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This article reviews the available data on the carcinogenicity of formaldehyde from experimental and
epidemiologic studies and makes recommendations for further research. Two definitive chronic inhalation
bioassays on rodents have demonstrated that formaldehyde produces nasal cancer in rats and mice at 14
ppm and in rats at 6 ppm, which is within the domain of present permissible human exposure (8-hr time-
weighted average of 3 ppm, a 5 ppm ceiling, and a 10 ppm short-term exposure limit). Biochemical and
physiologic studies in rats have shown that inhaled formaldehyde can depress respiration, inhibit muco-
ciliary clearance, stimulate cell proliferation, and crosslink DNA and protein in the nasal mucosa. No
deaths from nasal cancer have been reported in epidemiologic studies of cohorts exposed to formaldehyde,
but three case-control studies suggest the possibility of increased risk. Although excesses of lung cancer
deaths have been observed in some studies at industrial plants with formaldehyde exposure, uncertainties
in interpretation limit the evaluation of these findings. Excess cancers of the brain and of lymphatic and
hematopoietic tissues have been reported in certain studies of industrial groups and in most studies of
formaldehyde-exposed professionals, but whether these excesses are related to formaldehyde exposure is
not known. Several properties of formaldehyde pose unique problems for future research: the mechanisms
responsible for its nonlinear response; its probable mechanism of carcinogenic action as a cross-linking
agent; its formation in tissues as a normal metabolite; its possible action as a promoter and/or a cocar-

cinogen; and the importance of glutathione as a host defense at low exposure.

Formaldehyde is carcinogenic and mutagenic in the
laboratory, but the extent of the carcinogenic risk of
formaldehyde exposure in humans has not yet been de-
fined. The acute adverse health effects of formaldehyde,
including sensory irritation and sensitization, have been
reviewed by the National Academy of Sciences (1). Two
groups of scientists in the United States (2,3) and an
international group (4) have recently considered evi-
dence for delayed health effects, including cancer. This
paper summarizes the available information on the car-
cinogenicity of formaldehyde from experimental and ep-
idemiologic studies, and it incorporates data obtained
since the preceding reviews.
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Physical Properties of
Formaldehyde

Formaldehyde is a colorless gas. On chilling, it con-
denses to form a liquid that boils at —19°C and freezes
at —118°C. The gas has a pungent odor and is extremely
irritating to the mucous membranes of the eyes, nose,
and throat. Because it polymerizes readily, it is sold and
transported only in solution or in the polymerized state.
Formaldehyde is highly water-soluble, and it is mar-
keted chiefly in the form of aqueous solutions containing
a stabilizer such as methanol or methyl/ethyl cellulose.
The most commonly encountered aqueous solution,
often referred to as formalin, contains 37% by weight
formaldehyde and 6 to 15% methanol. Other sources of
formaldehyde include mixtures of lower or higher mo-
lecular weight polyoxymethylene glycols H(CH0),,0H,
known respectively as paraformaldehyde, or polyoxy-
methylene, and the cyclic trimer trioxane. These pol-
ymeric forms are solids (5-7).

Chemical Properties

Formaldehyde is a highly reactive molecule possess-
ing a single carbonyl group flanked by two hydrogen
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atoms, H,C=0. Most reactions are of three types, as
illustrated by the following reaction sequences (5,7).

Oxidation-Reduction
Cannizarro Reaction:
2 HCHO — HCOOH + CH3OH

Addition or Condensation
Bisulfite Addition:
HCHO + NaHSO; - HOCH,SO;Na

Aldol Condensation:
HCO + R'(R"YCHC=0OR — HOCHCR'(R")C=0OR

Polymerization
Methylol Formation:

OH OH OH
+ HCHO— CH,OH— CH.0
n

Production and Use

Formaldehyde has been manufactured in the United
States since 1901. Production has increased virtually
every year, with large boosts occurring during the
world wars (5). In 1984, the annual capacity of the major
U.S. producers exceeded 8.5 billion pounds of 37% by
weight solution (8).

Over 50% of formaldehyde produced is consumed in
the manufacture of phenol-formaldehyde, urea-formal-
dehyde, melamine-formaldehyde, and acetal resins (7-
9). Formaldehyde resins are used as adhesives in par-
ticleboard, plywood, insulating materials, and foundry
cores; decorative laminates in table tops, counter tops,
and wall paneling; molding compounds in appliances,
telephones, and dinnerware; and coatings, such as those
given to fabrics to impart permanent press character-
istics (10). Urea-formaldehyde foam insulation has been
widely applied to residences and commercial buildings
in northern Europe and North America (11). A plethora
of other uses of formaldehyde include the manufacture
of rubber, photographic film, leather, explosives, dyes,
cosmetics, corrosion inhibitors, and embalming fluids.
Among various medical and dental applications of for-
maldehyde is the production of vaccines (5).

Occupational and Environmental
Exposure

The current federal standard for formaldehyde ex-
posure in the workplace calls for an 8-hr time-weighted-
average permissible exposure limit of 3 ppm, a 5 ppm
ceiling, and a 10 ppm short-term exposure limit (12). In
1976, the National Institute for Occupational Safety and
Health (NIOSH) recommended that the limit for an 8-
hr time-weighted-average exposure to formaldehyde be
set at 1 ppm (13). In light of data indicating the carcin-

ogenicity of formaldehyde in rats, NIOSH has recom-
mended that this limit be reduced to the lowest feasible
level (14). Airborne concentrations of formaldehyde
have been monitored using a variety of methods of
somewhat uncertain validity. There is a paucity of sys-
tematic data regarding the severity and duration of for-
maldehyde exposure among various job categories
across industries. Little information is available prior
to the early 1970s (3).

Substantial exposure of workers to formaldehyde has
been noted in several industries, with sample means of
1 ppm or more in the following industries and occupa-
tions: formaldehyde production; resin and plastic ma-
terials production; apparel manufacture; plywood, par-
ticleboard, and wood furniture manufacture; paper and
paperboard manufacture; urea-formaldehyde foam in-
sulation dealers and installers; mushroom farms; funeral
homes; and pathology and biology laboratories. High
concentrations of formaldehyde have also been reported
in individual samples from iron foundries and plastic
molding facilities. Industries with relatively large num-
bers of persons exposed full- or part-time include ap-
parel manufacture (897,000), funeral services (52,000 to
70,200), wood furniture manufacture (49,500), and foun-
dries (43,000) (3).

Numerous sources of environmental exposure have
been reported. These include motor vehicle exhaust; the
burning of gas, oil, coal, wood, and rubbish; and pho-
tochemical smog (15-17). Concentrations reported in
ambient air are usually less than 10 to 15 ppb except in
cases of heavy motor vehicle traffic or photochemical
smog when levels of up to 90 to 150 ppb have been
reported (3).

