - ,)2 + B#3n-3(1 _ 34)2P (5)

as compared to cn - c. + A,pn.
To give a quantitative estimate of the degree of improvement in a somewhat less

abstract way, we compare results of the present transformation with those calculated
by van Holde and Baldwin for the rate of approach to equilibrium of an ideal, non-
disperse system. As a measure of closeness to equilibrium, they define a parameter e
in terms of the difference in concentration between meniscus and base, A cT:

c = 1 - ACT/ACM.* (6)

They showed that the time to reach the value could be expressed as

t. = [(r2 - rl)2/D] F(a), (7)

where r, and r2 are the positions of the meniscus and base, respectively, D is the diffu-
sion constant, and F(a) is a dimensionless function of the parameter a = 2D/[sw2.
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(r2 - rj)] and of e. Introducing the dimensionless reduced effective centrifugation
time, X = 2w 2sot (where w is the angular velocity and s0 the sedimentation coefficient
at infinite dilution), we can write the van Holde-Baldwin formula as

T= - [1/r2a'yU(a)]lIn[X2U2(a)E/4(1 + cosh(1/2a))] (8)
where

U(a) = 1 + l/47r2a2andt = I[(r2 + r1)/(r2 - ri)] (9)

Suppose now, that we make an Aitken transformation every A r units of the dimen-
less time, then the comparable convergence of the predicted equilibrium concentration
c(r), i.e., C' = 1 - ACT/Ac, will be attained when

I= 1 I [2 V2(a)E (cosh (w2aYV(a) Ar) - 1\l
4w7r2ayV(a) [cosh (2) - 1 cosh(37r2ayAr) - 1

(10)

Here V(a) = 1 + l/(167r2a2). Fig. 1 presents the ratios of T'/f,, the equilibrium
times given by Eqs. 10 and 8, for Ar = 10- and for E = 10-2, 10-3, and 10-4 as a
function of a. For the usual sedimentation equilibrium experiment a - 1, and under
these conditions there is an approximate sixfold saving in time through the use of
Aitken transformation. On the other hand, "high-speed" equilibrium (meniscus de-
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FIGURE 1 Ratio of the extrapolated time to equilibrium in the concentration difference across
the cell to the time required to attain equilibrium for the same E, plotted as a function of
a = 2RT/[M(l - vp)(r2 - r2)]. For the usual sedimentation equilibrium experiments a - 1; for
meniscus depletion experiments a 0.1. These curves, for AT = 10-4, are typical of observations
very close in time.
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pletion) experiments correspond to a - 0.1 and under these conditions there is less
than a twofold decrease in the time required to estimate the equilibrium concentra-
tions.

NUMERICAL ILLUSTRATIONS

The results to be presented all pertain to the Lamm equation:

dc I [r dc - r2f(c)l, (11)
a r 2r ar [ao arJ

where ao = w2so/D and s = sof(c) is the sedimentation coefficient at concentration
c. Numerical solutions of Eq. 11 were generated by a finite difference scheme de-
scribed earlier (9, 13). In all cases the meniscus, rl, and the base, r2, of the solution
column were fixed at 6.4 and 6.7 cm, respectively, values typical of most ordinary (1)
and high-speed (14) sedimentation equilibrium experiments. In Fig. 2 we present re-
sults for a = w2so/D = 0.509 cm-2 for the ideal case s = so (i.e., f(c) = 1). Fig. 2 a
follows the time-course of c(r, T) and c(r, r) for a value of r near the meniscus and for
Ar = 10-3 for noise-free data. It is clear that by T = 0.02, c(r, r) has converged to
its equilibrium value, while c(r, r) reaches the same value at r - 0.07. Fig. 2 b pre-
sents comparable curves for a point near the base. It is interesting to note that c(r, r)
here overshoots c. before approaching it, although the savings in time are again quite
dramatic. Curves of c(r, r) - c(r, 00) and 4(r, r) - c'(r, oc) are presented as
a function of T for these two points in Figs. 2 c and 2 d respectively. The approach to
equilibrium is seen to be exponential, and the difference in time constants for c(r, r)
and its transform c(r, T) is obvious. The discontinuity in Fig. 2 d corresponds to
the overshoot seen, in linear scale, in Fig. 2 b.

