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Conjugation of Organic Pollutants in

Aquatic Species
by Margaret O. James*

Aquatic organisms can take up organic pollutants from their environment and subsequently excrete the
pollutant or its biotransformation products (metabolites). Phase II (conjugation) biotransformation prod-
ucts are almost always less toxic than the unmetabolized organic pollutant. For many organic pollutants,
the extent to which conjugates are formed is extremely important in determining the rate of excretion of
the pollutant. This is because most conjugates (glycosides, sulfates, amino acid conjugates, mercapturic
acids) are organic anions which are readily water-soluble and are rapidly excreted by fish (and probably
higher invertebrates) by a combination of glomerular filtration and tubular transport. In this paper, each
major conjugation pathway is discussed with respect to what is known about its occurrence in fish and
aquatic invertebrates, both from in vive and in vitro data. Although limited data are available, this paper
also considers what is known about how each conjugation reaction affects the toxicity and potential for
renal and biliary excretion of organic xenobiotic substrates.

Introduction

Many aquatic environments are polluted with organic
chemicals as a result of discharge of industrial chemi-
cals, run-off of agricultural chemicals and fall-out of com-
bustion products in rain (1,2). It is known that aquatic
organisms living in chemically polluted environments
will absorb lipophilic organic pollutants (3). Organic
chemicals usually undergo biotransformation in animals
via phase I (functionalization; i.e., oxidation, reduction,
ete.) and phase II (conjugation) reactions to more polar
derivatives, which are more readily excreted than the
parent compound (4,5). The most important phase II
reactions are glycosylation, sulfation, mercapturic acid
formation, amino acid conjugation, and acetylation. Me-
tabolites formed by conjugation reactions are usually
less toxic than the unconjugated compound, although
there are notable exceptions to this rule (6,7). Thus,
conjugation is usually a detoxication reaction, and as
such is a desirable process. Most conjugates (glycosides,
sulfates, amino acid conjugates, mercapturic acids) are
organic anions which are readily water-soluble. In mam-
mals and fish, the organic anions formed by phase II
reactions are frequently substrates for facilitated renal
tubular transport and are therefore rapidly excreted in
urine by a combination of glomerular filtration and tu-
bular transport (5). Higher invertebrates can also ex-
crete organic anions into urine by facilitated transport
(8,9). Thus, depending on structure, and the extent of
phase I biotransformation of a particular organic pol-
lutant, the rate of excretion will be influenced by the
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extent to which the pollutant is conjugated. Pollutants
that are rapidly excreted usually show no lasting tox-
icity. Compared with phase I reactions, there have been
few studies of phase II reactions in aquatic animals, and
this is especially true of invertebrates (10). In this pa-
per, I will summarize what is known about the most
important conjugation reactions in fish and aquatic in-
vertebrates.

Glycosylation

Organic molecules containing phenolic or alcoholic hy-
droxyl groups, carboxylic acid groups, nitrogen atoms,
thiol groups, or other nucleophilic centers can undergo
glycosylation, as shown in Equation (1):

RXH + UDPG — RXG 1)

where X = 0O, N, S (and under exceptional circum-
stances C), R = the rest of the xenobiotic, and UDPG
= uridine diphospho-B-D-glucuronic acid or uridine di-
phospho-B-D-glucose. Whether the sugar moiety is glu-
curonic acid or glucose depends on the species of animal
and on the structure of the xenobiotic. Table 1 shows
presently available data on the species occurrence and
types of substrates that undergo conjugation with glu-
cose or glucuronic acid in marine species. Glucuronides
are more water-soluble than glucose conjugates by vir-
tue of the carboxylic acid group, and should therefore
be more readily excreted, especially by animals with
organic anion transport systems.

Glucuronides

Xenobiotics containing phenolic hydroxy groups
either in the parent molecule or as a result of cyto-
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Table 1. Occurrence of glycosylation in aquatic animals.