The most important source of indoor formaldehyde
exposure is formaldehyde resins in wood products such
as plywood paneling, particleboard underlays, and fi-
berboard furniture. Indoor levels may be augmented by
the use of gas-fired space heaters and by smoking. In
general, concentrations in conventional homes more
than 5 years old are below 0.05 ppm; however, levels
may frequently exceed 0.1 ppm in new homes, those
insulated with urea-formaldehyde foam, and in mobile
homes. Mobile homes seem to have the highest levels
(3,18,19). In contrast to exposure in the workplace, res-
idential exposure may affect different subgroups of the
population (e.g., the young and the old) and frequently
involves longer daily exposure periods.

Several methods are available for determining the
level of formaldehyde gas in air (20). Selecting the ap-
propriate sampling and analytical technique is of critical
importance and must be consistent with the type of
environment to be sampled and the anticipated concen-
tration levels. Most of the available methods have been
developed for use in occupational settings, and they may
not be suited for the relatively low concentrations of
formaldehyde prevalent in nonoccupational environ-
ments (20). In attempting to improve sensitivity, re-
searchers have modified standard methods (21,22). New
or modified methods, however, may not have been eval-
uated sufficiently for sensitivity, precision, accuracy,
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and interferences or storage stability, especially under
conditions of use by nonprofessionals in residential set-
tings (23). The choice of an inappropriate method, im-
proper conduct of sampling or analysis, or the presence
of interferences may lead to substantial positive or neg-
ative biases in reported exposure concentrations.

Biochemistry, Metabolism, and
Pharmacokinetics

Formaldehyde is a molecule that appears to be pres-
ent in all living cells. It is derived metabolically from
numerous sources, including serine, glycine, sarcosine,
choline, and methionine, as well as xenobiotic com-
pounds such as methanol, methyl chloride, and com-
pounds containing N-; O-, or S-methyl groups. For-
maldehyde is metabolized by oxidation to formate or by
incorporation into thymine, serine, purines, histidine,
or methionine via its binding to tetrahydrofolate. It
combines reversibly with nucleophilic compounds, such
as glutathione, and forms stable crosslinks, such as N°,
N'-methylenetetrahydrofolate, which are essential for
its oxidation and for its utilization as a one-carbon unit
in biosynthetic reactions (24).

It is not known whether under normal conditions met-
abolically produced formaldehyde may be available for
covalent binding to DNA and thus contribute to the
background occurrence of cancer, to the aging process,
or to other deleterious health effects. Likewise, the con-
sequences of exposure to xenobiotics that are metabo-
lized through formaldehyde are not known.

Inhaled formaldehyde mixes with the endogenous for-
maldehyde pool. Its carbon is metabolically incorpo-
rated into DNA, RNA, and proteins (25) or is ultimately
exhaled as carbon dioxide (26). Owing to rapid metab-
olism following inhalation exposure of rats to 15 ppm of
formaldehyde, no detectable increase occurred in the
tissue concentrations of formaldehyde, either at the
point of entry (the nasal respiratory mucosa) (2?) or in
the blood (28). Similarly, no covalent binding of for-
maldehyde to DNA, RNA, or proteins in the femoral
marrow was detected after exposure of rats to concen-
trations as high as 15 ppm (25). Humans exposed to 2
ppm also showed no increase in the blood concentration
of formaldehyde as a result of exposure (28). The pos-
sibility that low levels of formaldehyde might be trans-
ported to sites in the body external to the respiratory
tract arises from the observation that there may be
excesses of brain tumors and leukemia in some formal-
dehyde-exposed populations. No mechanism for such
transport, however, has been proposed.

Formaldehyde is well known to form crosslinks with
biological macromolecules. Inhaled formaldehyde has
been demonstrated to form DNA-protein crosslinks in
the nasal respiratory mucosa of rats at concentrations
=2 ppm (25). Studies of the concentration dependence
of DNA-protein crosslinking showed that the yield of
crosslinks following exposure to 2 ppm of formaldehyde
was significantly less than that expected if the extent

of crosslinking were directly proportional to the air-
borne concentration of formaldehyde. In contrast, the
amount of formaldehyde covalently bound to respira-
tory mucosal proteins was apparently a linear function
of the concentration inhaled. The percentage of the total
14C labeling in DNA and proteins that was due to cov-
alent binding (the rest was due to metabolic incorpo-
ration) increased nonlinearly over the concentration
range 0.3 to 15 ppm. This suggests that within the
tested range the covalent binding of formaldehyde in
the respiratory mucosa cannot be described by linear
pharmacokinetics.

Additional studies of the formation of DNA—-protein
crosslinks by formaldehyde in the nasal respiratory mu-
cosa have been undertaken using normal rats and rats
partially depleted of glutathione. Glutathione, an es-
sential cofactor for formaldehyde metabolism, was re-
duced to 10% of the control concentration in nasal mu-
cosa by intraperitoneal injection of phorone (29,30). In
formaldehyde-exposed control animals (treated with
corn oil), the yield of DNA-protein crosslinks was a
nonlinear function of concentration, as noted previously.

Depletion of glutathione enhanced the yield of DNA-
protein crosslinks at each of the concentrations and di-
minished the amounts of **C metabolically incorporated
into macromolecules. In addition, the concentration-re-
sponse curve for DNA-protein crosslinking in the res-
piratory mucosa at concentrations between 2 and 6 ppm
was more nearly linear in phorone-treated than in corn
oil-treated rats (29). These experiments suggest that
inhibition of metabolism increases the yield of crosslinks
(presumably by increasing the cellular concentration of
formaldehyde) and that metabolic defense mechanisms
dependent on glutathione are at least partially respon-
sible for the observed nonlinear dependence on inhaled
formaldehyde concentration. Glutathione depletion did
not affect protein-protein crosslinks, suggesting that
such covalent binding was predominantly to extracel-
lular proteins in mucus.

Assays for Genotoxicity

Formaldehyde induces gene mutations in bacteria,
fungi, yeast, Drosophila larvae, and cultured rodent and
human cells (3,31,32). Other genetic endpoints for which
responses to formaldehyde have been positive include
single-strand breaks in DNA, sister chromatid ex-
changes, and chromosome aberrations. The carcino-
genic potential of the chemical is also reflected in its
ability to transform rodent cells in a variety of in vitro
assays. Although formaldehyde is considered to be a
weak mutagen (3), consistent effects in a diverse array
of test systems suggest that genetic alterations may be
fundamental to formaldehyde carcinogenesis.