In Fig. 3 a and 3 b we examine the effect of varying A r on the approach to equilib-
rium, of the same system whose behavior is described in Figs. 2 a and 2 b. The require-
ment of minimizing the effect of noise prescribes as large a value of A T as possible
(vide infra) while the optimal speed of approach to equilibrium requires that Ar be as
small as possible. The results in Fig. 3 indicate that variations in AT do not greatly
affect the extrapolation to equilibrium, so that sensitivity to noise should be the prin-
cipal determinant of the value of Ar.

NONLINEAR SYSTEMS

Numerical solutions to the Lamm equation were generated for several other condi-
tions and Eq. 2 was used to provide estimates of the equilibrium distributions as a func-
tion of time. In all cases there were significant savings in equilibration time by all
criteria examined. For example the application of the Aitken transformation to simple
nonideal systems, where s(c)/so = f(c) = 1/(1 + kc) reduced the equilibration times
by factors ranging from 4 to 8 for a - 1. The van Holde-Baldwin criterion and its
analogue were used for all these comparisons and the savings in time depended on the
exact conditions assumed, as shown in Table I.
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FIGURE 2 Approach to equilibrium for observed concentrations and estimated concentrations.
Data calculated for an ideal system with o0 = w2so/D = 0.509 cm -2 (a = 1) and Ar = 10-3 (a, c)
at 6.415 cm, near the meniscus, and (b,d) at 6.585 cm, near the base of the solution column. The
concentrations are presented on a linear scale in panels a and b and in panels c and d as the
logarithm of the absolute value of the difference between the equilibrium and transient values.
Note that the overshoot in c(6.685, r) of panel b is reflected in the discontinuity of d.

BIOPHYSICAL JOURNAL VOLUME 20 1977

°.91 a

0.8-

C/ca

0.7-

0.6-
-1 0

158



0

a 6.415 cm

AT = 0.001

- AT = 0.005

AAT = 0.01

0.005 0.01 Q015
T

0

-0.02-

b

AT = 0.001

AT = 0.01

0 0.005 0.01 0.015
T

FIGURE 3 Differences between estimated and equilibrium concentrations as a function of the
effective centrifugation time T, illustrating the effects of changes in Ar, the spacing of the
observation points. (a) At 6.415 cm, near the meniscus and (b) at 6.685 cm, near the base of
the solution column.
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TABLE I

COMPARISON OF TIMES REQUIRED TO ATTAIN EQUILIBRIUM WITH, T' AND WITHOUT,
rT, APPLICATION OF THE DATA TRANSFORMATION. RESULTS ARE EXPRESSED IN
UNITS OF r

kco T0.01 T6.O0 T0.001 T6.00i

Simple nonideal systems with s = so/(I + kc); AT = 5 x Io
0 0.040 0.008 0.061 0.009

a = 1 0.25 0.040 0.008 0.061 0.010
0.4 0.040 0.008 0.062 0.010
1.0 0.041 0.008 0.062 0.011

a = 0.1 0 0.144 0.079 0.205 0.110
1.0 0.212 0.122 0.307 0.179

Ideal heterogeneous system; Ar = 10-3
a, a2 WI
1.0 0.5 0.1 0.045 0.006 0.069 0.014

0.5 0.041 0.006 0.063 0.012
1.0 0.1 0.01 0.039 0.011 0.060 0.015

0.1 0.035 0.015 0.055 0.019
0.5 0.032 0.017 0.047 0.022

Self-associating systems; AT = 5 x 10-3 except as indicated
Monomer-dimer (n = 2) kcoN- I

0.01 0.133 0.061 0.198 0.073
a, = 0.2; 1.0 0.125 0.048 0.186 0.058
a2 = 0.1 1,000 0.100 0.054 0.172 0.076

0.01t 0.040 0.006 0.061 0.016
a, = 1; 1.0t 0.044 0.006 0.067 0.018
a2 = 0.5, 1,000 0.057 0.010 0.073 0.016

Monomer-hexamer, (n = 6) 0.01 0.168 0.078 0.243 0.098
a, = 0.2 1.0 0.146 0.056 0.222 0.076
a2 = 0.033 1,000 0.100 0.055 0.162 0.077

0.01 0.043 0.007 0.066 0.018
a, = 1 1.0t 0.052 0.015 0.079 0.020
a2 = 0.167 1,000 0.046 0.016 0.067 0.023

*W2 is the weight fraction of species 2 present in the original loading solution.
$AT = 103.