References
Pathway Species Substrate In vivo  In vitro
Glucuronidation Teleost fish  Phenolic group (10-23) (32-41)
Elasmobranch
fish
Crustacea
Teleost fish  Dihydrodiols (24-30)
Crustacean
Teleost fish  Aliphatic (26)
hydroxy
group
Teleost fish  Carboxylic 31)
acid
Glucose Molluses Phenolic group (19,25,42) (11,39,43)
conjugation Crustacea
Teleost fish
Teleost fish  Dihydrodiols (19,25)

chrome P-450 dependent monooxygenation have been
found in bile or urine of several teleost fish species as
conjugates with glucuronic acid (11-23). Glucuronide
conjugates of dihydrodiol metabolites of aromatic hy-
drocarbons, e.g., naphthalene, benzo(a)pyrene, have
also been found in fish bile after administration of the
parent hydrocarbon (24—28). Conjugates of dihydrodiols
and phenols which could be hydrolyzed by B-glucuron-
idase have been found in extracts of shrimp (29) and
spiny lobster (30) after administration of aromatic hy-
drocarbons. Glucuronide conjugates of an aliphatic hy-
droxy group (26) and a carboxylic acid (31) have been
found in trout bile after administration of 2-methylnaph-
thalene (26) or di-2-ethylhexyl phthalate (31). The ali-
phatic hydroxy group was formed by hydroxylation of
the methyl group in 2-methylnaphthalene and the car-
boxylic acid by ester hydrolysis of di-2-ethylhexyl
phthalate to mono-2-ethylhexyl phthalate.

Formation of a glucuronide in liver and excretion in
bile does not necessarily mean that all of the glucuronide
conjugate will be rapidly excreted in urine, even though
the glucuronide conjugates are water-soluble and read-
ily excreted by kidney. This is because glucuronides can
be hydrolyzed by B-glucuronidases present in intestine
and other organs. For example, in the goldfish, phenol
glucuronide was formed in liver and excreted in bile but
subsequently hydrolyzed by intestinal B-glucuronidase;
the phenol was reabsorbed and finally excreted in urine
as a sulfate conjugate (13). Guarino showed that the 48
hr urinary excretion of phenol red and its glucuronide
by dogfish shark was reduced by removing bile through
a surgically implanted fistula (23). In this case, the
phenol red and its glucuronide were artifically removed
from the fish with the collected bile, preventing hy-
drolysis of the conjugate and reabsorption of the parent
drug (23). If, in the intact animal, glucuronide conju-
gates are excreted in bile but then undergo extensive
intestinal hydrolysis to parent xenobiotic that is reab-
sorbed (enterohepatic circulation) the excretion of the
xenobiotic glucuronide conjugate could be delayed.

Glucuronidation has also been studied at the level of

the enzyme. In vitro studies have shown that UDP-
glucuronosyltransferases in fish liver possess many of
the same properties as the mammalian enzymes. The
activity is microsomal and is enhanced by treatment of
the microsomes with detergent, digitonin or other
agents which disrupt the vesicle structure (36-40).
Trout liver UDP-glucuronosyltransferase is inducible
by B-naphthoflavone, and there is preliminary evidence
that multiple forms of the enzyme exist with different
substrate selectivities (41).

Glucosidation

There have been very few studies in which glucoside
conjugates have been identified as metabolites in
aquatic species (Table 1). In the teleost fish, glucosides
were found as minor metabolites (19,25) in tissue ex-
tracts, and it is not known if glucosides are excreted.
Glucosidation may be a more important pathway in in-
vertebrates (11,39,42,43), but so far insufficient data are
available to draw this conclusion. Glucosides have been
found in excreta of invertebrates (42).

It is of interest from a public health standpoint that
there is evidence from at least one study that glucoside
conjugates ingested by mammals are rapidly hydrolyzed
and the aglycone metabolized and excreted exactly as
if the aglycone were administered. Thus, Crayford and
Hutson (44) showed that the glucoside conjugate of 3-
phenoxybenzoic acid (a major plant metabolite) was rap-
idly hydrolyzed when administered to rat, and the ex-
creted metabolites were the same as those found when
3-phenoxybenzoic acid was administered.