Although mutagenic activity can be demonstrated re-
producibly in vitro, efforts to induce in vivo genotoxic
effects in rodents exposed to formaldehyde have been
generally unsuccessful (3,33-35). Most of these studies,
however, have examined tissues distant from the site
of primary exposure. Because formaldehyde is highly



26 NELSON ET AL.

reactive and rapidly metabolized, significant systemic
distribution may not occur at ordinary exposure levels.
Studies of genetic alterations in occupationally ex-
posed humans have produced results similar to those
obtained with rodents. Three studies have failed to de-
tect cytogenetic alterations in peripheral lymphocytes
(36-38). In a fourth study, no adverse effects were
found on sperm (39). It should be recognized, however,
that these studies were limited in size and were thus of
limited sensitivity. Furthermore, investigators in the
Soviet Union have observed an increase in chromosome
aberrations among workers exposed to phenol and for-
maldehyde (40). Unfortunately, concomitant exposure
to phenol and insufficient description of methodological
detail complicate interpretation of these findings.

Mechanisms of Genotoxicity

The genotoxicity of formaldehyde may be related to
its ability to produce DNA-protein crosslinks (41,42).
Stable covalent binding is thought to proceed via a two-
step process. Formaldehyde reacts with an amino group
on protein or DNA to form an unstable hydroxymethyl
intermediate. The intermediate reacts with another
amino group, resulting in a stable methylene bridge
between protein and DNA. Single-stranded DNA is
more susceptible to crosslinking than double-stranded
DNA (31). Intracellular repair of DNA-protein cross-
links is very rapid (43,44) but may not involve excision
repair processes (44). DNA adenine residues are likely
sites for crosslinking to occur (45,46), although reactions
with cytidine and guanine residues are also possible (41).

The molecular mechanism by which DNA-protein
crosslinks may produce mutagenic effects is not yet
known. Recent studies in bacteria suggest that cross-
links may cause point mutations, such as single-base
substitutions (46). The sequencing of DNA from for-
maldehyde-induced Drosophila mutants, on the other
hand, has indicated that mutagenesis in this system is
largely the result of deletions (47).

While it is theoretically possible for formaldehyde to
cause DNA-DNA crosslinks, generation of such lesions
in vitro requires prolonged incubation of naked DNA
with high concentrations of the chemical (48). Efforts
to detect formaldehyde-induced DNA-DNA crosslinks
within intact cells have been unsuccessful (43,49). Other
studies have suggested that formaldehyde mutagenesis
might be mediated through reactive by-products re-
sulting from interaction with free amino acids, nucleo-
tide precursors, or hydrogen peroxide (50-53). This is
because induction of genotoxic events in Drosophila, E.
colt, and mice may require or be facilitated by concom-
itant administration of these natural substances. While
such studies are of interest, this potential mechanism
of genotoxicity has been poorly characterized, and its
relationship to formaldehyde mutagenesis at present is
speculative.

In addition to the genotoxicity of formaldehyde itself,
a number of studies have indicated that exposure to
formaldehyde may enhance the effects of other DNA-

damaging agents (31). Most recently, treatment of cul-
tured human fibroblasts with formaldehyde and meth-
ylnitrosourea was observed to produce a mutagenic re-
sponse greater than that expected from the simple
additive effects of the individual agents (54). The mech-
anism of such an enhancement has not been established,
although some evidence would suggest that inhibition
of DNA repair processes by formaldehyde may be in-
volved (31,52,55). Whether formaldehyde might en-
hance the effects of other DN A-damaging agents during
in vivo exposures has yet to be determined.

Results of Chronic Formaldehyde
Inhalation Bioassays

An inhalation toxicity study of formaldehyde was con-
ducted in male and female Fischer-344 rats and B6C3F1
mice. One hundred twenty animals of each sex and spe-
cies were exposed to formaldehyde by inhalation at
mean concentrations of 0, 2.0, 5.6, and 14.3 ppm for up
to 24 months. Some of the animals were followed for an
additional 3 to 6 months after completing the 24-month
exposure regimen (56—58).

Squamous cell carcinomas were observed in the nasal
passages of 103 of 232 rats (44%) and 2 of 215 mice (1%)
in the 14.3 ppm group and 2 of 235 rats (1%) in the 5.6
ppm group. In addition, two nasal adenocarcinomas, one
carcinosarcoma, one undifferentiated carcinoma, and
one undifferentiated sarcoma were found in the nasal
cavities of rats exposed to 14.3 ppm. Life table adjust-
ments of these data have been published (58). Polypoid
adenomas of the nasal mucosa were noted in 8 of 236
(3.4%), 6 of 235 (2.6%), and 5 of 232 (2.2%) Fischer-344
rats exposed to 2.0, 5.6, and 14.3 ppm of formaldehyde,
respectively, compared to 1 of 232 (0.4%) in the control
group (57,58). The carcinogenicity of formaldehyde has
subsequently been confirmed by other investigators
with the induction of squamous cell carcinomas in the
nasal passages of Sprague-Dawley rats exposed to 14.2
ppm; papillomas were found in this study (59). No sig-
nificant increases have been observed in neoplasms at
other sites. In the opinion of the International Agency
for Research on Cancer, there is sufficient evidence to
conclude that formaldehyde gas is carcinogenic to rats
4).

Dysplastic and metaplastic changes were reported in
the respiratory epithelium of the anterior nasal pas-
sages of all groups of formaldehyde-exposed Fischer-
344 rats. The frequency and severity of these lesions
varied with the extent of exposure. Goblet cell hyper-
plasia and rhinitis were also reported. Epithelial lesions
occurred in the proximal trachea, but only at 14.3 ppm.
In mice, irritant-induced effects were essentially limited
to the nasal cavities of the high-exposure group. Three
months after termination of exposure, there was regres-
sion of rhinitis, dysplasia, and metaplasia in both spe-
cies. No evidence of toxicity was detected at sites other
than the respiratory tract (57,58). Bone marrow hy-
perplasia present in the rat bioassay was not considered
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a primary effect of formaldehyde exposure, but second-
ary to anoxia due to the presence of obstructive masses
in the nasal passages.

Physiologic Responses to Sensory
Irritation

In addition to causing a burning sensation and a desire
to withdraw from the contaminated atmosphere, stim-
ulation of sensory nerve endings in the nasal mucosa by
formaldehyde decreases the frequency of respiration
(60). In both rats and mice, associated changes in tidal
volume do not compensate entirely for the decreased
frequency (61). As a result, pulmonary ventilation per
unit time is reduced during exposure. The magnitude
of this response depends on concentration and is greater
in mice than in rats. Assuming that all inhaled formal-
dehyde is deposited in the nasal cavity, one can estimate
the rate of deposition onto the mucosal surface by di-
viding the amount of formaldehyde inhaled per unit time
by the mucosal surface area. At 15 ppm, the deposition
rate for mice would be about half that for rats (62-64)
and might account for the greater resistance of mice to
the carcinogenic effects of formaldehyde at this concen-
tration. At 6 ppm, both species appear to receive similar
doses (64). The concentration-dependence of pulmonary
ventilation on exposure must also be considered when
assessing the risk of a single species to different air-
borne concentrations of formaldehyde (65). For exam-
ple, rats exposed to 15 ppm for 6 hr inhaled twice, not
2.5 times, the amount of formaldehyde inhaled by rats
similarly exposed to 6 ppm (32).