This transformation appears to be useful even for heterogeneous systems, as illus-
trated in Fig. 4. Here we present the approach to equilibrium for both c(r) and c(r),
again using the van Holde-Baldwin criterion, for a system with 10% (Fig. 4 a) and 50%
(Fig. 4 b) of a dimer (a = 0.5) present in the initial sample. In all examples the sedi-
mentation coefficient of any species was assumed to be proportional to the i power of
the molecular weight. The transformation appears to provide somewhat less reduction
in equilibrium times than for an ideal single-component system but there is still more
than a twofold savings in time. Similar behavior was noted for the presence of up to
50% of a decamer (a = 0.1), as shown in Table I.
The Aitkens transformation pr6vides significant time savings for ideal self-associat-

ing systems in rapid chemical equilibrium, as illustrated in Fig. 5 a for dimerization
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FIGURE 4 Comparison of the approach to equilibrium for observed c and estimated c concen-
trations, utilizing the van Holde-Baidwin criterion for ideal heterogeneous systems. The values
of e = Ac7 - Ac /Ac. and of E' - Ae, - Ac, are presented on a logarithmic scale as a
function of T. The data were calculated for compositions of the initial solutions (a) 90%/"
monomer (a = 1) and 10% dimer (a = 0.5) and (b) equal amounts of monomer and dimer. Note
that these systems are purely heterogeneous and that there is no chemical eqmilibrium between
molecular species, nor any other expression of nonideality.

and in Fig. 5 b for a monomer-hexamer equilibrium for dimensionless association con-
stants (kCn- l) of unity. Table I includes, in addition, the relative equilibrium times for
other values of the equilibrium constants for the self-association. It is seen that the
savings in time are only modest functions of the specific conditions assumed and that
substantial time savings are possible for all the types of cases considered.

CONSIDERATIONS OF RANDOM ERRORS

Fig. 6 shows the effect on the extrapolation procedure of random Gaussian noise added
to the concentration. The random variables have mean equal to 0 and various standard
deviations ranging from 10-3 co to 10- co. Typical random errors in good experi-
ments with the Rayleigh interference optics range from 3 x I0- co to 3 x I0- co.
Equilibrium experiments with the usual absorption optics exhibit random errors in
the measured concentration distributions of 10-2 co, at best, and the schlieren optics
provide data with intermediate dispersion. It is apparent that the uncertainties in C(r)
depend strongly on the values of AT, the dimensionless time spacing of the data points
used.
A straightforward analysis of the effects of random errors, b6i, in the observed

transient concentrations can be carried out. We assume that the concentrations at any
radial point decay exponentially towards their equilibrium value (as in Eq. 3 with
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FIGURE 5 Comparison of the approach to equilibrium for reversibly associating ideal systems.
Againe and E' are presented as a function of T. In this case the systems are assumed to be ideal
and homogeneous (in the thermodynamic sense) and exhibiting a rapid equilibrium (a) between
monomer (a = 1) and dimer (a = 0.5) with a dimensionless association constant (kco) equal to
unity and (b) between monomer (a = 1) and hexamer (a = 0.167) with kco = 1.

Rn, - 0) and that the bci are uncorrelated. The effects of these random errors on a
predicted equilibrium concentration are given by

'On q.(26c. - fl6c,11 - b6Cn-/lf) + (6Cn)2 - b6Cn- bCn+l (612n-= qn(2 - t - l/f#) + 26Cn - 6Cn-1 - bcn(l
where qn = A fn. The deviations, 6t, of the predicted equilibrium concentrations
are obtained by the usual addition of squares as:

- (acA 1+)2 6C2+1 + (Oc^/Ocn1)2bC2_1 + (Oc^"/Oc")26",(C13)

or, on the average

>2 = ROd /Oc"+1)2 + (O Cn/c_ 1)2 + ( /c^ )21 <6c>2 (14)

FIGuRE 6 Illustrations of the effects of random errors on the Aitken estimation of the equilibrium
concentrations. The curves indicate the actual values of concentration distribution as a function
of T, the effective centrifugation time. The indicated points were obtained from Eq. 2 with the
concentration distributions calculated by solution of the Lamm equation (for r = 6.415 cm and
a = 1), perturbed by the addition of sets of random Gaussian deviates of various standard
deviations so as to simulate various degrees of experimental error. In these panels: (a) AT = 10-2,
SD = 10-3cO; (b) AT = 5 x 10-3, SD = 10-3cO; (c) AT = 3 x 10-3, SD = 10-5co; (d) AT =
10-3, SD = 10 -4co.
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where <6c > represents the root mean square (rms) deviation of the experimental
observations and <6c. > the rms deviation of the predicted equilibrium concentra-
tion. If we are sufficiently far from equilibrium so that = A ,B"n-I > /
(1 _ ,)2, we then evaluate the ratio of errors

