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I. Methods for Calculating Benefit 
 
A. Models for the Hazard of Introduction of Pandemic-Capable Strains 
The main text considers models in which of the hazard of introduction is constant, and 
models in which the hazard of introduction increases over time. Below we present in 
detail two constant hazard models and two increasing hazard models. 
 
1. Constant Hazard of Introduction Models 
 
a) Constant Hazard of Introduction Model with a Known Hazard of Introduction 
In this model, we assume that the introduction of a pandemic-capable strain is a 
homogeneous Poisson process with hazard λ beginning at the present time (defined as 
zero). When the hazard is fixed, the distribution of the number of introductions in a given 
time frame is Poisson and the distribution of the times to event is exponentially 
distributed.  
 
b) Constant Hazard of Introduction Model with an Unknown Hazard of Introduction 
We also consider a more general form of the constant hazard model where the hazard of 
introduction is unknown and distributed with some probability density function fλ(λ). As 
is shown below, the benefit of containment, as quantified by the relative gain (G/T), does 
not depend on fλ(λ). Thus the results for this model are equivalent to those for the 
constant hazard of introduction model with a known hazard of introduction and are not 
discussed further. 
 
When the unknown hazard of introduction is Gamma distributed, the number of 
introductions in a given time frame will be distributed as a negative binomial. This 
distribution describes the “clustered” model discussed in the text. Supporting Figure 1 
shows the probabilities of zero, one, or two or more introductions of a pandemic-capable 
strain when the expected number of events ranges from 0 to 10 for a negative binomial 
distribution. This distribution is different from the Poisson distribution in Figure 1 in two 
ways. First, the threshold at which the probability of greater than one introduction of a 
pandemic-capable strain is greater than the probability of exactly one event is one. This 
threshold is slightly higher (1.26) for a Poisson distribution. Second, the probability of 
exactly one event for the negative binomial distribution is greater than that for the 
Poisson distribution for large expected number of events.  
 
2. Escalating Hazard of Introduction Models 
 
a) Stochastically Timed Jump in the Hazard of Introduction Model 
In this model, the introduction of a pandemic-capable strain is a Poisson process with 
hazard λ0 over the time interval (0, tE), and a higher hazard λ1 over the time interval (tE, 
∞). At time tE there is an increase in the hazard of introduction. For example, this 
increase might be due to evolution of the virus circulating in birds so that it is genetically 
“closer” to being equipped for human-to-human spread. The time to escalation is 
exponentially distributed with hazard λE and expected time to escalation λE

-1. The effect 
of escalation ε is the ratio between the post-and pre-escalation hazards of introduction. 

2 



The relative magnitude of the hazard of escalation ρ is the ratio of the hazard of 
escalation to the initial hazard of introduction.  
 
b) Deterministic Continuous Increase in the Hazard of Introduction Model 
In this model, the hazard of introduction is a deterministic function determined by the 
parameter r and the initial hazard of introduction λ0. This function is either (i) an 
exponential function so that the hazard rate is given by  or (ii) a linear 
function of time with hazard rate

rtet 0)( λλ =
rtt 0)( λλ = . For example, this continuous increase might 

be due to an increase in the prevalence of the virus in birds. 
 
B. Calculation of the Benefit of a Containment Policy 
As stated in the text, we define the benefit of a containment policy as the expected gain 
(G) in the time to a pandemic under a policy to contain a pandemic at its source. The 
relative gain is defined as the ratio of the expected gain (G) divided by the expected time 
to a pandemic under the status quo (T). The gain and relative gain are calculated as 
follows 
 
G = E[g] 
G/T = E[g]/ E[t] 
 
where t is the time to a pandemic under the status quo, and g is the difference in time to a 
pandemic under the status quo and the time to a pandemic under the containment policy. 
Below we calculate the benefit of a containment policy assuming each of the models 
described above. We present the calculations in a different order because the constant 
hazard of introduction model is a special case of the stochastically timed jump in the 
hazard of introduction model. 
 
1. Stochastically Timed Jump in the Hazard of Introduction Model 
The probability density function (PDF) for the time to first introduction (ft(t)) can be 
written as 
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where f(x|λ) and F(x|λ) are the PDF and cumulative distribution function, respectively, of 
an exponentially distributed random variable with rate parameter λ, evaluated at x. The 
first and second terms are the probability of t if evolution occurs before and after 
introduction, respectively. The PDF and expected value for the time to first introduction 
are 
 