Role of the Nasal Mucociliary
Apparatus

The mucociliary apparatus presents a continuous
layer of mucus, which flows over the surface of the nasal
epithelium (66,67). Before inhaled formaldehyde can
reach the epithelium, it must first traverse the mucus
blanket. Studies have recently been conducted to de-
termine the nature and rate of reaction between for-
maldehyde and rat and human nasal mucus. It was dem-
onstrated that formaldehyde reacts rapidly with mucus
and that albumin is probably the major binding con-
stituent (68).

At 2, 6, and 15 ppm, formaldehyde inhibited muco-
ciliary function in Fischer-344 rats in regions where
squamous cell carcinomas have occurred as the result
of exposure (69-71). As the concentration of formal-
dehyde was increased, larger areas of the mucus layer
became immobilized. Inhibition of mucociliary function
was not observed after exposure to 0.5 ppm for 2 weeks.
In human volunteers, nasal mucociliary function was
inhibited by exposure to 0.3 ppm for 4-5 hr (72). At
low formaldehyde concentrations, mucus binding reac-
tions coupled with mucus clearance could reduce ex-
posure of the nasal epithelium; however, quantitative
data are lacking.

Cell Proliferation in Response to
Cytotoxicity

Formaldehyde is known to react preferentially with
single-stranded DNA (73,7}). As the number of single-
stranded sites is much increased during DNA replica-
tion, cell proliferation should facilitate formaldehyde-
DNA binding. DNA adducts, such as DNA-protein
crosslinks, if unrepaired, increase the likelihood that an
error in newly formed DNA might occur, causing a mu-
tation. Not only should cell proliferation facilitate bind-
ing of formaldehyde to DNA and increase the chance
for errors in de novo DNA synthesis, but it also will
expand the population of initiated cells (64).

Restorative cell proliferation and hyperplasia occur
in response to formaldehyde cytotoxicity (64,75). Slight
increases in cell proliferation were demonstrable in rat
nasal epithelium after a single 6-hr exposure to 0.5 or
2.0 ppm of formaldehyde. Increased proliferation, how-
ever, was not apparent after exposure at these concen-
trations for 3 or 9 days (76,77). At higher concentra-
tions, establishment of a thickened epithelial layer
between 3 and 9 days of exposure is associated with a
reduction in the overall increase of cell proliferation.
Cell turnover continues in the basal layer of the epi-
thelium. During the first few days of exposure, cell pro-
liferation varies with formaldehyde concentration in a
nonlinear fashion. A 3-fold concentration increase from
2 to 6 ppm resulted in an 8-fold increase in turnover
after 1 day of exposure and almost a 25-fold increase
after 3 days of exposure (65).

In a 6-month study, rats exposed to 14.3 ppm of for-
maldehyde 6 hr/day, 5 days/week (450 ppm-hr/week)
had similar, but much more severe, inflammatory, hy-
perplastic, and metaplastic lesions than did animals
given approximately the same total dose, but at 3 ppm
for 22 hr/day, 7 days/week (462 ppm-hr/week) (78). Like-
wise, in groups of rats exposed to 36 ppm-hr of for-
maldehyde, but at different concentrations (3, 6, and 12
ppm) and durations of exposure (12, 6, and 3 hr), cell
proliferation was affected both by location within the
nose and by formaldehyde concentration. In the most
anterior portion of the nose, where mucociliary clear-
ance is minimal, cell proliferation increased 5-fold in all
exposure groups. By contrast, proliferation was strictly
concentration-dependent in the main portion of the res-
piratory epithelium, where mucociliary clearance is
present and squamous cell carcinomas have developed
following chronic exposure to formaldehyde (76). Col-
lectively, these data suggest that intensity of formal-
dehyde exposure may be more important than exposure
duration for cytotoxicity, restorative cell proliferation,
and possibly, for the carcinogenic process.

Dose-Response Relationships and
Species Differences Relevant to
Data Transfer from Animal to Man

Acute studies of formaldehyde have provided evi-
dence that the dose delivered to the DNA of replicating
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cells in the respiratory epithelium of the rat nasal cavity
is nonlinearly related to airborne formaldehyde concen-
tration (25,29). Specifically, it is reported that signifi-
cantly less formaldehyde is covalently bound to respi-
ratory mucosal DNA at lower airborne concentrations
than would be predicted by downward linear extrapo-
lation from the amounts observed at high concentra-
tions. Other acute studies have demonstrated that ex-
posure of rats to formaldehyde via inhalation depresses
respiration (64), inhibits mucociliary clearance (69,70),
and stimulates cell proliferation (64,75), all as nonlinear
functions of airborne formaldehyde concentration at the
concentrations studied. Experiments with glutathione-
depleted animals suggest that metabolic degradation of
formaldehyde may be more effective below 6 ppm than
at higher levels (29).

Use of the amount of formaldehyde covalently bound
to respiratory mucosal DNA rather than airborne con-
centration as the measure of exposure leads to lower
point and upper bound estimates of risk at low doses,
irrespective of the mathematical dose-response model
employed (79). Whether the data from DNA-protein
crosslinking studies should be used in risk assessment
is unclear at the present time. Reservations have been
expressed and disputed (80-82). To the extent that the
findings may be substantiated by future studies, use of
this information would be appropriate.

Review of Epidemiologic Studies of
Cancer in Relation to Formaldehyde
Exposure

Rats and mice are obligate nose breathers. Humans,
however, may breathe through the mouth or the nose.
In humans, therefore, sites at special risk from direct
contact with formaldehyde gas may be the nasal pas-
sages, buccal cavity and pharynx, larynx, trachea, bron-
chi, lungs, and esophagus. The human skin may also be
at special risk since it is not protected by fur. The in-
cidence of cancers at these sites in human populations
varies considerably. Cancers of the nasal passages are
extremely rare, while cancers of the lungs and skin are
common. Different epidemiologic strategies are re-
quired to investigate rare and common tumors. Case-
control designs allow the ascertainment of an adequate
number of subjects with a rare cancer. Unless cases and
controls are drawn from a population where formalde-
hyde exposure is relatively frequent, however, the pro-
portion of subjects exposed may be inadequate to eval-
uate moderate levels of relative risk. Cohort studies can
evaluate effectively associations between an exposure
and multiple diseases, so long as the diseases are not
extremely rare. For example, a cohort study of 100,000
persons followed over 20 years would have only a 70%
power to detect a 2-fold increase in mortality from nasal
cancer. Case-control and cohort studies have both been
used to evaluate cancer risks associated with formal-
dehyde exposure.