Sulfation

Organic molecules containing aliphatic or aromatic
hydroxyl groups can also be sulfated, as shown in equa-
tion (2)

ROH + PAPS — ROSO;H (€]

where R = the rest of the molecule and PAPS = phos-
phoadenosyl phosphosulfate. Some reports of sulfate
conjugates of organic xenobiotics in aquatic species are
summarized in Table 2. Data on sulfation are somewhat
incomplete, because in many cases investigators have
focused on identifying metabolites formed by monoox-

Table 2. In vivo evidence for sulfate conjugation in aquatic

species.
Substrate Species Reference
Phenol Goldfish, guppy, (12, 13)
tench, bream, rudd
perch, roach
4-Nitrophenol Gum boot chiton, 42, 43)
starfish, lobster
Hydroxynaphthalene Shrimp (29)
1- and 3-Hydroxy-2,6- Sea urchin “45)
dimethylnaphthalenes
Phenols and dihydrodiols of Southern flounder, (20, 27)
benzo(a)pyrene English sole
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ygenation and have not attempted to distinguish be-
tween sulfate and glucuronide conjugates of hydroxyl
groups. When finding a metabolite that cannot be ex-
tracted into organic solvents, many investigators hy-
drolyze the polar metabolite with a mixture of p-glu-
curonidase and arylsulfatase and then attempt to
identify the unconjugated molecule. It is noteworthy
that the rainbow trout does not appear in the list of
species in which sulfate conjugates have been found. At
least three groups have looked for evidence of sulfate
conjugation in rainbow trout, using a variety of sub-
strates including pentachlorophenol (16), p-nitrophenol
(32), T-ethoxycoumarin (33), and acetaminophen (34).
Studies in southern flounder have shown that sulfate
conjugates of 7-hydroxybenzo(a)pyrene and 7,8-dihy-
drodihydroxybenzo(a)pyrene were excreted more rap-
idly in urine than the corresponding glucuronide con-
jugates, and that this was because the sulfate
conjugates were better substrates for renal tubular
transport than the glucuronides (20).

Another point of interest is that sulfate conjugates
have frequently been identified as the major metabolites
of hydroxylated xenobiotics in invertebrates
(29,42,43,45) (Table 2). In sea urchins exposed to 2,6-
dimethylnaphthalene, sulfate conjugates of ring-hy-
droxylated products were the major excreted metabo-
lites. The sulfate conjugates appeared to be cleared
fairly rapidly, through the digestive tract (45). There
is so far no evidence that sulfate conjugates of xeno-
biotics, once formed, are hydrolyzed back to the parent
molecule in aquatic species, although this has been
shown for some sulfate conjugates in mammals (7).

Mercapturic Acid Biosynthesis

Mercapturic acids (N-acetylcysteine conjugates) are
the ultimate excreted metabolites formed by further
metabolism of glutathione conjugates of organic mole-
cules, as shown in equations (3)-(6).

R-X + GSH —» R-SG 3)
RSG — R—cys—gly 4
R—cys—gly - R—cys %)
R—cys — R—cys(N-acetyl) (6)

where R-X is a xenobiotic with an electrophilic center,
GSH is the tripeptide glutathione (y-glutamylcystei-
nylglycine), R-cys-gly is the cysteinylglycine conjugate
formed by cleavage of the glutamyl group of RSG, R-
cys is the cysteinyl conjugate formed by cleavage of the
peptide bond in R-cys-gly, and R-cys(N-acetyl) is the
mercapturic acid, formed by acetylation of the cysteinyl
amino group of R-cys. R-cys conjugates are sometimes
referred to as premercapturic acids. Details of the en-
zymology of mercapturic acid biosynthesis may be found
in Jakoby (46,47). Electrophilic centers are present in
reactive chemical pollutants, such as alkylating agents,
and may also be introduced into a previously unreactive
molecule by monooxygenation: for example, the epoxide
group is introduced into molecules containing double
bonds by cytochrome P-450. In the absence of GSH and