= 1/1n(#) = (#4 + 432 + l)2/(l - #/2 /(l - 6)2, (15)
<6C>

where the approximation is valid for,B 1 and where

, = exp(-XAT) = (C.,1 - C-,)/(Cn - C,,) = (Cn C-)/(C.1 - C,-)
is the ratio of the transient portions of successive observed concentrations at uniform
time intervals of A r. Eq. 15 (presented in Fig. 7) represents the ratio of the rms error
in the predicted equilibrium concentration to the rms error of the individual transient
observation.
When q << bci , we are effectively at equilibrium and, although Eq. 2 may

still be used to provide estimates of c., it is simpler and more profitable to average
successive values of the observed concentration, cn. The intermediate case where

1000-
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cso
_ d:
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I. - , .
0 02 0.4 0.6 0.8 1.0

,B= exp(-XA'r)

FIGURE 7 Effects of random error on the predicted concentrations. The ratio of the rms error
in the predicted concentrations to the rms error in the observed concentrations is presented as a
function of ,B, the ratio of successive remnant terms (see text for details).

BIOPHYSICAL JOURNAL VOLUME 20 1977164



qn - i6c,/(I - fl)2 is of interest, since the denominator of Eq. 12 can then tend to
vanish for appropriate combinations of the 6c, and lead to large values for 6c .
This is illustrated in Fig. 8 a, where each indicated point represents the values of
<6c> calculated from 100 sets of random Gaussian values for the bci in Eq. 12
with 6 = i for each specific value of q / <6c >. The results from several such sets of
simulated error calculations for different fi (0.5 < , < 0.9999) can be summarized as
essentially a single curve: Fig. 8 b presents these results in normalized form as n(,) -

<6c > / <6c > vs. q(f,)qn/ <6c > where the normalization factor ? = <6c > /
<6bc> is defined in Eq. 15 as a function of,f. The dashed lines in Fig. 8 correspond to
<6c> - q". Obviously there is little point to using the c'- when <6 >, the rms
uncertainty of the estimated equilibrium concentration, is comparable to or greater
than the remnant term qn. Thus, the useful range for the application of the Aitken
transformation (Eq. 2) is the area below the dashed line of Fig. 8 b.
From Fig. 8 b we also infer that the range of validity of Eq. 15 is qn > - 5/X7. For

qn < - 5/v the values of <be> increase rapidly by as much as two or three orders

100

b
10- a

\ 100 10 1* .

100-0

0.001 <800C100A10>I qR qn/< C>

0.1-~ ~ ~~ ~ ~ ~ ~ ~~~~~~~

100 I~~~ S. 0

O.C01~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1000100 lo ~ ~ ~ ~ 10 0 0

FIGURE 8 Monte Carlo simulations of the rms error in the predicted concentrations for various
magnitudes of remnant terms, qn. (a) The directly calculated values of <bc^> obtained for ,
(ratio of successive remnant terms) = 0.67. Each point indicates the rms value of the be,n given by
Eq. 12 for 100 Gaussian values of the 5ci with <6c> = 10-3 and plotted as a function of q /
<6c >. (b) Normalized presentation of several sets of simulations of the <6c^> . Curves sim-
ilar to those of panel a for several values of B ranging from 0.5 to 0.9999 are made coincident by
multiplication of the ordinate by v/ <6c > and of the abscissa by n, where q is the inverse of the
error ratio predicted by Eq. 7 for large remnant terms, qn, in comparison with the bcl. The limit-
ing value of unity for q <6&> / <5c> at large qn confirms the validity of Eq. 7 for nqn -

5 <bc >. Note the spectacular increase in the error ratio as the remnant term vanishes. (The
indicated curve is intended only as a summary of the data).
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of magnitude. In the limit, as bci >> 9nI , the values of the b In become, on
the whole, smaller, with the exception of sporadic outlying points. The distribution
function for these 6C' has been estimated by a Monte Carlo procedure. The distribu-
tion appears to have a tail extending to rather large values and the tail of this distribu-
tion is so significant that there appears to be no limiting value for the apparent values
of <6 > as more and more points are taken to evaluate the <6 >ZappI It is in-
teresting to note, however, that truncation of the tail of this distribution at arbitrary
limits does give satisfactory limits to the <6c >app, with the magnitudes of these
<6C >app being proportional to the square root of the arbitrary truncation limits that
were used! If f(x) is the probability density of the error, then this empirical result
implies that f(x) is proportional to 1 /x2 for large x.
As shown by Fig. 3 and Eq. 10, the rate of approach of the c(r) to the equilibrium

concentration, c ., depends strongly on AT, the time interval between the concentra-
tion determinations. We have also seen that the magnitude of <6bc> does strongly
depend on the values of AT. Fig. 9 presents equilibration times T' calculated from
Eq. 10 for a = 1 and e = 10-3 as a function of AT. The corresponding values of