A number of epidemiologic studies have been per-

formed of persons occupationally exposed to formalde-
hyde. Tables 1 and 2 summarize cohort cancer mortality
data available from primary literature sources, includ-
ing theses and government documents, as well as pub-
lished articles, abstracts, and letters. Listed are deaths
due to cancers at sites that may come into contact with
formaldehyde gas and those at other locations where
significant excesses have been observed previously in a
formaldehyde-exposed cohort. For each cause, ob-
served and expected deaths are presented by individual
study or plant and in total. The mortality experience of
industrial workers is described in Table 1. In Table 2,
the experience of professionals—pathologists, anato-
mists, and morticians—is given along with the com-
bined totals of both tables. National mortality rates
were employed to determine the number of expected
deaths.

In only one of the studies in Tables 1 and 2 and in
one other were attempts made to estimate formalde-
hyde exposures experienced by the study population
(83-85). Using data assembled by the Exposure Panel
of the Consensus Workshop on Formaldehyde (3), mea-
surements of formaldehyde applicable to the study co-
horts have been included in Tables 1 and 2, wherever
possible. It should be noted that these measurements
were not taken from the particular populations reported
in Tables 1 and 2 but rather are summarized from the
literature on similar or related occupations. At best,
they provide rough indications of the relative levels of
formaldehyde experienced recently by these occupa-
tional groups. A variety of sampling and analytical tech-
niques were used. Sampling duration was reported as
1 to 4 hr in some studies but unreported in others.

Although mean levels in pathology and anatomy lab-
oratories and funeral homes appear higher than in in-
dustries producing formaldehyde or formaldehyde res-
ins, the sampling period for measurements in
laboratories was often not reported. Employees in anat-
omy and pathology laboratories and funeral homes are
not exposed for 8 hr/day; thus their 8-hr time-weighted
average (TWA) may be considerably lower. The peak
values reported for such persons, on the other hand,
may be more reliable. These suggest that the highest
levels experienced by pathologists, anatomists, and
morticians may exceed those encountered by industrial
workers.

The studies of industrial workers presented in Table
1 reveal increases in mortality from several cancers,
none of which were found to be consistently elevated.
Two groups of investigators reported significant ex-
cesses of lung cancer. Acheson et al. noted an elevated
standardized mortality ratio (SMR) for lung cancer at
one of six plants (A4 in Table 1: SMR 124) that became
statistically nonsignificant (SMR 104) when mortality
for the local area, rather than England and Wales, was
used as the standard. They pointed out that local mor-
tality would be a more appropriate standard for com-
parison if the high lung cancer rates found locally were
due to risk factors among the local population shared
by the chemical workers, such as smoking habits or air
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Table 1. Formaldehyde exposure: mortality of chemical and garment workers.
Observed/expected (O/E) deaths
Chemical industry® Garment industry®

Cause of Total Total

death Al A2 A3 A4 A5 A6 AB3) BH) C@9 D) E@?) F@8 A-F O/E

All causes 7793  98/107 49/45 845/983 104/149 446/485 1619/1862 115/—9 24/—9 146/197 256/— 1765/2059 0.86

All cancers 19/23  32/27  18/11 251/246 21/38 114/123 455/468  20/22 10/6 37/37 42/27 87/73 651/633 1.03

Skin 2/— 0/— 1/0.9 2/1.1 3/2.0 —

Buccal cav. 5/4.6 2/0.2 3/1.3 10/6.1 1.64

and phar.

Respiratory 6/7.5 323 12/12.4 11/12.2 32/34.4 0.93
Nose 0/0.05 0/0.06 0/0.03 0/0.56 0/0.09 0/0.28  0/1.07 0/— 0/— 0/— 0/— 0/— 0/1.1 —
Larynx 4/4.5 1/— 0/— 4/4.5 —
Lung 6/9.3 11/11.5 7/4.7 128/103.4 7/13.3 46/51.6 205/193.8 11/11.7 18/7.6 11/11.6 245/224.7 1.09

Digestive 118/117 8/6.3  4/1.5 5/9.5 14/9.0 22/17.5 171/160.8 1.06
Esophagus 0/— 1/0.9 1/0.9 —
Colon 4/0.6 3/3.0 3.6 1.94

Prostate 0/— 4/1.3 4/1.3 —

Kidney 7/8.3 0/— 1/1.0 8/9.3 0.86

Bladder 18/16.9 0/— 1/0.8 19/17.7 1.07

Brain 5/12.5 0/— 3/1.6 1/2.1 8/16.2 0.56

Lymphopoietic 20/26.3  2/2.3 1/0.5 6/4.4 52.5 10/6.1 44/42.1 1.05
Leukemia 9/11.4 2/1.7 4/2.4 15/15.56 0.97

*Range of mean exposures, 0.17-3 ppm; no. of samples > 142; highest level reported, 5.4 ppm.
® Range of mean exposures, 0.7-0.74 ppm; no. of samples, 85; highest level reported, 2.7 ppm.

°0O/E given only when observed and/or expected deaths = 5.
9 Proportional mortality study.

Table 2. Formaldehyde exposure: mortality of pathologists, anatomists, and morticians (includes combined totals of observed and
expected deaths for Tables 1 and 2).

Observed/expected (O/E) deaths

Pathologist®  Anatomist® Mortician® Total Tables 1 and 2
G1 G2 Il 12 K Total

Cause of death (99,100) (99,100) H (92) (101,102) (101,102) J (108) (104,105) L (106) Total G-L O/E¢ A-L O/E?

All causes 146/244  110/195 737/1129 1132/—° 1007/—° 319/322 333/—°  31/—° 1312/1890 0.69  3077/3949  0.78

All cancers 38/62 32/52  120/188  243/219 205/170  58/67 59/60 1713 772/831 0.93  1423/1464  0.97

Skin 2/3.5 8/3.6* 2/3.4 0/0.9 0/— 1/— 12/11.4 1.05 15/13.4 1.12

Buccal cav. 1/6.8 8/7.1 8/6.1 1/2.1 3/1.6 0/— 21/23.7 0.89 31/29.8 1.04

and phar.