GSH S-transferases, these reactive chemical groups can
bind to tissue macromolecules and initiate a variety of
toxic reactions. Studies in mammals have shown that
GSH S-transferases have three functions: catalysis, re-
versible binding of organic molecules, and irreversible
binding of electrophiles. The catalytic and irreversible
binding functions are important in detoxication of elec-
trophiles, and the reversible finding function may be
important in the transport of organic molecules from
cells. Therefore, knowledge of the GSH S-transferases
and related systems of aquatic animals is important in
understanding processes of detoxication in these ani-
mals.

Mercapturic acids and premercapturic acids have
been found in excreta of sea urchins fed 2,6-dimethyl-
naphthalene (45), in bile of Japanese carp fed the her-
bicide molinate (48), and in urine and bile of winter
flounder injected with the glutathione conjugates of sty-
rene oxide (49). In the winter flounder, the cysteinyl
conjugate was the predominant urinary metabolite,
showing that this metabolite can be efficiently excreted
(49). Bile from English sole administered
benzo(a)pyrene contained predominantly glutathione
and cysteinyl-glycine conjugates of benzo(a)pyrene me-
tabolites (28).

The important first step in mercapturic acid biosyn-
thesis has been studied in vitro in many aquatic animals
(50). All vertebrate and invertebrate species so far ex-
amined seem competent to form glutathione conjugates,
although there is wide variation in the rapidity with
which the conjugates are formed (10). It has been as-
sumed that these glutathione conjugates are then pro-
cessed as shown in Equations (4)—(6), prior to elimina-
tion from the animal. Glutathione S-transferase
enzymes have been purified from the rainbow trout (51),
the little skate (52), and the thorny-back shark (53), and
their properties investigated. In each of these species
multiple forms of the enzyme were found, and each en-
zyme was shown to consist of two protein subunits with
molecular weights in the 25,000 dalton region (51-53).

Table 3. Acid-soluble thiol concentrations in fish liver.

Acid-soluble thiol Method
Species concentration, mM used®  Reference
Little skate 2.3 OPT (54)
Large skate 1.4 DTNB 54)
Thorny skate 2.5 OPT 54)
Thorny-back shark 1.3 DTNB 53)
Sheepshead 1.9 OPT b
Pinfish 2.8 OPT b
Sea bass 1.3 DTNB 55)
Rainbow trout 1.8 DTNB (51)
Mullet 2.1¢ DTNB (56, 58)
Croaker 2.7¢ DTNB 67
Winter flounder 1.3 DTNB (58)

*OPT: o-phthalaldehyde method (59); DTNB: 5,5'-dithiobis-2-nitro-
benzoic acid (56).

*James, M. O. Unpublished results.

°Thomas and Wofford (56,58) have shown that in mullet and
croaker, glutathione accounts for 60-70% of the acid soluble thiols in
liver, as measured by reaction with DTNB.
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Table 4. Acetylation of xenobiotic by aquatic species.
References
Species Substrate In vivo In vitro
Dogfish shark Ethyl m-aminobenzoic (60)
acid

Rainbow trout

Ethyl m-aminobenzoic (61) (62)
acid

2-Amino-4- (62)
phenylthiazole
4-Nitroaniline 63)
3-Trifluoromethyl-4- (64)
nitrophenol
Sulfanilimide (65)
Sulfadimidine (65)
Carp 2-Amino-4- (62)
phenylthiazole
Snail Sulfamethazole (66)
Sea urchin p-Toluidine “42)
p-Aminobenzoic acid (42)
p-Nitroanisole (67)
Gum boot chiton p-Nitroanisole (42)

Table 5. Environmental chemical substrates for amino acid

conjugation.