( )( ) ( ) ( )( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

−+= −+−−−−

10
10

1010 1)(
λλλ

λ
λλ λλλλλλ

E

Etttt
t

EE eeeetf  

( )E

EtET
λλλ
λλ
+
+

==
01

1][  

3 



 
The PDF for the gain in time to a pandemic (fg(g)) assuming a single containment attempt 
with 100% success probability can be written as 
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where ft(g) is the PDF for the time to first introduction (calculated above) evaluated at g. 
The first term and second terms are the probability of g if the first introduction occurs 
before and after escalation, respectively. The first term is the product of three quantities 
integrated over all possible times of escalation: the probability that the first introduction 
will occur before escalation, the probability of escalation occurring at time tE, and the 
probability of g given that the first introduction occurs before escalation. Note that the 
gain given that escalation does not occur before the first introduction has the same PDF 
as the time to the first introduction. The second term is the product of four quantities 
integrated over the time of first introduction and the time of escalation: the probability the 
first introduction will occur t-tE after escalation, the probability that the first introduction 
will not occur by tE, the probability of escalation occurring at time tE, and the probability 
of g given that the first introduction occurs after escalation. Note that the gain given that 
escalation does occur before the first introduction has the same PDF as the time to 
introduction when the hazard is constant. 
 
The PDF and expected value for the gain are 
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The expected gain for a single containment attempt with success probability c is 
calculated by scaling the expected gain by c. If infinite containment attempts with success 
probability c are possible, the expected gain is calculated as the difference between the 
time to first introduction with hazards of introduction scaled by (1-c) and the time to first 
introduction. The relative gain for a containment attempt is then the ratio between the 
expected gain under that policy and the time to first event. The relative gain formulas are 
written in terms of the effect of escalation (ε = λ1 / λ0) and the relative magnitude of the 
hazard of escalation (ρ = λE / λ0). 
 

G/T for a single containment attempt: 
( )( )⎟

⎟
⎠

⎞
⎜⎜
⎝

⎛
++
++

ρερ
ρρε

1
2 2

c  

G/T for infinite containment attempts: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+++

+−++
⎟
⎠
⎞

⎜
⎝
⎛

− )()1(
)(2

1 2

2

ρερρεε
ρερρε

c
c

c
c  

4 



2. Constant Hazard Model with a Known Hazard of Introduction 
To obtain the PDFs and expected values for t and g assuming the constant hazard model 
with a known hazard of introduction, we set the hazard of escalation to zero and the 
initial hazard to λ. 
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The relative gain formulas are then c for a single containment attempt and c/(1-c) for 
infinite containment attempts. 
 
3. Constant Hazard Model with an Unknown Hazard of Introduction 
If the hazard of introduction λ is unknown with PDF fλ(λ), the PDFs and expected values 
for t and g are 
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The relative gain formulas are then c for a single containment attempt and c/(1-c) for 
infinite containment attempts. The relative gain is thus the same regardless of whether the 
hazard is known or unknown. 
 
4. Deterministic Continuous Increase in the Hazard of Introduction Model 
Following Taylor and Karlin (1998; p.37) we can write the cumulative density function 
(CDF) for the time of the first event after time 0 as a function of the hazard rate λ(t): 
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The mean time of the first event is therefore  where rrEie r /]/[ 0
/0 λλ −− Ei[x] = − e− t

t
dt

−x

∞

∫  

is the exponential integral function. 
 
 
The PDF of occurrence times for the second event is given by the convolution integral 
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The expected gain (i.e. the mean occurrence time of the second event less the mean 
occurrence time of the first event) is 2
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For the linear increase model, the hazard begins at 0λ and increases at a rate r per unit 

time.  Then the CDF and PDF of the first event are  and 

  respectively. The mean time of first event is 
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5. Table of Formulas for T, G and G/T. 
 

Escalating Hazard of Introduction  Model 
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Constant Hazard of Introduction Model 
Measure Single Containment 

Attempt 
Infinite Containment Attempts 

T 1/λ 1/λ 
G c/λ (c/(1-c))(1/λ) 
G/T c c/(1-c) 

Unknown Hazard of Introduction Model 
Measure Single Containment 

Attempt 
Infinite Containment Attempts 

T E[1/λ] E[1/λ] 
G cE[1/λ] (c/(1-c))E[1/λ] 
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II. Additional Results 
 
A. Alternate Method of Calculating Relative Gain Assuming the 
Constant Hazard Model 
The results presented in the main text were derived using exponential-like right-skewed 
probability density functions for the gain g and the time to first introduction t. Because of 
this skewness, most realization of g and t may be smaller than their expected values G 
and T, respectively. Furthermore, the relative gain, calculated as G/T, may be different 
from the expected value of g/t. Below we calculate the skewness of the g and t PDFs and 
repeat the primary analysis from the main text using the median value of g/t. We show 
that the PDFs for g and t do show significant skewness. However, the results using 
E[g]/E[t] are very similar to those using the median g/t. 
 