Respiratory 13/46.3  74/70.7 43/46.0  20/21.6  13/17.3 4/3.7 167/205.5 0.81 199/239.9  0.83
Nose 0/0.1 0/0.4 0/0.5 0/0.6 0/0.2 0/— 0/1.8 — 0/2.9 —
Larynx 1/2.8 2/3.4 2/2.6 0/1.0 1/— 6/9.8 0.61 10/14.3 0.70
Lung 10/27.4  9/22.0  12/43.0 78/66.8 41/42.8 19/20.2 12/14.0  3/3.4 178/239.6 0.74  423/464.3 0.91

Digestive 12/19.8  8/15.5  38/66.4 68/65.2 69/57.0 17/22.6 16/19.3 5/4.2  233/270.0 0.86  404/430.8  0.94
Esophagus 2/4.6 5/5.3 3/4.1 0/1.7 1/1.3 0/— 11/17.0 0.65 12/17.9 0.67
Colon 20/18.5  29/20.3 30/16.0% 5/5.4 1/1.4  85/61.6% 1.38  92/65.2F 141

Prostate 20/18.7 15/16.4 23/13.1%1  3/3.4 5/6.8 3/1.5 69/59.9 1.15 73/61.2 1.19

Kidney 1/4.0 8/5.4 4/4.0 /1.7 2/1.4 0/— 16/16.5 0.97 24/25.8 0.93

Bladder 1/2.1 2/1.9 5/7.2 7.3 8/5.8 6/2.5 0/— 29/26.8 1.08 48/44.5 1.08

Brain 4/1.2*  10/3.7% 9/5.8 9/4.7 3/2.6 1/1.6 0/—  36/19.6% 1.84 45/35.8 1.26

Lymphopoietic ~ 8/3.8* 2/3.0 18/14.4  25/20.6 19/15.6  8/6.5 10/5.6 11.1  91/70.6* 1.29 135/112.7* 1.20
Leukemia 1/1.5 1/1.1 10/6.7 12/8.5 12/6.9 4/2.5 8/2.61 48/29.8F 1.61  63/45.3* 1.39

#Range of mean exposures, 0.16-4.8 ppm; no. of samples, 78; highest level reported, 13.57 ppm.
® Range of mean exposures, 0.15-8.3 ppm; no. of samples, 32; highest level reported, 14.8 ppm.
°Range of mean exposures, 0.74-2.7 ppm; no. of samples, 200; highest level reported, 5.26 ppm.
40/E given only when observed and/or expected deaths = 5.
¢ Proportional mortality study.

* Significant increase, p < 0.05.
t Significant increase, p < 0.01.
} Significant increase, p < 0.001.
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pollution, but not if the high rates could be attributed
to factors not experienced by the chemical workers,
such as carcinogenic exposures in other local industries.
The local rates used, however, were for the period 1968—
1978, whereas the period of observation of the study
cohort also included earlier years. Because mortality
due to lung cancer increased wth time, the use of 1968-
1978 rates may have exaggerated expected numbers of
deaths, thus diminishing standardized mortality ratios
(SMRs). Although a trend of increasing mortality with
increasing intensity of exposure was observed at this
plant (SMRs 58, 79, and 118 for low, moderate, or high
levels of exposure, respectively), in men exposed to high
levels of formaldehyde (estimated to exceed 2 ppm),
SMRs did not increase with increasing duration of em-
ployment, cumulative dose of formaldehyde, or time
since first hired (83,84,86).

No clear explanation is available for the deficit of lung
cancer among workers exposed to formaldehyde at low
intensity. It could be the result of having included sal-
aried workers in the cohort, but whether or not this
was done was not adequately described in the publi-
cation. Such persons would be expected both to smoke
less and to experience less intense occupational expo-
sures. As direct age adjustment was not employed for
the subset comparisons, differences in SMRs might also
be related to differences in age distribution rather than
mortality rates. In a study in Italy, Bertazzi et al. (87)
found increased lung cancer mortality regardless of
whether expected deaths were derived using national
or local rates. When the experience of workers exposed
to formaldehyde was compared to that of nonexposed
workers from the same plant, on the other hand, lung
cancer mortality among the exposed group appeared not
to be in excess.

Increased cancer of the buccal cavity and pharynx
cancer was observed in two studies of industrial workers
exposed to formaldehyde. Stayner et al. (88) noted ex-
cess buccal cavity and pharynx cancer (3 observed ver-
sus 1.3 expected) in a proportional mortality study of
garment workers. All three observed deaths were
caused by tumors of the parotid glands. The authors
questioned whether significant concentrations of for-
maldehyde could reach the parotid glands (88). Liebling
et al. (89) reported excesses of cancers of the buccal
cavity and pharynx (2 observed, 0.2 expected) and colon
(4 observed, 0.6 expected). This small study is flawed,
however, as the method used for case ascertainment,
which included reports of co-workers, may be more
likely to detect unusual causes of death.

Several industrial studies detected increases in lym-
phatic and hematopoietic cancer (87-90), a finding that
was also noted within most professional groups exposed
to formaldehyde. However, Acheson’s study of indus-
trial workers in six English chemical plants reported a
deficit of these cancers (83).

Among pathologists, anatomists, and morticians, ex-
cept for an elevated proportion of deaths due to skin
cancer in New York morticians, excess cancer mortality
has not been detected at sites thought a priori to be at

risk from formaldehyde exposure (Table 2). Several
studies have recorded significant increases in the num-
ber of deaths from leukemia and cancers at several sites,
including colon, brain, prostate, lymphatic, and hema-
topoietic tissues; moreover, summary totals show sig-
nificant excesses at all of these sites except the prostate.
Excess deaths were observed in 5 of 7 studies due to
cancer of the brain and leukemia. Although these ex-
cesses, which were not observed consistently in indus-
trial workers, may be ascribed at least in part to the
increased mortality from brain cancer and leukemia
commonly noted among persons of the upper socioeco-
nomic stratum (91), the extent to which social class dif-
ferences contribute to this gradient is not known. In an
attempt to address this issue, Stroup compared mor-
tality from cancer of the brain and leukemia among an-
atomists with mortality in psychiatrists. Using psychi-
atrists as the referent, the SMRs for these cancers were
larger than those based on the general population stan-
dard (92).

Two case-control studies of formaldehyde exposures
detected no increased risk for lung cancer. Among phy-
sicians, the relative risk of lung cancer for those ever
employed in pathology, forensic medicine, or anatomy
was 1.0 (93,94); among workers at formaldehyde-man-
ufacturing plants, the relative risk of formaldehyde ex-
posure for men with lung cancer was also 1.0 (85). Odds
ratios in the latter study varied little with the number
of years elapsed following exposure or with exposure
duration, frequency (continuous vs. intermittent), in-
tensity, or cumulative index; furthermore, there was
no evidence of an interaction between smoking and for-
maldehyde exposure.