Environmental chemical

Substrate for amino acid
conjugation

2,4-Dichlorophenoxyacetic acid

(2,4-D)

2,4-D

2,4,5-Trichlorophenoxyacetic acid 2,4,5-T

(2y4y5'T)

1,1,1-Trichloro-2,2-bis (p-chloro-
phenyl)ethane (DDT)

Toluene

Alkyl substituted benzenes

Alkanes, alcohols, glycols

Pyrethroid insecticides

Bis(p-chlorophenyl) acetic
acid (DDA)

Benzoic acid

Substituted benzoic acids

Alkyl or alkyloxycarboxylic
acids

Substituted cyclopropane

carboxylic acid

Table 6. Occurrence of taurine conjugation of carboxylic acids.

Reference
In vivo In vitro
1=727) (23, 77)

Substrate

Phenylacetic acid and
other substituted
acetic acids

Species

Winter flounder
Southern flounder
Mullet
Sheepshead
Pinfish

Drum

Redfish

Dogfish shark
Stingray

Skate

Southern flounder
Red drum
Stingray

Benzoic acid 27-79) (27-79)

This is consistent with what has been found in studies
with mammals (46). When kinetic parameters of the fish
enzymes with a commonly used substrate, 1-chloro-2,4-
dinitrobenzene (CDNB), were investigated, it was
found that apparent K., values for CDNB ranged from
0.2 to 0.7 mM, and apparent K,, values for GSH ranged
from 0.2 to 4.3 mM (51-53). In studies with hepatic

cytosol from the sheepshead, K, values for GSH of 0.3
to 0.5 mM were found with styrene oxide or
benzo(a)pyrene 4,5-oxide as substrates (50). The K,
values for GSH are in the same range as the concen-
tration of total acid-soluble thiols of fish liver (Table 3).
In studies with mullet and croaker, Thomas and Wofford
have shown that the GSH concentration of fish liver is
about 60 to 70% of the concentration of total acid-soluble
thiols, as measured by the reaction with 5,5'- dithiobis-
2-nitrobenzoic acid (DTNE) (56,58). Total acid-soluble
thiols measured by reaction with o-phthalaldehyde
(OPT) are reported to be >90% GSH (59). Because the
K, values for both GSH and CDNB are so high, rates
of formation of the CDNB-GSH conjugate in vivo could
be very sensitive to changes in concentration of either
CDNB (or substrates with similar properties) or GSH.
Since conjugation with GSH is a very important route
of detoxication of electrophilic xenobiotics, which can
also react with cellular macromolecules, this is of tox-
icological importance.

Acetylation

Organic xenobiotics which contain amino groups may
be biotransformed to acetylated metabolites as shown
in Equation (7).

R-NH; + AcetylCoA - R-NHCOCH, )

where R is the rest of the molecule. The acetylated
product is frequently less polar than the parent xeno-
biotic, and may not be excreted from the animal as
readily. The role of acetylation in excretion of amines
has been studied in several species as shown in Table
4.

The widely used fish anesthetic, tricaine methane sul-
fonate, MS-222, contains a free amino group. The drug
is excreted rapidly across the gills, largely as unchanged
drug, but it was shown many years ago that a small
fraction was eliminated across gills as the acetylated
derivative (60). Other studies showed that MS-222 was
also excreted renally: the urine contained some un-
changed MS-222, but >75% was acetylated MS-222
(62,62).

Amino Acid Conjugation

Carboxylic acid groups in xenobiotics ecan be conju-
gated with amino acids prior to excretion. The enzy-
matic reaction mechanism is shown in Equations (8) and

9.

RCOOH + CoASH — RCOSCoA ®
RCOSCoA + R'NH, —» RCONHR' + CoASH 9

where R is the rest of the xenobiotic molecule, R’ is the
rest of the endogenous amino acid, CoASH is coenzyme
A. Metabolic energy to form the coenzyme A inter-
mediate is supplied by ATP. The amino acid used for
this reaction varies with species. The most commonly
used amino acid in mammalian species is glycine, al-
though conjugates with glutamine and taurine are also
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Table 7. Excretion of carboxylic acids in urine of the southern flounder.