1. Calculating the Skewness Assuming the Constant Hazard Model 
The skewness (γ) of ft(t) and fg(g) are calculated as 
 

( )
( )( ) 2/32

3

)(][

)(][

∫
∫
−

−
=

dxxfxEx

dxxfxEx

x

x
γ   

 
where E[x] is the mean and fx(x) is the PDF for random variable x. 
 
The skewness for the time to first introduction is 
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and the skewness for the gain is 
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in terms of the relative magnitudes of the hazards.  
 
Supporting Figure 2 shows plots of the skewness (γ) for the time to first introduction PDF 
(A and B) and the gain PDF (C and D). The horizontal axis is the effect of escalation ε 
and the vertical axis is the skewness γ. Each line shows the skewness at different values 
of ρ, the relative magnitude of the hazard of escalation. In A and C, ρ is 0, 0.1, 1 and 10 
for the dotted, short dashed, long dashed and solid lines, respectively. In B and D, ρ is 
100,1000,10000 and 100000 for the dotted, short dashed, long dashed and solid lines, 
respectively. The skewness for ft(t) is less than or equal to the skewness of an exponential 
PDF. The skewness for fg(g) is greater (and, for some parameter values, substantially 
greater) than or equal to the skewness of an exponential PDF. Thus the expected gain 
may be much larger than the gain for most realizations. 
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2. Calculating the Median g/t Assuming the Constant Hazard Model 
ω is used to denote the ratio of the gain g to the time to first introduction t. We define the 
following transformations and their inverses: 
 

gtgqs
tgtgp

==
==

),(
/),(ω

  
ωω

ω
/),(

),(
ssnt

ssmg
==
==

 

 
The PDF of the ratio ω is the transformation of the bivariate probability density ft,g(t,g) to 
that for ω and s, integrated over the range of s: 
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where ft,g(t,g) is equal to the product of ft(t) and fg(g) because g and t are independent 
random variables, and where |J| is the absolute value of the determinant of the Jacobian 
matrix calculated as 
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Since s and ω2 are positive, the Jacobian is always positive. The CDF for the ratio ω 
assuming the constant hazard model is 
 

( )
ω

ωωω +
=

1
F  

 
with median value of 1. The results using the median ratio of the gain to time to first 
introduction are similar to the results using G/T. 
 
B. Benefit of a Single Attempt Containment Policy Assuming the 
Stochastically Times Escalating Hazard of Introduction Model 
The main text discusses the benefit of an infinite attempt containment policy with 50% 
success probability. Here we present additional results that show that a single attempt 
containment policy with 100% success probability provides a similar benefit.  
 
Supporting Figure 3 shows the relative gain in time to a pandemic (G/T) assuming the 
escalating hazard of introduction model and assuming a single attempt containment 
policy with a 100% success probability. Each curve corresponds to a ten-fold increase in 
the magnitude of the escalation hazard relative to the initial hazard of introduction (ρ=λE / 
λ0) ranging from 0.1 to 10 in A (short dashed, long dashed and solid lines), and from 100 
to 100,000 in B (dotted, short dashed, long dashed and solid lines).  
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C. Benefit Assuming Deterministic Continuous Increase in the Hazard 
of Introduction Model 
The main text discusses the benefit of a containment policy assuming a stochastically 
timed increase in the hazard of introduction. Here we show that the relative gain 
assuming any of several escalating hazard of introduction models is lower than that 
assuming a constant hazard of introduction. Specifically, we consider a deterministic 
increase in the hazard of introduction that is either exponential or linear.  
 
Supporting Figure 4 shows the relative gain in time to a pandemic (G/T) as a function of 
the ratio (φ ) of the rate of exponential increase in the virus’s prevalence in birds (r) and 
the current hazard of introduction (λ0) assuming a single attempt containment policy with 
100% success probability. As with the escalating hazard of introduction model, the 
relative gain is at best one, but may be considerably lower, if the growth rate is much 
faster than the current hazard of introduction (φ >>1).  Assuming that this increase is the 
result of an increase in the prevalence of the virus in bird populations, we expect that, at 
least in the early stages of spread in birds, this ratio would indeed be much larger than 
one: roughly speaking, when prevalence in birds is low, the prevalence in birds is likely 
to double before the first introduction of a human pandemic strain.  Over time, the 
growing prevalence in birds will reduce this ratio by increasing the current hazard.  
However, the relative gain will never exceed 1. 
 
Even with a sub-exponential increase in the rate, the relative gain may be relatively small.  
For example, if the number of avian cases increases linearly over time, the expected gain 
ranges from ½ to 1. 
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