Three other case-control studies provide indications
of a possible association between formaldehyde expo-
sure and nasal cancer. Hardell et al. found that 2 of 44
(4.5%) cases with nasal cancer had worked in particle-
board production, as compared to 4 of 541 (0.8%) con-
trols (95). Besides formaldehyde, particleboard produc-
tion also involves exposure to wood dust, an established
nasal carcinogen. In a Danish study, after adjusting for
wood dust exposure and taking account of age, Olsen
et al. (96) reported a relative risk of 1.6 for formalde-
hyde exposure among persons with nasal cancer. This
was not significantly different from 1.0. Individuals with
exposure to both wood dust and formaldehyde, it was
suggested, may have been at greater risk than those
exposed only to one agent. A study conducted in The
Netherlands noted an association between formalde-
hyde exposure and squamous cell carcinoma of the nose
and nasal sinuses. No quantitative data on the risk of
formaldehyde exposure were provided (97).

In mortality studies of formaldehyde-exposed co-
horts, deaths from nasal cancer have not been reported,
although about three had been expected (Table 2). Com-
bined, these studies would have sufficient power (80%)
to detect a relative risk of 3 or more (one-tailed p <
0.05). It should be recognized that this estimate does
not consider whether the workers in these studies had
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experienced adequate exposures or latency periods for
developing nasal cancer.

Overall, there is limited epidemiologic evidence for
the human carcinogenicity of formaldehyde. No deaths
from nasal cancer have been reported in SMR or pro-
portional mortality ratio (PMR) studies, but three case-
control studies of nasal cancer suggest the possibility
of increased risk. Excess cancers of the brain and of the
lymphatic and hematopoietic tissues have been reported
consistently in studies of formaldehyde-exposed profes-
sionals, but whether these excesses are related to for-
maldehyde exposure is not known. Elevated mortality
from lymphatic and hematopoietic cancer has also been
observed in some industrial groups.

Conclusions and Identifiable
Uncertainties

Two definitive chronic inhalation bioassays on rodents
demonstrate that formaldehyde can produce nasal can-
cer in the rat (two studies) and in the mouse (one study);
tumors were found only in the respiratory tract. Al-
though there will be a number of instances where ad-
ditional whole animal studies will be required, these will
be related primarily to mechanisms.

The levels at which malignant or benign tumors were
found in these studies included those at the extreme
limits of human exposure as well as those within the
range of past and present exposure. It should be noted
that the number of animals used in these studies was
small when compared to the number of persons exposed
to formaldehyde.

Studies of physiological and biochemical mechanisms
related to formaldehyde exposure have moved with sur-
prising rapidity, considering the relatively short time
that formaldehyde has been recognized as a carcinogen.
In particular, it has been found that the mouse sub-
stantially reduces its respiratory minute volume when
placed in an atmosphere containing formaldehyde.

Biochemical studies have quantitated the formation
of DNA-protein crosslinks in the nasal mucosa, provid-
ing a measure of tissue dose. The role of DNA-protein
crosslinks in the carcinogenic process is not fully under-
stood.

Endogenous formaldehyde has been identified as a
normal part of the carbon metabolic cycle. The relevance
of endogenous formaldehyde to spontaneous malignancy
has not been clarified.

The rapid entry of administered formaldehyde into
the normal endogenous formaldehyde pool clearly fa-
vors the production of malignancy at the site of greatest
exposure, namely, the upper respiratory tract. Trans-
port at lower levels, not now detectable, or in protective
complexes cannot be excluded and could conceivably
play a role in reported incidence of cancer at remote
sites (e.g., the brain).

The results of epidemiologic studies conducted to date
on the carcinogenicity of formaldehyde must be re-
garded as limited. Positive associations between for-

maldehyde and nasal cancer have been suggested in
three case-control studies (95-97). No nasal cancer
deaths, however, have been reported in any of a number
of cohort studies, each of which individually had little
statistical power. Two studies have reported excesses
of cancer of the buccal cavity and pharynx (88,89). The
significance of these observations in regard to the effects
of formaldehyde exposure is not clear. A number of
investigations, especially of professional groups, are
consistent in reporting excess malignancy of the brain
and of the lymphatic and hematopoietic systems. In-
creased mortality from these cancers has been com-
monly found among persons of the upper socioeconomic
stratum, although social class adjustment in one study
did not eliminate the excess.

In studies at 2 of 11 industrial plants, lung cancer
excesses have been reported (83,87). Because aspects
of both studies are incompletely described, further elu-
cidation of the data will be necessary.

Epidemiologic investigations are continuing. The role
of interaction, as for example with cigarette smoke, is
not now answerable, and studies in which wholly reli-
able estimates of exposure are available are very few.

Scientific Issues Concerning the
Carcinogenicity of Formaldehyde:
Recommendations for Research

Many of the issues concerning the carcinogenicity of
formaldehyde are embedded in the general problems of
carcinogen risk assessment, broadly characterized as
extrapolation across species and from high to low doses.
There are, however, a number of characteristics of for-
maldehyde, none of which is necessarily unique, but
which in the aggregate make formaldehyde an unusual
agent: its probable mechanism of carcinogenic action as
a crosslinking agent,; its formation in tissues as a normal
metabolite; its action as a promoter and possibly as a
cocarcinogen by interference with DNA repair pro-
cesses; and the importance of glutathione as a natural
chemical barrier.

Dose Considerations

Recommendation 1: There is a need for a better
understanding of (a) the regional distribution of inhaled
formaldehyde in the human respiratory tract; (b) the
effectiveness of mucus as a barrier to the penetration
of formaldehyde into the respiratory mucosal cells; (c)
particle transport of formaldehyde into the lung; and
(d) transport mechanisms from the respiratory tract to
other tissues, particularly those with suggestive epi-
demiological evidence of cancer induction (brain, lym-
phatic, and hematopoietic tissues).

It is not clear to what extent the mucus blanket con-
stitutes a barrier to the penetration of formaldehyde
into respiratory mucosal cells, particularly at low doses.
There is need for more experimental evidence and theo-
retical analysis to clarify this matter. Does squamous
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metaplasia protect against the penetration of formal-
dehyde? Would patches of squamous metaplasia that are
not covered by mucus constitute hot spots of attack by
formaldehyde? To what depth does formaldehyde pen-
etrate into the human lung with nose breathing and with
mouth breathing? Does significant penetration occur at
the level of the major bronchi, with an important risk
of bronchial cancer, or are the target sites likely to be
the nose, mouth, pharynx, and larynx? Is there any
substantial transport of formaldehyde into the lung in
particulate form? Does formaldehyde vapor adsorb onto
airborne particles to any significant extent and thus get
transported more deeply into the lung than would the
vapor by itself? Is there any mechanism of transport of
formaldehyde through the bloodstream for release at
tissue sites distant from the respiratory tract?