101

Binding to plasma Taurine conjugate in Dose excreted in 24 hr
Acid proteins (free acid), % urine, % Renal tubular transport urine, %
Phenylacetic None 90% Good 75
Benzoic None 90% Poor 11
p-Aminobenzoic acid None 10 Unknown 72
2,4-D 30 40-50 Good 38
2,4,5-T 75 50-90 Unknown 42
DDA 7 95 Unknown 27

Table 8. Excretion of carboxylic acids from spiny lobster.

Tissue/hemolymph concentration ratio

Hepatopancreas Excreted from body
Carboxylic acid Free acid Acid + taurine Green gland free acid in 24 hr, %
Phenylacetic acid 38 301 25.8 43
2,4-D 3.8 18.4 41.8 89
2,4,5-T 1.2 7.1 15.8 72
DDA 3.4 10.3 4.7 24

frequently found (68,69). Examples of organic pollutant
substrates for this reaction are shown in Table 5. A few
pollutants are themselves substrates for conjugation
(e.g., 2,4-D and 2,4,5-T), but most are first oxidized to
the carboxylic acid. This pathway is somewhat unusual
in that the substrate carboxylic acids (organic anions)
are themselves good candidates for urinary excretion.
Glycine conjugates, however, are even better candi-
dates for urinary excretion: indeed, p-aminobenzoylgly-
cine (p-aminohippurate) is perhaps the best known sub-
strate for the renal organic anion transport system, and
has been used in marine fish and crustacea as well as
in mammals to probe excretory systems (5,8,9).

The only rigorously identified metabolites of carbox-
ylic acids found so far in aquatic animals are the taurine
conjugates. Taurine conjugates of several carboxylic
acids have been found in marine fish and crustacea, as
shown in Table 6. To date there have been no published
reports in which amino acid conjugates have been une-
quivocably indentified as metabolites of carboxylic acids
in freshwater fish. One paper states that hippuric acid
was found as a metabolite from goldfish exposed to tol-
uene (70), but the “hippuric acid” was not isolated from
tank water and chemically identified. In the absence of
definitive evidence to the contrary, taurine conjugation
may be said to be a major route of conjugation of car-
boxylic acids in marine animals.

The renal excretion of several *C-labeled carboxylic
acids and their taurine conjugates has been studied in
winter flounder and southern flounder (74,76,79). The
carboxylic acids studied were accumulated from me-
dium into isolated flounder renal tubules, ap?arently by
the organic anion transport system, but the “C present
in tubules was mainly the taurine conjugate. Clearly,
the taurine conjugates can be formed in flounder kidney,
and it is therefore difficult to compare the excretion
properties of the free acid and the taurine conjugate.
By studying uptake after a short period of time (5 min),

it was possible to show that the taurine conjugate of
benzoic acid was accumulated to a greater extent than
the unconjugated acid (79).

Other in vitro studies showed that in the presence of
14C-labeled taurine, kidney and liver mitochondria from
several marine fish could catalyze the conversion of
phenylacetyl Coenzyme A and benzoyl Coenzyme A to
the respective taurine conjugates (see Table 6)
(71,77,78).

Several factors influence the rate of urinary excretion
of carboxylic acids. Table 7 shows the variation in 24
hr excretion of several carboxylic acids by southern
flounder, and lists values for some of the parameters
known to affect urinary excretion. It is clear from Table
7 that the amount of taurine conjugate present in urine
does not correlate with the amount of acid excreted in
24 hr, but rather that several factors influence excre-
tion.

Studies of the disposition of some environmentally
important carboxylic acids have been conducted in a
marine crustacean, the spiny lobster (75). The amount
excreted by spiny lobster in 24 hr ranged from 89% for
2,4-D to 24% for DDA (Table 8). Each acid was taken
up to some extent by hepatopancreas, where it was
metabolized to the taurine conjugate, but the rate of
excretion was faster if uptake and metabolism by he-
patopancreas was less avid than uptake by green gland.
Once taken up by green gland, the acids seemed to be
excreted unchanged in urine (75). In this instance, con-
jugation was not needed to facilitate excretion.
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