0.07 /ll Te +,AT

0.05 QO0

~~~~~~~1~ ~~ ~ ~~~~~~~~0

0.03 TGI !I.

0O0I

0
0.01 (102 (103 0.04

Ar

FIGURE 9 Total effective equilibration time, r', as a function of A/r for a = I and = 10-3. The
usual equilibrium time given by the van Holde-Baldwin relation, Eq. 8, is indicated by the
horizontal line marked T,,. The corresponding time required to estimate Ac . within e = 10-3 as
given by Eq. 10 is the dashed line indicated T'. When -r is greater than Ar, the total time required
for Ae,. to approximate Ac,, within e is given by the solid segment of the line marked -r + Ar.
When -r is less than Ar, the total time required is 2 Ar and is indicated by the solid segment of the
straight line (T' = 2Ar) through the origin. Thus the total effective equilibration time is repre-
sented by the two solid line segments marked -r 'efff The encircled numbers indicate the values of
<at >/ <6c >, the ratio of the rms error in Ac^to the rms observation error in c for the several
values of Ar.
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<6' > / <bc > are indicated adjacent to several points. The corresponding time to
attain equilibrium by the van Holde-Baldwin equation (Eq. 8) is also indicated as Tr.
Each application of Eq. 2 requires three determinations of c(r, r): at Tr, and at

Tn AT. The time required is thus T. + AT or, 2AT when Tr < AT, since only
positive values of T exist. To ensure convergence within r,T > r'. Accordingly the
minimum time required to obtain a value Aie(T) within e of Ac., (r) is T' + Ar when
T: > AT and 2 Ar when T' < AT, as illustrated by the solid curve marked T',eff in
Fig. 9. This minimum time may be considered to be a function of the ratio of errors
<6c> / <6c >. The maximum practically attainable reduction in the time required
to estimate the equilibrium concentration distribution within any given error may thus
be estimated.
The maximum practically attainable reduction in equilibration time, T',eff/T, is

presented as a function of 1/a for various indicated error ratios in Fig. 10 for e = 10-3.
For error ratios more than about 10, the reduction in equilibration time is only a weak
function of the error ratio. For smaller error ratios one must use a greater value of AT
and thus increase the effective equilibration time needed. In general it should be noted
that, after an initial region where the maximum saving is greatest and independent of a,
the time saving decreases with increasing molecular weight or centrifuge speed. How-
ever, it should also be noted that the usual equilibration times are considerably smaller
for higher speeds (see ref. 14).
The curves corresponding to those presented in Fig. 10 but for e = 10-2 and

0.9- 2

Ts 0.4 a

0.7 ~~~~~~~~~~~~~~5
20

0 I 2 3 4 5 6 7 8 9 10
I/a

FIGURE 10 Ratios of the total effective equilibration time needed to estimate equilibrium
within e = 10-3 to the van Holde-Baidwin time T1. The several curves represent the
practical reduction in the time required to estimate equilibrium for the indicated rms error
ratio. Note that the usual low-speed equilibrium experiments are generally carried out for
a S -1.
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e = 10- are similar. The curves for small 6s have been presented as Fig. 1 and
there are only minor changes with e for a < 1 in the limiting behavior for large error
ratios. The branches in the curves for specified error ratios occur at higher values of
Tr/rT for e = 10-2 and at lower values of rt/r, for e = 10-4 than shown in Fig. 10.
This is to be expected since a smaller value of e always implies a larger centrifugation
time and thus permits greater values of v A r and results in smaller values of <6 C'> /
<6c >.
We have therefore seen that there is considerable potential in the use of the Aitken

transformation for reducing equilibrium times in sedimentation experiments. An ad-
vantage in using this method for reducing running times is that no system parameters
need be known, in contrast to other overspeeding techniques. Furthermore, the ex-
trapolation procedure works well for nonideal systems. A principal drawback is the
technique's susceptibility to noise. We are presently investigating the use of different
data-smoothing procedures to overcome the difficulties presented by noisy data.
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