Molecular Mechanism of Action

Recommendation 2: The molecular mechanisms of
the action of formaldehyde need to be clarified in terms
of (a) an improved chemical characterization of DNA-
protein crosslinks and other potential adducts; (b) the
genotoxic consequences of DNA-protein crosslinks and
other possible mechanisms of DNA damage; (c) the rel-
ative importance of endogenous metabolic sources and
exogenous (inhalation) sources of formaldehyde, partic-
ularly at low-exposure levels, in the formation of DNA-
protein crosslinks.

The current methods for analyzing formaldehyde-in-
duced DNA-protein crosslinks are crude and insensi-
tive. The chemistry of these crosslinks has not yet been
defined with improved analytic methodology, nor have
the genotoxic mechanisms of formaldehyde been clari-
fied in terms of mutagenesis, chromosomal abnormali-
ties, and effects on DNA repair processes. As there are
a substantial number of crosslinking agents of carcin-
ogenic importance, such information would be essential
to understanding how this class of carcinogens acts.

The extent to which formaldehyde, as a normally pro-
duced metabolite, crosslinks DNA and protein needs
clarification. The questions arise as to whether endo-
genous formaldehyde may contribute significantly to the
background occurrence of cancer and if exogenous for-
maldehyde exposure would act incrementally. Can it be
that endogenous formaldehyde is so effectively con-
tained close to the sites of formation that it has no op-
portunity to damage DNA? This issue is also relevant
to the effects of xenobiotics that are metabolized
through formaldehyde as, for example, methylene chlo-
ride or dimethylhydrazine. Are there levels of metabolic
formation of formaldehyde from xenobiotics at which
formaldehyde can no longer be contained from attacking
DNA?

Carcinogen-Associated Tissue Responses

Recommendation 3: The role of tissue damage in
the carcinogenic effects of formaldehyde needs further
definition, particularly in relation to the interaction of

DNA lesions and cell proliferation as a possible basis
for the prediction of low-level carcinogenic effects.

In what way and to what extent do hyperplasia, me-
taplasia, cell proliferation, and atrophy play roles in
formaldehyde carcinogenesis? At highly carcinogenic
doses of formaldehyde, there is extensive cell killing.
Where do the replacement cells come from? Do they
arise from less exposed parts of the nose such as the
sinuses or the posterior nasal mucosa? Why does tumor
formation seem to favor the edge of the turbinates,
when the local doses of formaldehyde are equally high
elsewhere? Is there a normal epithelial protective mech-
anism whereby injured, potentially neoplastic cells are
expelled from the mucosa by the process of squamous
differentiation? To what extent does cell proliferation
affect the carcinogenic process by increasing the avail-
ability of DNA for chemical interaction and by con-
verting preneoplastic to neoplastic cells? Can the dose-
response pattern for carcinogenesis be estimated from
the combined patterns of DNA-protein crosslinks and
rates of cell proliferation and thus be used to predict
carcinogenic risks at low levels of exposure?

Tumorigenic Mechanisms and Dose
Response

Recommendation4: There needs to be a better def-
inition of (a) the role of formaldehyde as a promoting
agent, (b) the nature of its interaction with other car-
cinogens, (c) the effects of fractionation and duration of
exposure, and (d) the effect of age on the tumorigenic
action of formaldehyde.

Why are the nasal tumors less malignant as the for-
maldehyde concentration is reduced? Does nasal
carcinogenesis normally progress from benign to malig-
nant lesions even at higher carcinogen doses? Does the
preponderance of benign lesions at low doses simply
reflect a slowing of this process, or is formaldehyde at
low doses acting as a promoting agent? Can formalde-
hyde, in fact, serve as a promoting agent in vivo and,
if so, for what kinds of agents? How does formaldehyde
interact with other carcinogens? At low formaldehyde
doses, for example, which produce mostly benign tu-
mors, will cigarette smoke convert benign lesions to
malignancies? Does infection contribute to the carcin-
ogenicity of the chemical? How does age affect carcin-
ogenicity: are infants more susceptible than adults? Is
there recovery from the carcinogenic action of formal-
dehyde: are discontinuous exposures less effective than
continuous exposures? How is the carcinogenicity of
chronic exposure affected by administering the same
dose of formaldehyde over a shorter duration?

Epidemiologic Studies

Recommendation 5: Previously conducted epide-
miologic studies of persons exposed to formaldehyde
contain gaps in the reported data. A national committee
should be established to identify data gaps and encour-
age authors of the studies to conduct further analyses
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of their data in order to close these gaps. The mortality
experience of important cohorts should be periodically
updated.

Recommendation 6: Epidemiologic studies should
be conducted in populations with well-characterized ex-
posures to formaldehyde. Methods for assessing expo-
sure require refinement.

Recommendation 7: There is an urgent need to in-
corporate into epidemiologic studies of persons exposed
to formaldehyde techniques derived from molecular bi-
ology. Numerous epidemiologic studies of persons ex-
posed to formaldehyde have been initiated. While many
are now complete, a few important studies remain un-
derway. Interpretation of findings has been undermined
by several factors. The preponderance of investigators
failed to consider intensity of exposure, duration of ex-
posure, latency, and smoking habits. Use of the general
population for comparison may introduce biases because
of differences between the general population and the
exposed group in social class, smoking habits, or other
health-related factors. As is evident from Tables 1 and
2, many of the studies did not report findings for cancers
at sites now believed to be of special interest, perhaps
because these sites were not considered important at
the time the studies were conducted. Were it possible
to rectify these deficiencies, the carcinogenic effects of
exposure to formaldehyde in humans at concentrations
of a few parts per million or less might still be difficult
to detect using traditional epidemiologic methods. The
development of ultrasensitive techniques for measuring
DNA-protein crosslinks or other DNA adduects in hu-
man tissues would provide epidemiologists with new,
powerful, potentially more sensitive tools for assessing
human risk.

Risk Assessment

Recommendation 8: A sounder biological basis for
the mathematical extrapolation of respiratory tract
risks from formaldehyde to low levels of exposure must
be developed. The utility of pharmacokinetic and DNA
adduct data in the mathematical modeling of cancer risk
must also be explored.

Summary

It seems reasonable to view formaldehyde as though
it were a carcinogen for humans. The central question
is how much of a carcinogenic risk does low-level ex-
posure to formaldehyde pose under realistic environ-
mental conditions?

A formidable number of questions in regard to the
carcinogenicity of formaldehyde require clarification.
Some of these have been indicated above. The issues
are worthy of investigation not only to strengthen the
risk assessment of a chemical of great economic impor-
tance but also to contribute to improved understanding
of carcinogenic processes in general.
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